
Decision Problem Examples

Let us have a random outcome based on known probabilities. Think about the
following lotteries. Which one you prefer? Answer intuitively, you may maximize
MEU after that.

Lottery A
1 80% chance to gain $400
2 100% chance to gain $300

Which one you prefer?

Lottery B
Which one from this pair?

1 20% chance to gain $400
2 25% chance to gain $300

Which one you prefer?
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Money Utility

Lottery
Two lotteries again

You get $1000000
or a 50% chance to get $3000000, any gain otherwise.

Money utility

The utility of money is not linear.
Assume I have $k. The utility to have n is
roughly ($):

U(Sk+n) = −263.31 + 22.09log(n + 150000)

valid from –$150000 to $800000.
(Mr. Beard)

moneyutility.pdf

From now, we assume additive utility of money.
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Decision Problem – Milk Example
The farmer has 50 cows.
The milk from each cow is poured into a common container and transported
to the diary.
The value of the milk is $2 per cow.
The diary checks the milk carefully

and if it is infected it is thrown away.
After having milked a cow, the farmer may perform two different tests

TA costs 0.06 and it has a false positive/negative rate of 0.01
TB costs 0.20 and it has a false positive/negative rate of 0.001.

We assume the farmer has clean milk from the 49 other cows.
(Check general problem gives to the same strategy.)

Putting the milk into the container, the farmer will gain $100 if it is not
infected, $0 otherwise.
Throwing it away, he will gain $98 regardless of the state of the milk.

Should he perform the tests and in which order?
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Definition (Decision Tree)

(Probabilistic) Decision Trees
A decision tree is a model that encodes the structure of the decision
problem.
The nonleaf nodes are

decision nodes (rectangular boxes) Di
or chance nodes (circles or ellipses) Xj

and the leaf nodes are utility nodes (diamond shaped) Uk .
The links in the tree have labels.
Link from a decision is labeled with the action chosen
a link from a chance node is labeled by a state and the conditional probability
of this state P(X = xj |path from the root to X).
A path from the root represents the time order:

the state of a random variable is known iff it is on the path from the root to
the decision (nonforgetting).

an utility node is labeled by the utility of the decision scenario from the root
to it.
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Decision Scenario
We require the decision tree to be complete

from a chance node there must be a link for each possible state
from a decision node there must be a link for each possible decision.

Each path from the root to the leaf specifies a complete sequence of
observations and decisions
we call such sequence a decision scenario.
The decision tree specifies all the possible scenarios in the decision problem.

milk3.png
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Expected utility (=Expected Value)

We know the value of any scenario V (d , x , e)
we do not know which scenario will take place.
We maximize the expected utility

EU(d |e) =
∑

x
V (d , x , e) · P(x |d , e)

More value functions V1, . . . ,Vn we usually sum together
V (U) = V1(U) + . . .+ Vn(U)

multiplicative composition would be much simpler to evaluate.
Functions Vi(U) may depend on different subsets of the universe U.
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Probabilities

We calculate the probabilities.
inf <- cptable(~inf, values=c(0.0007,0.9993),levels=c(’yes’,’no’))
test <- cptable(~test+inf, values=c(1,99,99,1),levels=c(’pos’,’neg’))

milk2.png milk3.png
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Definition (Strategy)
A solution to a decision tree is a strategy that specifies how we should act at
the various decision nodes.
An optimal strategy is a strategy with the maximal expected utility.

milk3.png
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EU(X;T) Expected Utility for a decision tree

Let X be a node in a decision tree T . To caculate an optimal strategy and
the maximum expected utility for the subtree rooted at X do:

If X is a utility node, then return U(X ).
If X is a chance node, then return
EU(X ,T ) =

∑
x∈sp(X) EU(child(X = x),T ) · P(X = x |past(X ))

If X is a decision node, then
mark the arc labeled: x ′ = arg maxx∈sp(X) EU(child(X = x), T )
and return EU(X |past(X)) = maxx∈sp(X) EU(child(X = x), T )

milk3.png
0.9351 ∗ 99.94 + 0.0649 ∗ (−0.06) = 93.45

0.999993 ∗ 99.94 + 0.000007 ∗ (−0.06) = 99.9393
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Decision Trees and Decision graphs (=Influence diagrams)

Decision Tree
general problem representation and evaluation
grows fast, sub-trees may repeat
requires an independent probabilistic model

Decision Graph (Influence Diagram)
decisions and utilities incorporated in the probabilistic model
an implicit definition of the decision tree
a more compact evaluation.
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Decision graph (=Influence diagram)

Definition (Decision graph, Influence Diagram)

Decision graph is a DAG with three types of nodes and two types of tables:
Rectangular decision nodes Di have a finite domain of mutually exclusive
values (decision choices). No table attached (will be attached as a solution)
Elliptical random nodes are the same as in Bayesian networks: finite domain
and a conditional probability table given parents
Diamond utility nodes have no children and represent a function from the
parent configurations to real numbers (values).
Edges into random nodes represent conditioning as in Bayesian networks.
Edges into decision nodes represent information flow: the random value is
known before the decision is made
We assume non forgetting.
Directed path ordering all decision is required. (May contain also random
variables).
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Example - Milk (T.D.Nielsen)

Milk Test TestRes

Test? Pour? U

C

Tables
P(Milk),
P(Test|Milk),
P(TestRes|Test,Test?),
U(Pour?,Milk),
C(Test?).

Artificial node TestRes to
solve the asymmetry: the
Test cannot be observed un-
less Test = yes.

Temporal ordering: Test? ≺ {TestRes} ≺ Pour? ≺ {Milk,Test}.
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Poker Probabilities

pokerprob.png

http://pokervideo.co.uk/things-know-traditional-poker-hand-rankings/
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Example - Poker (T.D.Nielsen)

Each player gets 5 cards
FC the first choice: the player may change up to 3 cards
SC the second choice: the player may change up to 2 cards
each player may ’call’ or ’fall’
the highest hand takes the bank.
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Poker Decision Graph
Each player
gets 3 cards
FC the first
choice: the
player may
change up to 3
cards
SC the second
choice: the
player may
change up to 2
cards
each player
may ’call’ or
’fall’
the highest
hand takes the
bank.

MH0 MH1 MH2 BH

OH0 OH1 OH2

OFC OSC

MFC MSC D U
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Poker – Non-forgetting Information Arcs

MH0 MH1 MH2 BH

OH0 OH1 OH2

OFC OSC

MFC MSC D U
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Partial Temporal Ordering

Temproral ordering:
{MH0} ≺ MFC ≺
{MH1,OFC} ≺ MSC ≺
{MH2,OSC} ≺ D ≺
{OH0,OH1,OH1,GH}. MH0 MH1 MH2 BH

OH0 OH1 OH2

OFC OSC

MFC MSC D U
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Decision Graph Evaluation

Definition
The optimal strategy for a decision graph is defined as the optimal strategy of a
decision tree representing the same decision problem.

Decision graph requires the temporal ordering which makes sufficient to
evaluate a single decision tree.

Assume the temporal ordering of decisions D1, . . . , Dn.
We denote I0 the set of random variables observable by D1 (the parents of D1)
generally, the set Ii are parents of Di+1 that are not parents of any previous Di
In random variables that do not have any decision child.

We get a partial temporal ordering of decision and random variables
I0 ≺ D1 ≺ I1 ≺ . . . ≺ Dn ≺ In. This ordering must be fulfilled in the decision
tree.

The elements of a set Ik may be ordered arbitrary.
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Chain Rule for Decision Graphs

Definition (Chain Rule for Decision Graphs)
Let O be the random variables and D1, . . . ,Dn decisions in a decision graph. Then

P(O|D1, . . . ,Dn) = ΠX∈OP(X |pa(X )).

According this rule we are able to calculate all conditional probabilities in the
decision tree.
In each utility leaf we sum appropriate values from all utility nodes in the
decision graph

∑
i Vi(O,D1, . . . ,Dn).

The same optimal strategy can be evaluated also by a more compact way.
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The Optimal Strategy
For a given temporal ordering I0 ≺ D1 ≺ I1 ≺ . . . ≺ Dn ≺ In is the optimal
strategy for Di :

σi(I0,D1, I1, . . . ,Di−1, Ii−1) =

argmaxDi

∑
Ii

maxDi+1 . . .maxDn

∑
In

P(O|D1, . . . ,Dn)V (O,D1, . . . ,Dn)

The expected value of the strategy starting in Di is:
ρi(I0,D1, I1, . . . ,Di−1, Ii−1) = 1

P(I0,...,Ii−1|D1,...,Di−1) ·

maxDi

∑
Ii

maxDi+1 . . .maxDn

∑
In

P(O|D1, . . . ,Dn)V (O,D1, . . . ,Dn).

The solution may be stored in the form of a policy network
Replace each decision Di by a chance node Do

i with parents
I0, D1, I1, . . . , Di−1, Ii−1.
For each parent configuration, set P(Do

i = dj |pa(Do
i )) = 1 for the optimal

decision σi (pa(Do
i ))

zero for all other choices.
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Variable Elimination Algorithm Initialization

Φ0 ← all probability potentials P(Oi |pa(Oi)).
Ψ0 ← all utility potentials Vj(pa(Vj)).
We will sequentially eliminate all variables in the reversed temporal order.
For each decision, we remember its strategy at the time it is eliminated.
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Example - Milk Elimination Start

Milk Test TestRes

Test? Pour? U

C

Tables
P(Milk),
P(Test|Milk),
P(TestRes|Test,Test?),
U(Pour?,Milk),
C(Test?).

Temporal ordering: Test? ≺ {TestRes} ≺ Pour? ≺ {Milk,Test}.
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Example - Milk Eliminate Test

Milk TestRes

Test? Pour? U

C

Tables
P(Milk),
φ(TestRes|Milk,Test?),
U(Pour?,Milk),
C(Test?).

φ(TestRes|Milk,Test?)←
∑
Test

P(Test|Milk)P(TestRes|Test,Test?)

Temporal ordering: Test? ≺ {TestRes} ≺ Pour? ≺ {Milk}.
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Example - Eliminate Milk

TestRes

Test? Pour? U’

C

Tables
P(TestRes|Test?)←

∑
Milk P(Milk)φ(TestRes|Milk,Test?),

U ′ ← 1
P(TestRes|Test?)

∑
Milk P(Milk)φ(TestRes|Milk,Test?)U(Pour?,Milk),

C(Test?).

Temporal ordering: Test? ≺ {TestRes} ≺ Pour?.
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Example - Eliminate Pour?

TestRes

Test?

U”

C

Tables
P(TestRes|Test?),
maxPour? U ′(TestRes,Pour?),
C(Test?).

Temporal ordering: Test? ≺ {TestRes}.
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Example - Eliminate TestRes

Test? U”

C

Tables
U ′′ ←

∑
TestRes P(TestRes|Test?) maxPour? U ′(TestRes,Pour?),

C(Test?).

Eliminate Test?
maxTest?[U ′′(Test?) + C(Test?)].
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Variable Elimination Algorithm (Decision Graphs)!

Eliminate X means:
1 ΦX = {ϕ ∈ Φi−1|X ∈ dom(ϕ)}

ΨX = {ψ ∈ Ψi−1|X ∈ dom(ψ)}
2 If X is a random variable
ϕX =

∑
X ΠΦX

ψX = 1
ϕX

∑
X ΠΦX (

∑
ΨX )

3 else X #decision
ϕX = maxX ΠΦX
ψX = maxX (

∑
ΨX )

4 always
Φi = Φi−1 \ ΦX ∪ {ϕX}
Ψi = Ψi−1 \ΨX ∪ {ψX}

For each decision Di we store the optimal policy σi(past) = argmaxsp(Di )ψDi .

https://pypi.org/project/pycid/
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Unconstrained Influence Diagrams

Definition (Unconstrained Influence Diagram)
An Unconstrained Influence Diagram (UID) U

is a DAG
over decision variables DU , chance variables OU and utility variables.
utility variables have no children.
There are two types of chance variables

observables (double circled)
nonobservables (single circled).

A nonobservable cannot have a decision as a child.
Any decision has a cost (to simplify the graph).
The partial temporal order induced by U is denoted by ≺U .

An observable can be observed when all its antecedent decision variables have
been decided on.
In the case we say the observation is free and we release an observable when
the last decision in its ancestral set is taken.

Probabilistic Graphical Models Decision Trees, Decision Graphs 11 14. prosince 2023 28 / 1 - 54



Example - UID Two Tests

Milk

OA OB

TestA? TestB?

Pour?

U

Temporal ordering of decision
is not fixed.
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Example - UID Two Tests, Two Treatments

D

OI

OA

OB D2

D1TA

TB

Tr2

Tr1

D′

O1

O2

U
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S-DAG – Solution Strategy for a UID

Definition (S–DAG)
Let U be a UID. An S–DAG is a directed acyclic graph G . The nodes are labeled
with variables from DU ∪ OU such that each maximal directed path in G
represents an admissible ordering of DU ∪ OU .
We add tho unary nodes Source and Sink, Source is the only node with no parents
and Sink is the only node with no children.
A strategy for U is a step policy for each node of the S-DAG together with a
decision policy for each decision node.

Source OI

TA

TB

OA

OB

Tr1

TB

Tr1

TA

D1 Tr2 D2 TB OB

OB Tr2 D2 Tr1 D1

D1 TA OA

Tr2 D2

OA Tr1 D1

Sink
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Further Variants of IDs

LIMIDs - Limited Memory IDs
languages for asymmetric decision scenarios (Valuation networks,AIDs)
CEG - Chain Event Graphs - closed to the coalescent decision trees.
Repetitive in the time
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Influence Diagrams: Ommited Topics

Strong Junction Tree - slightly more effective evaluation
Approximate inference - Monte Carlo Sampling
LIMIDs - Limited Memory IDs - intentionally restrict the domains for
decisions
languages for asymmetric decision scenarios (Valuation networks,AIDs)
CEG - Chain Event Graphs - closed to the coalescent decision trees.
Unconstrainded influence diagrams (no ordering on decisions required).

⇒ Reasoning on the structure of the influence diagram.
Influence diagram M consists of

a DAG graph G
a list of probability and utility potentials.
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Value of Information

MH0 MH1 MH2 BH

OH0 OH1 OH2

OFC OSC

MFC MSC D U

Un Are all edges material?
Is there a structural criterion?

Definition (Materiality, Schachter 2016)
For a single-decision influence diagram (or SCIM) M, let MX ̸→D be the model
M, modified by removing the edge X → D, and let maximal expected utility in
a model be V∗(M) = maxπEπ[U ].
The observation X ∈ pa(D) is material if V∗(MX ̸→D) < V∗(M).

Reference: Everitt, Tom & Carey, Ryan & Langlois, Eric & Ortega, Pedro &
Legg, Shane. (2021). Agent Incentives: A Causal Perspective.
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Nonrequeisite observation

Definition (Nonrequeisite observation, Lauritzen and Nilsson 2001)

Let UD = U ∩ desc(D) be the utility nodes downstream of D.
An observation X ∈ pa(D) in a single-decision ID (CID) G is nonrequisite if:

X⊥dUD |(pa(D) ∪ {D} \ {X}).

In this case, the edge X → D is also called nonrequisite.
Otherwise, X and X → D are requisite.

Recall d-separation criterion.
We distinguish;

the graphical structure G
the model including the probability tables (and structural equations later) M.
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Value of Information

Definition (Value of Information)
A node x has value of information VoI in a ID (SCIM) M if it is material
in the model MX→D obtained by adding the edge X → D to M.
A ID (CID) G admits VoI for X if X as VoI in a ID M compatible with G.

Theorem (Value of information criterion)
A single decision ID (CID) G admits VoI for X ∈ V \ desc(D) if and only if X is a
requisite observation in GX→D , the graph obtained by adding X → D to G.

MH0 MH1 MH2 BH

OH0 OH1 OH2

OFC OSC

MFC MSC D U
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Causality

Generally, a link in a BN does not have causal meaning.
The probabilistic relation between Rain and WetGrass may be represented by
a link in any direction.
In an ID, the links from decision and the descendants need to represent
causality.
Still, the link X → Y does not have to represent causality.
Further, we define causal models with all links causal.

Definition Criterion Soundness Completeness

VoI Howard 1966;
Matheson 1990

Fagiuoli and
Zaffalon 1998; Lauritzen
and Nilsson 2001;
Shachter 2016

Fagiuoli and
Zaffalon 1998; Lauritzen
and Nilsson 2001;
Shachter 2016

First correct proof to our knowledge
(see Related Work)

VoC

Shachter 1986;
Matheson 1990;
Shachter and
Heckerman 2010

Incomplete version by
Shachter (1986)
(see Related Work)

New; proved using
do-calculus and VoI

New; proved constructively (cf.
“relevant utility nodes” Nielsen and
Jensen (1999))

RI New New New; proved using
do-calculus and VoI New; proved constructively

CI New New New; proved using
do-calculus New; proved constructively

Table S1: Comparison with related work. The concepts of positive value of information (VoI), and positive value of control (VoC)
are well-known. For VoI, a new, corrected, proof is provided. For VoC, the present work offers a new criterion, proving it sound
and complete. For response incentive (RI) and control incentive (CI), the criterion and all proofs are new.

D U

X

X = D

U = X +DD ∈ {0, 1}

(a) A causal influence diagram
reflecting the causal structure of
the environment

D U

X

X = D

U = 2 ·DD ∈ {0, 1}

(b) Influence diagram that is
causal in the sense of Hecker-
man and Shachter (1994, 1995)

Figure 5: Two different influence diagram representations of
the same situation, with different CI and VoC.

A Causality Examples
Causal influence diagrams that reflect the full causal structure
of the environment are needed to correctly capture response
incentives, value of control and control incentives. We begin
with showing this for control incentives and value of control,
leaving response incentive to the end of this section. Consider
the two influence diagrams in Figure 5. If we assume that X
really affects U , only the diagram in Figure 5a correctly rep-
resents this causal structure, whereas Figure 5b lacks the edge
X → U . According to Definitions 15 and 17, X has positive
value of control and a control incentive. Only Figure 5a gets
this right.

The influence diagram literature has discussed weaker no-
tions of causality, under which Figure 5b is considered a
valid alternative representation of the situation described by
Figure 5a. For example, if we only consider their joint dis-
tributions conditional on various policies, then Figures 5a
and 5b are identical. Both diagrams are also in the canonical
form of Heckerman and Shachter (1995), as every variable
responsive to the decision is a descendant of the decision. For
the same reason, both diagrams are also causal influence dia-
grams in the terminology of Heckerman and Shachter (1994)

D

XY

U

Y ∼{0, 1} X = Y

U=X+DD ∈ {0, 1}

(a) A causal influence diagram
reflecting the causal structure of
the environment

D

XY

U

X∼{0, 1}Y = X

U=X+DD ∈ {0, 1}

(b) Influence diagram that is
causal in the sense of Hecker-
man and Shachter (1994, 1995)

Figure 6: Two different influence diagram representations of
the same situation, with different RI and VoC. In Figure 6a,
Y is sampled from some arbitrary distribution on {0, 1}, for
example a Bernoulli distribution with p = 0.5. In Figure 6b,
X is sampled in the same way.

and Shachter and Heckerman (2010). Since only Figure 5a
gets the incentives right, we see that the stronger notion of
causal influence diagram introduced in this paper is necessary
to correctly model control incentives and value of control.

To show that response incentives also rely on fully causal
influence diagrams, consider the diagrams in Figure 6. Again,
we assume that Figure 6a accurately depicts the environ-
ment, while Figure 6b has the edge Y → X reversed. Again,
both diagrams have identical joint distributions given any
policy. Both diagrams are also causal in the weaker sense of
Heckerman and Shachter (1994) and Shachter and Hecker-
man (2010). Yet only the fully causal influence diagram in
Figure 6a exhibits that Y can have a response incentive or
positive value of control.

B Proof Preliminaries
Our proofs will rely on the following fundamental results
about causal models from (Galles and Pearl 1997) and (Pearl
2009).
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Causal Inference Example

https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-
toy-example/
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Observation

The conditional probability p(y |X = 3) is similar in all three cases.
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Intervention

The intervention
sets the value
X = 3 ’constantly’.
The distributions
differ.
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Probabilistic model of the intervention

do(X) operator disconnects X from its parents and enters the evidence.
! We need a causal graph, not an arbitrary Bayesian network.
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Structural Causal Model

Definition (Structural Causal Model, Pearl 2009, Chapter 7)
A structural causal model is a tuple ⟨E ,V,F,P⟩, where
E is a set of exogenous variables
V is a set of endogenous variables
F = {fV }V ∈V is a collection of functions
fV : dom(pa(V ) ∪ EV )→ dom(V )
The uncertainty is encoded through a probability distribution P(ε) such that
the exogenous variables are mutually independent.

D

O

U

ED

EO

EU

Opinion
O = fO(D, EO)

Clicks
U = fU (D,O, EU )

(a) SCIM

D

O

U

ED

EO

EU

Posts
D = π(ED)

Opinion
O = fO(D, EO)

Clicks
U = fU (D,O, EU )

(b) SCM

D

O

U

ED

EO

EU

d

Od

UOd

Posts
d = apolitical

Opinion
Od = fO(d, EO)

Clicks
UOd

= fU (D,Od, EU )

(c) SCM with nested counterfactual

exogenous
node
structuralnode
intervened
node
decision node
utility node

Figure 2: An example of a SCIM and interventions. In the SCIM, either political or apolitical posts D are displayed. These affect
the user’s opinion O. D and O influence the user’s clicks U (a). Given a policy, the SCIM becomes a SCM (b). Interventions
and counterfactuals may be defined in terms of this SCM. For example, the nested counterfactual UOd

represents the number of
clicks if the user has the opinions that they would arrive at, after viewing apolitical content (c).

influence diagram reflect the causal structure of the environ-
ment, so we use the term “Causal Influence Diagram”.
Definition 3 (Causal influence diagram). A causal influence
diagram (CID) is a directed acyclic graph G where the vertex
set V is partitioned into structure nodes X , decision nodes
D, and utility nodes U . Utility nodes have no children.

We use PaV and DescV to denote the parents and descen-
dants of a node V ∈ V . The parents of the decision, PaD, are
also called observations. An edge from node V to node Y is
denoted V → Y . Edges going into decisions are called infor-
mation links, as they represent what information is available
at the time of the decision. A directed path (of length at least
zero) is denoted V 99K Y . For sets of variables, V 99K Y
means that V 99K Y holds for some V ∈ V , Y ∈ Y .

Structural Causal Influence Models
For our new incentive concepts, we define a hybrid of the
influence diagram and the SCM. Such a model, originally
proposed by Dawid (2002), has structure and utility nodes
with associated functions, exogenous variables with an asso-
ciated probability distributions, and decision nodes, without
any function at all, until one is selected by an agent.1 This
can be formalised as the structural causal influence model
(SCIM, pronounced ‘skim’).
Definition 4 (Structural causal influence model). A struc-
tural causal influence model (SCIM) is a tuple M =
〈G,E,F , P 〉 where:
• G is a CID with finite-domain variables V (partitioned into
X , D, and U ) where utility variable domains are a subset
of R. We say thatM is compatible with G.

• E = {EV }V ∈V is a set of finite-domain exogenous vari-
ables, one for each endogenous variable.

• F = {fV }V ∈V \D is a set of structural functions
fV : dom(PaV ∪ {EV })→ dom(V ) that specify how
each non-decision endogenous variable depends on its
parents in G and its associated exogenous variable.

1Dawid called this a “functional influence diagram”. We favour
the term SCIM, because the corresponding term SCM is more preva-
lent than “functional model”.

• P is a probability distribution for E such that the individual
exogenous variables EV are mutually independent.

We will restrict our attention to single-decision settings
with D = {D}. An example of such a SCIM for the con-
tent recommendation example is shown in Figure 2a. In
single-decision SCIMs, the decision-making task is to max-
imize expected utility by selecting a decision d ∈ dom(D)
based on the observations PaD. More formally, the task is
to select a structural function for D in the form of a pol-
icy π : dom(PaD ∪ {ED}) → dom(D). The exogenous
variable ED provides randomness to allow the policy to be
a stochastic function of its endogenous parents PaD. The
specification of a policy turns a SCIM M into an SCM
Mπ := 〈E,V ,F ∪ {π}, P 〉, see Figure 2b. With the re-
sulting SCM, the standard definitions of causal interventions
apply. Note that what determines whether a node is observed
or not at the time of decision-making is whether the node is
a parent of the decision. Commonly, some structure nodes
represent latent variables that are unobserved.

We use Prπ and Eπ to denote probabilities and expec-
tations with respect to Mπ. For a set of variables X not
in DescD, Prπ(x) is independent of π and we simply write
Pr(x). An optimal policy for a SCIM is defined as any
policy π that maximises Eπ[U ], where U :=

∑
U∈U U . A

potential response Ux is defined as Ux :=
∑
U∈U Ux.

Materiality
A fundamental building block for most of our theory is
a characterization of which observations are material for
optimal performance.2

Definition 5 (Materiality; Shachter 2016). For a single-
decision SCIMM, letMX 6→D be the modelM, modified
by removing the edge X → D, and let the attainable util-
ity in a model be V∗(M) := maxπ Eπ[U ]. The observation
X ∈ PaD is material if: V∗(MX 6→D) < V∗(M).

Nodes may often be identified as immaterial based on
the graphical structure alone (Fagiuoli and Zaffalon 1998;

2In contrast to subsequent sections, the results in this section and
the VoI section do not require the influence diagrams to be causal.
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Structural Causal Influence Model

Definition (Submodel, Intervention)
Let M = ⟨E ,V,F,P⟩ be an SCM, X a set of variables in V , and x a particular
realization on X . The submodel Mx represents the effect of an intervention
do(X = x), and is formally defined as the SCM ⟨E ,V,Fx ,P⟩, where

Fx = {fV |V /∈ X} ∪ {X = x}.
The original functional relationships of X ∈ X are replaced with the constant
function X = x .
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Figure 2: An example of a SCIM and interventions. In the SCIM, either political or apolitical posts D are displayed. These affect
the user’s opinion O. D and O influence the user’s clicks U (a). Given a policy, the SCIM becomes a SCM (b). Interventions
and counterfactuals may be defined in terms of this SCM. For example, the nested counterfactual UOd

represents the number of
clicks if the user has the opinions that they would arrive at, after viewing apolitical content (c).

influence diagram reflect the causal structure of the environ-
ment, so we use the term “Causal Influence Diagram”.
Definition 3 (Causal influence diagram). A causal influence
diagram (CID) is a directed acyclic graph G where the vertex
set V is partitioned into structure nodes X , decision nodes
D, and utility nodes U . Utility nodes have no children.

We use PaV and DescV to denote the parents and descen-
dants of a node V ∈ V . The parents of the decision, PaD, are
also called observations. An edge from node V to node Y is
denoted V → Y . Edges going into decisions are called infor-
mation links, as they represent what information is available
at the time of the decision. A directed path (of length at least
zero) is denoted V 99K Y . For sets of variables, V 99K Y
means that V 99K Y holds for some V ∈ V , Y ∈ Y .

Structural Causal Influence Models
For our new incentive concepts, we define a hybrid of the
influence diagram and the SCM. Such a model, originally
proposed by Dawid (2002), has structure and utility nodes
with associated functions, exogenous variables with an asso-
ciated probability distributions, and decision nodes, without
any function at all, until one is selected by an agent.1 This
can be formalised as the structural causal influence model
(SCIM, pronounced ‘skim’).
Definition 4 (Structural causal influence model). A struc-
tural causal influence model (SCIM) is a tuple M =
〈G,E,F , P 〉 where:
• G is a CID with finite-domain variables V (partitioned into
X , D, and U ) where utility variable domains are a subset
of R. We say thatM is compatible with G.

• E = {EV }V ∈V is a set of finite-domain exogenous vari-
ables, one for each endogenous variable.

• F = {fV }V ∈V \D is a set of structural functions
fV : dom(PaV ∪ {EV })→ dom(V ) that specify how
each non-decision endogenous variable depends on its
parents in G and its associated exogenous variable.

1Dawid called this a “functional influence diagram”. We favour
the term SCIM, because the corresponding term SCM is more preva-
lent than “functional model”.

• P is a probability distribution for E such that the individual
exogenous variables EV are mutually independent.

We will restrict our attention to single-decision settings
with D = {D}. An example of such a SCIM for the con-
tent recommendation example is shown in Figure 2a. In
single-decision SCIMs, the decision-making task is to max-
imize expected utility by selecting a decision d ∈ dom(D)
based on the observations PaD. More formally, the task is
to select a structural function for D in the form of a pol-
icy π : dom(PaD ∪ {ED}) → dom(D). The exogenous
variable ED provides randomness to allow the policy to be
a stochastic function of its endogenous parents PaD. The
specification of a policy turns a SCIM M into an SCM
Mπ := 〈E,V ,F ∪ {π}, P 〉, see Figure 2b. With the re-
sulting SCM, the standard definitions of causal interventions
apply. Note that what determines whether a node is observed
or not at the time of decision-making is whether the node is
a parent of the decision. Commonly, some structure nodes
represent latent variables that are unobserved.

We use Prπ and Eπ to denote probabilities and expec-
tations with respect to Mπ. For a set of variables X not
in DescD, Prπ(x) is independent of π and we simply write
Pr(x). An optimal policy for a SCIM is defined as any
policy π that maximises Eπ[U ], where U :=

∑
U∈U U . A

potential response Ux is defined as Ux :=
∑
U∈U Ux.

Materiality
A fundamental building block for most of our theory is
a characterization of which observations are material for
optimal performance.2

Definition 5 (Materiality; Shachter 2016). For a single-
decision SCIMM, letMX 6→D be the modelM, modified
by removing the edge X → D, and let the attainable util-
ity in a model be V∗(M) := maxπ Eπ[U ]. The observation
X ∈ PaD is material if: V∗(MX 6→D) < V∗(M).

Nodes may often be identified as immaterial based on
the graphical structure alone (Fagiuoli and Zaffalon 1998;

2In contrast to subsequent sections, the results in this section and
the VoI section do not require the influence diagrams to be causal.
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Causal influence diagram

Definition (Causal influence diagram)
A causal influence diagram is a DAG G where the
vertex set V is partitioned into structure nodes X,
decision nodes D, and utility nodes U. Utility nodes
have no children.
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Figure 2: An example of a SCIM and interventions. In the SCIM, either political or apolitical posts D are displayed. These affect
the user’s opinion O. D and O influence the user’s clicks U (a). Given a policy, the SCIM becomes a SCM (b). Interventions
and counterfactuals may be defined in terms of this SCM. For example, the nested counterfactual UOd

represents the number of
clicks if the user has the opinions that they would arrive at, after viewing apolitical content (c).

influence diagram reflect the causal structure of the environ-
ment, so we use the term “Causal Influence Diagram”.
Definition 3 (Causal influence diagram). A causal influence
diagram (CID) is a directed acyclic graph G where the vertex
set V is partitioned into structure nodes X , decision nodes
D, and utility nodes U . Utility nodes have no children.

We use PaV and DescV to denote the parents and descen-
dants of a node V ∈ V . The parents of the decision, PaD, are
also called observations. An edge from node V to node Y is
denoted V → Y . Edges going into decisions are called infor-
mation links, as they represent what information is available
at the time of the decision. A directed path (of length at least
zero) is denoted V 99K Y . For sets of variables, V 99K Y
means that V 99K Y holds for some V ∈ V , Y ∈ Y .

Structural Causal Influence Models
For our new incentive concepts, we define a hybrid of the
influence diagram and the SCM. Such a model, originally
proposed by Dawid (2002), has structure and utility nodes
with associated functions, exogenous variables with an asso-
ciated probability distributions, and decision nodes, without
any function at all, until one is selected by an agent.1 This
can be formalised as the structural causal influence model
(SCIM, pronounced ‘skim’).
Definition 4 (Structural causal influence model). A struc-
tural causal influence model (SCIM) is a tuple M =
〈G,E,F , P 〉 where:
• G is a CID with finite-domain variables V (partitioned into
X , D, and U ) where utility variable domains are a subset
of R. We say thatM is compatible with G.

• E = {EV }V ∈V is a set of finite-domain exogenous vari-
ables, one for each endogenous variable.

• F = {fV }V ∈V \D is a set of structural functions
fV : dom(PaV ∪ {EV })→ dom(V ) that specify how
each non-decision endogenous variable depends on its
parents in G and its associated exogenous variable.

1Dawid called this a “functional influence diagram”. We favour
the term SCIM, because the corresponding term SCM is more preva-
lent than “functional model”.

• P is a probability distribution for E such that the individual
exogenous variables EV are mutually independent.

We will restrict our attention to single-decision settings
with D = {D}. An example of such a SCIM for the con-
tent recommendation example is shown in Figure 2a. In
single-decision SCIMs, the decision-making task is to max-
imize expected utility by selecting a decision d ∈ dom(D)
based on the observations PaD. More formally, the task is
to select a structural function for D in the form of a pol-
icy π : dom(PaD ∪ {ED}) → dom(D). The exogenous
variable ED provides randomness to allow the policy to be
a stochastic function of its endogenous parents PaD. The
specification of a policy turns a SCIM M into an SCM
Mπ := 〈E,V ,F ∪ {π}, P 〉, see Figure 2b. With the re-
sulting SCM, the standard definitions of causal interventions
apply. Note that what determines whether a node is observed
or not at the time of decision-making is whether the node is
a parent of the decision. Commonly, some structure nodes
represent latent variables that are unobserved.

We use Prπ and Eπ to denote probabilities and expec-
tations with respect to Mπ. For a set of variables X not
in DescD, Prπ(x) is independent of π and we simply write
Pr(x). An optimal policy for a SCIM is defined as any
policy π that maximises Eπ[U ], where U :=

∑
U∈U U . A

potential response Ux is defined as Ux :=
∑
U∈U Ux.

Materiality
A fundamental building block for most of our theory is
a characterization of which observations are material for
optimal performance.2

Definition 5 (Materiality; Shachter 2016). For a single-
decision SCIMM, letMX 6→D be the modelM, modified
by removing the edge X → D, and let the attainable util-
ity in a model be V∗(M) := maxπ Eπ[U ]. The observation
X ∈ PaD is material if: V∗(MX 6→D) < V∗(M).

Nodes may often be identified as immaterial based on
the graphical structure alone (Fagiuoli and Zaffalon 1998;

2In contrast to subsequent sections, the results in this section and
the VoI section do not require the influence diagrams to be causal.

Definition (Structural causal influence model)
A structural causal influence model is a tuple M = ⟨G, E ,F,P⟩ where
G is a CID with finite-domain variables V partitioned into X ,D,U where
utility variable domains are a subset of R. We say that M is compatible
with G.
{EV }V ∈V is a set of exogenous variables, one for each endogenous variable,
F = {fV }V ∈V\D is a collection of structural functions
fV : dom(pa(V ) ∪ EV )→ dom(V ),
P(ε) such that the exogenous variables are mutually independent.
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Response Incentives

Definition (Response Incentives)
Let M be a single-decision SCIM. A policy π responds to a variable X if there
exists some intervention do(X = x) and some setting E = ε, such that
Dx (ε) ̸= D(ε).
The variable X ∈ X has a response incentive if all optimal policies responds to
X .
A CID admits a response incentive on X if it is compatible with a SCIM that has
a response incentive on X .

Definition (Minimal reduction)
The minimal reduction Gmin of a single-decision CID G is the result of removing
from G all information links from nonrequisite observations.

Theorem (Response incentive criterion)
A single decision CID G admits a response incentive on X ∈ X if and only if the
minimal reduction Gmin has a directed path X 99K D.
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Incentivised unfairness

Definition (Counterfactual fairness, Kusner et al. 2017)
A policy is counterfactually fair with respect to a sensitive attribute A if

Pπ(Da′ = d |pa(D), a) = Pπ(D = d |pa(D), a)

for every decision d ∈ dom(D), every context pa(D) ∈ dom(pa(D)) and every pair
of attributes a, a′ ∈ dom(S) with P(pa(D), a) > 0.

Theorem (Counterfactual fairness and
response incentives)
In a single-decision SCIM M with a
sensitive attribute A ∈ X, all optimal
policies π∗ are counterfactually unfair
with respect to A if and only if A has a
response incentive.

Race High school Education Grade

Predicted gradeGender Accuracy

(a) Admits response incentive on race

Race High
school Education Grade

Predicted gradeGender Accuracy

VoI
RI

(b) Admits no response incentive on race

Figure 3: In (a), the admissible incentives of the grade
prediction example from Figure 1a are shown, including a
response incentive on race. In (b), the predictor no-longer
has access to the students’ high school, and hence there can
no-longer be any response incentive on race.

Proof. The if (completeness) direction is proved in
Lemma 28 in Appendix C.2. For the soundness direction,
assume that for G, the minimal reduction Gmin does not con-
tain a directed path X 99K D. LetM = 〈G,E,F , P 〉 be any
SCIM compatible with G. LetMmin =

〈
Gmin,E,F , P〉 be

M, but with the minimal reduction Gmin. By Lemma 25 in
Appendix C, there exists a Gmin-respecting policy π̃ that is
optimal inM. InMmin

π̃ , X is causally irrelevant for D so
D(ε) = Dx(ε). Furthermore,Mπ̃ andMmin

π̃ are the same
SCM, with the functions F ∪ {π̃}. So D(ε) = Dx(ε) also
inMπ̃, which means that there is an optimal policy inM
that does not respond to interventions on X for any ε.

The intuition behind the proof is that an optimal decision
only responds to effects that propagate to one of its requisite
observations. For the completeness direction, we show in
Appendix C.2 that if X 99K D is present in the minimal
reduction Gmin, then we can select a SCIMM compatible
with G such that D receives useful information along that
path, that any optimal policy must respond to.

In a safety setting, it may be desirable for an AI system to
have an incentive to respond to its shutdown button, so that
when asked to shut down, it does so (Hadfield-Menell et al.
2017). In a fairness setting, on the other hand, a response
incentive may be a cause for concern, as illustrated next.

Incentivised unfairness Response incentives are closely
related to counterfactual fairness (Kusner et al. 2017; Kilber-
tus et al. 2017). A prediction — or more generally a decision
— is considered counterfactually unfair if a change to a sensi-
tive attribute like race or gender would change the decision.
Definition 13 (Counterfactual fairness; Kusner et al. 2017).
A policy π is counterfactually fair with respect to a sensitive
attribute A if

Prπ (Da′ = d | paD, a) = Prπ (D = d | paD, a)
for every decision d ∈ dom(D), every context paD ∈
dom(PaD), and every pair of attributes a, a′ ∈ dom(A) with
Pr(paD, a) > 0.

A response incentive on a sensitive attribute indicates that
counterfactual unfairness is incentivised, as it implies that all
optimal policies are counterfactually unfair:

Theorem 14 (Counterfactual fairness and response incen-
tives). In a single-decision SCIM M with a sensitive at-
tribute A ∈X , all optimal policies π∗ are counterfactually
unfair with respect to A if and only if A has a response
incentive.

The proof is given in Appendix C.5.
A response incentive on a sensitive attribute means that

counterfactual unfairness is not just possible, but incentivised.
As a result, it has a more restrictive graphical criterion. The
graphical criterion for counterfactual fairness states that a
decision can only be counterfactually unfair with respect to
a sensitive attribute if that attribute is an ancestor of the deci-
sion (Kusner et al. 2017, Lemma 1). For example, in the grade
prediction example of Figure 3a, it is possible for a predictor
to be counterfactually unfair with respect to either gender or
race, because both are ancestors of the decision. The response
incentive criterion can tell us in which case counterfactual un-
fairness is actually incentivised. In this example, the minimal
reduction includes the edge from high school to predicted
grade and hence the directed path from race to predicted
grade. However, it excludes the edge from gender to pre-
dicted grade. This means that the agent is incentivised to be
counterfactually unfair with respect to race but not to gender.

Based on this, how should the system be redesigned?
According to the response incentive criterion, the most
important change is to remove the path from race to
predicted grade in the minimal reduction. This can be done
by removing the agent’s access to high school. This change
is implemented in Figure 3b, where there is no response
incentive on either sensitive variable.

Value of information is also related to fairness. For a sen-
sitive variable that is not a parent of the decision, positive
VoI means that if the predictor gained access to its value,
then the predictor would use it. For example, if in Figure 3b
an edge is added from race to predicted grade, then unfair
behaviour will result. In practice, such access can result from
unanticipated correlations between the sensitive attribute and
parents of the decision, rather than the system being given
direct access to the attribute. Analysing VoI may help detect
such problems at an early stage. However, VoI is less closely
related to counterfactual fairness than response incentives.
In particular, race lacks VoI in Figure 3a, but counterfactual
unfairness is incentivised. On the other hand, Figure 3b ad-
mits positive VoI for race, but counterfactual unfairness is
not incentivised.

The incentive approach is not restricted to counterfactual
fairness. For any fairness definition, one could assess whether
that kind of unfairness is incentivised by checking whether it
is present under all optimal policies.

Value of Control
A variable has VoC if a decision-maker could benefit from
setting its value (Shachter 1986; Matheson 1990; Shachter
and Heckerman 2010). Formally, we ask whether the attain-
able utility can be increased by replacing the node’s structural
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Value of Control

Definition (Value of control)
In a single-decision SCIM M, a non-decision node X has positive value of
control if

maxπEπ[U ] < maxπ,gXEπ[UgX ]

where gX : dom(pa(X ) ∪ {EX})→ dom(X ) is a soft intervention at X , i.e. new
structural function for X that respects the graph.
A CID G admits positive value of control for X if there exists a SCIM M
compatible with G where X has positive value of control.

Theorem (Value of control criterion)
A single decision CID G admits positive value of control for a node X ∈ V \ {D} if
and only if there is a directed path X 99K U in the minimal reduction Gmin.
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Definition (Control Incentive)
In a single-decision SCIM M, there is a control incentive on X ∈ V if for every
optimal policy π∗, there exists a setting for parents of the decision
pa(D) ∈ dom(pa(D)) with P(pa(D)) > 0 and an alternative decision d ∈ dom(D)
such that Eπ∗ [UXd |pa(D)] ̸= Eπ∗ [U|pa(D)].
A CID G admits a control incentive on X if there exists a SCIM M compatible
with G in which there is a control incentive on X .

In Pearl’s terminology, a control
incentive means that D has a natural
indirect effect on U via X under all
optimal policies.
Can be viewed as instrumental goal.

Theorem (Control incentive criterion)
A single decision CID G admits a control
incentive on X ∈ V if and only if there is a
directed path from the decision D to a utility
node U ∈ U that passes through X, i.e. a
directed path D 99K X 99K U.
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Model of
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Original
user opinions

Clicks

Influenced
user opinions

(a) Admits control incentive on user opinion

Posts
to show

Model of
original opinions

Original
user opinions
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Clicks

Influenced
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CI

(b) Admits no control incentive on user opinion

Figure 4: In (a), the content recommendation example from
Figure 1b is shown to admit a control incentive on user opin-
ion. This is avoided in (b) with a change to the objective.

predict what content a more emotional user will click on and
therefore, a recommender may achieve a higher click rate
by introducing posts that induce strong emotions.

How could we instead design the agent to maximise clicks
without manipulating the user’s opinions (i.e. without a
control incentive on influenced user opinions)? As shown
in Figure 4b, we could redesign the system so that instead of
being rewarded for the true click rate, it is rewarded for the
clicks it would be predicted to have, based on a separately
trained model of the user’s preferences. An agent trained in
this way would view any modification of user opinions as
irrelevant for improving its performance; however, it would
still have a control incentive for predicted clicks so it would
still deliver desired content. To avoid undesirable behaviour
in practice, the click prediction must truly predict whether
the original user would click the content, rather than baking
in the effect of changes to the user’s opinion from reading
earlier posts. This could be accomplished, for instance, by
training a model to predict how many clicks each post would
receive if it was offered individually.

This dynamic is related to concerns about the long-term
safety of AI systems. For example, Russell (2019) has hypoth-
esised that an advanced AI system would seek to manipulate
its objective function (or human overseer) to obtain reward.
This can be understood as a control incentive on the objective
function (or the overseer’s behaviour). A better understand-
ing of incentives could therefore be relevant for designing
safe systems in both the short and long-term.

Related Work
Causal influence diagrams An informal precursor of the
SCIM that also used structural functions (as opposed to
conditional probability distributions) was the “functional
influence diagram” (Dawid 2002). The most similar alterna-
tive model is the Howard canonical form influence diagram
(Howard 1990; Heckerman and Shachter 1995). However,

this only permits counterfactual reasoning downstream of
decisions, which is inadequate for defining the response
incentive. Similarly, the causality property for influence
diagrams introduced by Heckerman and Shachter (1994)
and Shachter and Heckerman (2010) only constrains the
relationships to be partially causal downstream of the
decision (though adding new decision-node parents to all
nodes makes the diagram fully causal). Appendix A shows
by example why the stronger causality property is necessary
for most of our incentive concepts.

Value of information and control Theorems 9 and 16 for
value of information and value of control build on previous
work. The concepts were first introduced by Howard (1966)
and Shachter (1986), respectively. The VoI soundness proof
follows previous proofs (Shachter 1998; Lauritzen and Nils-
son 2001), while the VoI completeness proof is most similar
to an attempted proof by Nielsen and Jensen (1999). They
propose the criterion X 6⊥ UD | PaD for requisite nodes,
which differs from (1) in the conditional. Taken literally,4
their criterion is unsound for requisite nodes and positive VoI.
For example, in Figure 3a, High school is d-separated from
accuracy given PaD, so their criterion would fail to detect
that High school is requisite and admits VoI.56

To have positive VoC, it is known that a node must be
an ancestor of a value node (Shachter 1986), but the authors
know of no more-specific criterion. The relation of the current
technical results to prior work is summarised in Table S1 in
the Appendix.

AI fairness Another application of this work is to evaluate
when an AI system is incentivised to behave unfairly, on
some definition of fairness. Response incentives address
this question for counterfactual fairness (Kusner et al. 2017;
Kilbertus et al. 2017). An incentive criterion corresponding
to path-specific effects (Zhang, Wu, and Wu 2017; Nabi and
Shpitser 2018) is deferred to future work. Nabi, Malinsky,
and Shpitser (2019) have shown how a policy may be
chosen subject to path-specific effect constraints. However,
they assume recall of all past events, whereas the response
incentive criterion applies to any CID.

4Def. 6 defines d-separation for potentially overlapping sets.
5Furthermore, to prove that nodes meeting the d-connectedness

property are requisite, Nielsen and Jensen claim that “X is [requi-
site] for D if Pr(dom(U) | D,PaD) is a function of X and U is
a utility function relevant for D”. However, U being a function of
X only proves that U is conditionally dependent on X , not that it
changes the expected utility, or is requisite or material. Additional ar-
gumentation is needed to show that conditioning on X can actually
change the expected utility; our proof provides such an argument.

6Since a preprint of this paper was placed online (Everitt et al.
2019b), this completeness result was independently discovered by
Zhang, Kumor, and Bareinboim (2020, Thm. 2) and Lee and Barein-
boim (2020, Thm. 1). Theorem 2 in the latter also provides a crite-
rion for material observations in a multi-decision setting.
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Counterfactual
https://www.inference.vc/causal-inference-3-counterfactuals/

Example (Counterfactual)
Given that Ferenc Huszár have a beard, and that Ferenc Huszár have
a PhD degree, and everything else we know about him, with what
probability would he have obtained a PhD degree, had he never grown
a beard.
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Counterfactual II

We set: p(y |do(X = x̂)p(y∗|X∗ = x̂).

We may notice:
p(y |do(X = x̂)) = p(y∗|X∗ = x̂)

=
∫

x ,y ,u,v
p( y∗ |X∗ = x̂ ,X = x ,Y = y ,U = u,Z = z)p(x , y , u, z)dxdydudz

= EpX,Y ,U,Z p(y∗|X∗ = x̂ ,X = x ,Y = y ,U = u,Z = z).
that is, p(y |do(X = x̂) is the average of counterfactuals over the observable
population.

More on causality: Sucar, Luis Enrique. “Probabilistic Graphical Models:
Principles and Applications.” Probabilistic Graphical Models (2021)
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Dynamic Bayesian Networks
We ame to monitor a process in time.
We asume a constant BN that represents

intra edges and parameters inside one time slice
inter edges and parameters from one time slice to another
initial probability distributions

(′U ′, 0)

(′S ′, 0)

(′U ′, 1)

(′S ′, 1)

(′A ′, 0) (′A ′, 1)

?

Are variables U0 and A0 independent given A3?

Observations usually make non-observable variables dependent.
Hidden Markov models ’join’ each time slice to one ’product’ variable S.

DBN is always useful for the input specification.

(′U ′, 0)

(′S ′, 0)

(′A ′, 0)

(′U ′, 1)

(′S ′, 1)

(′A ′, 1)

(′U ′, 2)

(′S ′, 2)

(′A ′, 2)

(′U ′, 3)

(′S ′, 3)

(′A ′, 3)

(′U ′, 4)

(′S ′, 4)

(′A ′, 4)

(′U ′, 5)

(′S ′, 5)

(′A ′, 5)

(′U ′, 6)

(′S ′, 6)

(′A ′, 6)

(′U ′, 7)

(′S ′, 7)

(′A ′, 7)
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Dynamic Influence Diagram

Probabilistic Graphical Models Decision Trees, Decision Graphs 11 14. prosince 2023 52 / 1 - 54



Hidden Markov Model

(′S ′, 0)

(′O ′, 0)

(′S ′, 1)

(′O ′, 1)

(′S ′, 2)

(′O ′, 2)

(′S ′, 3)

(′O ′, 3)

(′S ′, 4)

(′O ′, 4)

(′S ′, 5)

(′O ′, 5)

(′S ′, 6)

(′O ′, 6)

(′S ′, 7)

(′O ′, 7)

Definition (Hidden Markov Model)
Hidden Markov Model is defined by

p the number of hidden states, possible values of Si

m the number of observation Oi per state
N the length of observation/prediction sequence
Initial probability distribution P(S0)
State transition probabilities, P(St+1 = j |St = i)
Observation distribution per state P(Ot = k|St = i).

(′S ′, 0)

(′O ′, 0)

(′S ′, 1)

(′O ′, 1)

Filtering, Smoothing = a special case of the evidence propagation
Baum-Welch algorithm = a special case of the EM algorithm.
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HMM and LSTM comparison
Manie Tadayon and Greg Pottie: Comparative Analysis of the Hidden Markov Model and LSTM:
A Simulative Approach, (2020), https://arxiv.org/abs/2008.03825

The authors simulated data from a DBN.
Learned a HMM and a LSTM and compared the results.
Several DBNs, HMMs and LSTMs were tested.

(′U ′, 0)

(′S ′, 0)

(′U ′, 1)

(′S ′, 1)

(′O ′, 0) (′O ′, 1)

DHMM has much less parameters to train.
LSTM 4484 parameters
DHMM 27 parameters

It may perform well. It may perform even better than LSTM with little
training data.

Number of Samples LSTM Accuracy(%) DHMM Accuracy(%)
8000 61.59 60.95
3000 58.36 60.01
1000 56.12 57.90

50 33.84 50.16
10 30.23 37.20
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Markov Decision Processes

We assume a finite set of states S in each time t
First order Markov property the state t + 1 does not depend on t − i ,
i > 0 given the state t, that is:

St+1 ⊥⊥ St−i |St

Higher order Markov processes condition by more time slots.
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Markov Decision Process MDP

Definition (Markov Decision Processes MDP)

Markov Decision Processes is defined by:
Finite set of states S, Si = S for any time t ∈ N0,
Initial state s0

The set of possible actions (decisions) at any time A
Transition matrix T (s, a, s |) ≡ P(s ||s, a)
Reward(=utility) R(s, a, s |) for each state (and action).
(discount factor γ ∈< 0, 1 >).

1

2

3

1 2 3 4

START

0.8

0.10.1

(a) (b)

–1

+ 1

R(s) = −0.04, γ = 1
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Cumulative payoff

The reward is summed through the time.
There are two approaches:

finite horizon MDP – we set the number of steps n ∈ N in advance
this leads to a standard influence diagram (=decision graph)

infinite horizon and a discount factor γ, 0 < γ < 1 to make the infinite sum
finite. We maximize

E (U(s0, . . . , st , . . .)) = E

( ∞∑
t=0

γtR(st)
)

= E

( ∞∑
t=0

γtR(st , π(st), st+1)|π
)

We maximize the expected value due to probabilistic outcome of actions.
γ corresponds to the interest rate 1

γ − 1 we have to pay.

the sum is finite since U(s0, . . . , st , . . .) ≤ Rmax
(1−γ) .
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Strategy (policy)

A solution is a strategy π∗ that maximizes the expected reward.

π∗ = argmaxπE

[ ∞∑
t=0

γtR(st , π(st), st+1)|π
]

For a finite horizon, the strategy is not stationary. It depends on the number
of steps to the end. π : History → A
Infinite horizon leads to a stationary strategy. The optimal choice of an
action does not depend on the number of steps passed.
It is easier to represent a stationary strategy π : S → A.
In case of certainity to reach a goal state we may use γ = 1.
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Value Iteration Algorithm for MDP

Value Iteration Algorithm for MDP

input: MDP, states S, transitions T, reward R ≥ 0, discount f. γ,ε
vars: U,U |, vectors of utilities of states S, initialize U | ← 0|S|

δ maximal U change in the current cycle
repeat

U ← U |; δ ← 0
for each state s in S do

U |[s]← R[s] + γmaxa
∑

s| T (s, a, s |)U(s |)
if |U |[s]− U[s]| > δ then δ ← |U |[s]− U[s]|

until δ < ε(1− γ)/γ
return U |

1 2 3

1

2

3

–1

+ 1

4

0.611

0.812

0.655

0.762

0.918

0.705

0.660

0.868

 0.388
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Bellman Equations for the Optimal Strategy

1 2 3

1

2

3 + 1

–1

4

–1

+1

 R(s) < –1.6284

(a) (b)

– 0.0221 < R(s) < 0 

–1

+1

–1

+1

–1

+1

R(s) > 0 

– 0.4278 < R(s) < – 0.0850

The evaluation of POLICY _VALUE (π,U,MPD) requires solution of |S| linear
Bellman equations for U[s].

Ui [s] = R(s, π(a)) + γ
∑

s|

T (s, π(a), s |)Ui−1[s |]
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Policy Iteration Algorithm for MDP

input: MDP, states S, transitions T, reward R, discount f. γ
vars: U, a vector of utilities of states S, initialize U ← 0|S|

π policy, initialize at random
repeat

U ← POLICY _VALUE (π,U,MPD)
unchanged?← true
for each state s in S do

if maxa
∑

s| T (s, a, s |)U[s |] >
∑

s| T (s, π[s], s |)U[s |]
then

π[s]← argmaxa
∑

s| T (s, a, s |)U[s |]
unchanged?← false

until unchanged?
return π

The only difficulty may be a huge number of states like 105 equations for 105

variables.
There are hybrid algorithms of value and policy iteration (for example
prioritized sweeping).
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Example

The process above is not a Markov process.
σFV5(T1,FV1,T2,FV2,T3,FV3,T4,FV4,T5) is a very large table.
We approximate.
Consider the second model and eliminate variables Vi to get a Markov process

on Si ≡ Ti .
σFV5(T1,FV1,T2,FV2,T3,FV3,T4,FV4,T5) = σFV5(T

|
5).

σFV5 (T |
5) is small (not larger than the MDP specification).

We do not have to approximate. Let us introduce the POMPD.
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Partially Observable Markov Decision Processes (POMDP)

We are not able to observe the state directly.
Our observations are noisy.
The ideas:

The process is Markov with respect to the belief on states.
= the probability distribution on states
there are infinitely many such distributions (a continuous space)

Hidden Markov Model + Decisions + Rewards = Partially Observed Markov
Decision Processes.

Probabilistic Graphical Models MDP, POMDP 12 14. prosince 2023 63 / 55 - 77



POMDP

Definition (Partially Observed Markov Decision Processes POMDP)

Partially Observed Markov Decision Processes is defined by:
Finite set of states S, Si = S for any time t ∈ N0,

→ Initial belief b0(s) = P(S0)
The set of possible actions (decisions) at any time A = {a1, . . . , a|A|}

→ a set of observations Z = O = {z1, . . . , z|Z |}
Transition matrix T (st−1, at−1, st) = Pr(st |st−1, at−1)

→ observation matrix O(st , at−1, zt) = Pr(zt |st , at−1)
Reward(=utility) R(s, a) for each state (and action).
(discount factor γ ∈< 0, 1 >).

We maximize the expected cumulative reward maxπEπ [
∑∞

t=1 γ
tR(st , at)].

MDP The policy is a function of the state π(s)
POMDP The policy is a function of the history π(at−1, zt−1, . . . , z1, a0, b0)

or a function of the belief: b : S → ⟨0, 1⟩, π(b)
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Tiger Example

The example is a variant of the Monty Hall problem.
We face two doors.

There is a tiger behind one door,
there is a gold brick behind the other.

The Tiger is left or right S = {left, right}
We may open any door or listen A = {left, right, listen},
we search optimal policy for given observation and reward tables.
We observe Z only if we listen - we listen the tiger left TL or right TR
we reset the world at the beginning and after opening any door:

the initial belief P(S0) = ⟨0.5, 0.5⟩
The reward R is a function of the state and the action

U(gold , l/r) = 10, U(tiger , l/r) = −100, U(∗, listen) = −1, that is
Tiger
Action left right

Listen -1 -1
left -100 10

right 10 -100

Z | S=?, A=listen left right
TL 0.85 0.15
TR 0.15 0.85

NoInfo 0 0
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POMPD
Finite horizon POMPD t, γ = 1:

t = 1
EUt=1(A = left/right) = −100+10

2 = −45
EUt=1(A = listen) = −1
horizon t = 2

T (st−1, at−1, st) = Pr(st |st−1, at−1)
O(st , at−1, zt) = Pr(zt |st , at−1)

and t = 4Probabilistic Graphical Models MDP, POMDP 12 14. prosince 2023 66 / 55 - 77



Infinite Horizon

γ = 0.75
we iterate until convergence
Then, we create a graph by joining two successive time slices together.
We may omit nodes that are not reachable from the initial belief b0(s) = 0.5.
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Markov with respect to belief over states

The history is aggregated in the probability distribution over states
history ht = {a0, z1, a1, . . . , zt−1, at−1, zt}
belief bt(s) = P(S = s|zt , at−1, . . . , a0, b0),
initial belief b0(s) = P(S0).
In the tiger example a single number b(left), since the other probability is
1 − b(left).

We update belief after any iteration. The update consists of:
a transition - we eliminate unobserved st−1
an observation - we condition by zt .

belief update

τ(bt−1, at−1, zt) = bt(s |)

= ΣsO(s |, at−1, zt)T (s, at−1, s |)bt−1(s)
Pr(zt |bt−1, at−1)

Markov with respect to b since τ does not depend on time.
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Strategy, Value function
Strategy (policy) is a function π(b)→ a,
optimal strategy maximizes the expected discounted cumulative reward

π∗(b0) = argmaxπEπ

[ ∞∑
t=0

(γt · rt)|b0

]
value function

initial V0(b) = maxa
∑

s∈S R(s, a)b(s)
recursively
Vt(b) = maxa

[∑
s∈S R(s, a)b(s) + γ

∑
z∈Z P(z|a, b)Vt−1(τ(b, a, z))

]
,

optimal strategy for the horizon t:
π∗

t (b) = argmaxa
[∑

s∈S R(s, a)b(s) + γ
∑

z∈Z P(z |a, b)Vt−1(τ(b, a, z))
]
.
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α vectors

|Γt | = O(|A| · |Γt−1||Z |)
value function Vt(b) can be represented by a finite number of hyperplanes

each hyperplane is represented as a vector α Vt(b) ⇔ Γt = {α0, α1, . . . , αm}.
initial: Γ0(b) = {⟨R(s1, a), R(s2, a), . . . , R(s|S|, a)⟩}a∈A
at the time t: Vt(b) = maxα∈Γt

∑
s∈S α(s)b(s).

From
Vt(b) = maxa

[∑
s∈S R(s, a)b(s) + γ

∑
z∈Z P(z|a, b)Vt−1(τ(b, a, z))

]
:

τ(bt , at , zt+1) = Σs O(s|,at ,zt+1)T (s,at ,s|)bt (s)
Pr(zt+1|bt ,at )

Vt(b) = maxa

[∑
s∈S

R(s, a)b(s)

+ γ
∑
z∈Z

maxα∈Γt−1

∑
s′∈S

∑
s∈S

T (s, a, s ′)O(s ′, a, zt)α(s ′)b(s)
]
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One Step of the Time Update

temporal sets ∀αi ∈ Γt−1:

Γa,+
t ← αa,+(s) = R(s, a)

Γa,z
t ← αa,z(s) = γ

∑
s′∈S

T (s, a, s ′)O(s ′, a, z)α(s ′),

The utility for the action a summed over possible observation results zj :

Γa
t = Γa,+

t + Γa,z1
t ⊕ Γa,z2

t ⊕ . . .⊕ Γa,zm
t

the new value function for the time t: Γt ←
⋃

a∈A Γa
t .

We remove all α that are dominated by others
there are strategies to remove them earlier
or to avoid to generate many of them at all |Γt | = O(|A| · |Γt−1||Z |).

https://h2r.github.io/pomdp-py/html/index.html
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Approximation - We evaluate only some b points

Pineau & all.: Anytime
Point-Based Approximations for
Large POMDPs, JAIR 2006
Pearl the Nursebot
Find a person

ANYTIME POINT-BASED APPROXIMATIONS FOR LARGE POMDPS
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Figure 10: Sum of discounted reward (top graphs) and estimate of the bound on the error (bottom
graphs) as a function of the number of selected belief points.

Figure 11: Pearl the Nursebot, interacting with elderly people at a nursing facility

An important component of this task is finding the patient whenever it is time to issue a reminder.
This task shares many similarities with the Tag problem presented in Section 6.2. In this case,
however, a robot-generated map of a real physical environment is used as the basis for the spatial
configuration of the domain. This map is shown in Figure 12. The white areas correspond to free
space, the black lines indicate walls (or other obstacles) and the dark gray areas are not visible or
accessible to the robot. One can easily imagine the patient’s room and physiotherapy unit lying at
either end of the corridor, with a common area shown in the upper-middle section.

The overall goal is for the robot to traverse the domain in order to find the missing patient and
then deliver a message. The robot must systematically explore the environment, reasoning about
both spatial coverage and human motion patterns, in order to find the person.
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Finding Approximate POMDP Solutions Through Belief Compression

a bi−modal distribution
Particles form 

(a) Original Belief

(b) Reconstruction
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Figure 12: (a) A sample belief for the robot navigation task. (b) The reconstruction of this
belief from the learned E-PCA representation using 5 bases. (c) The average
KL divergence between the sample beliefs and their reconstructions against the
number of bases used. Notice that the E-PCA error falls close to 0 for 5 bases,
whereas conventional PCA has much worse reconstruction error even for 9 bases,
and is not improving rapidly.

(a) A sample belief (b) The reconstruction
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Figure 13: (a) A sample belief for the navigation problem in Longwood, cf. Figure 2. (b)
The reconstruction from the learned E-PCA representation using 6 bases. (c)
The average KL divergence between the sample beliefs and their reconstructions
against the number of bases used.

Unfortunately, we can no longer use conventional POMDP value iteration to find the
optimal policy given the low-dimensional set of belief space features. POMDP value iter-
ation depends on the fact that the value function is convex over the belief space. When

19
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Approximation - We evaluate only some b points

We evaluate the belief only in a finite number of points
only one α vector for each point

Γa,+
t ← αa,+(s) = R(s, a)

Γa,z
t ← αa,z(s) = γ

∑
s′∈S

T (s, a, s ′)O(s ′, a, z)α(s ′),

max for FINITE number of b ∈ B

αb = argmaxa

[∑
s∈S

R(s, a)b(s) +
∑
z∈Z

argmaxα∈Γa,z
t

∑
s∈S

α(s)b(s)
]

Γt =
⋃
b∈B
{αb}

The number of αs does not increase (with respect to the size of B).
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POMDP Evaluation for the Fixed Number of B Points
1: procedure BACKUP( B,Γt−1 )
2: for each action a ∈ A do
3: for each observation z ∈ Z do
4: for each solution vector αi ∈ Γt−1 do
5: αa,z(s) = γ

∑
s′∈S T (s, a, s ′)O(s ′, a, z)α(s ′), ∀s ∈ S

6: end for
7: Γa,z

t = ∪iα
a,z(s)

8: end for
9: end for

10: Γt = ∅
11: for each belief point b ∈ B do
12:

αb = argmaxa
[∑

s∈S R(s, a)b(s) +
∑

z∈Z argmaxα∈Γa,z
t

∑
s∈S α(s)b(s)

]
13: if αb /∈ Γt then
14: Γt = Γt ∪ αb
15: end if
16: end for
17: return Γt
18: end procedure
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Iterative Number of Points POMDP

1: procedure PBVI-MAIN( BInit ,Γ0,N,T )
2: B = BInit
3: Γ = ΓInit
4: for N expansions do
5: for T iterations do
6: Γ = BACKUP(B, Γ)
7: end for
8: Bnew = EXPAND(B, Γ)
9: end for

10: return Γ
11: end procedure
T either a horizon or we select a error bound γt ||V ∗

0 − V ∗||.
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Expand: New Points Selection
1) at random

2) greedy maximal error improvement
b′ a new candidate
the upper error bound in b′

ϵ(b′) ≤ minb∈B
∑

s∈S

{
( Rmax

1−γ
− α(s))(b′(s) − b(s)) b′(s) ≥ b(s)

( Rmin
1−γ

− α(s))(b′(s) − b(s)) b′(s) < b(s)
b on the fringe, the error weighted by the probability of observations:

ϵ(b) = max
a∈A

∑
z∈Z

O(b, a, z)ϵ(τ(b, a, z))

= max
a∈A

∑
z∈Z

[∑
s′∈S

∑
s∈S

T (s, a, s ′)O(s ′, a, z)b(s)

]
ϵ(τ(b, a, z)).
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QMDP Approximation

QMDP underestimates the state uncertainty in the POMDP.
1: procedure QMDP( b )
2: V̂ = MDP_discrete_value_iteration()
3: for each action a ∈ A do
4: for each state s ∈ S do
5: Q(s, a) = R(s, a) + γ

∑
s′∈S V̂ (s)p(s ′|a, s)

6: end for
7: end for
8: return arg maxa

∑
s∈S b(s)Q(s, a)

9: end procedure
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Summary Links
BN basics

Bayesian Network , Conditional Independence , Separation , d-separation , Markov Blanket , ...
Naive Bayes Classifier , Functions MI, KL, CMI, loglik, BIC , AIC

BN Evaluation
Variable Elimination Algorithm , Junction Tree Algorithm

Likelihood weighting , Gibbs Sampling , ( Metropolis Hastings Sampling )
Parameter Learning

Frequency Ratio , Dirichlet, BDeu priors , Bayesian Learning BO, MAP, ML, Missing Data , EM algorithm

Structure Learning
Chow–Liu Tree , Learning TAN Classifier

Myopic Structure Search , PC–Algorithm , (Structural EM)
Gaussian Variables

Gaussian Graphical Models , Graphical Regression , GGM Model Selection (deviance, idev, lrt)
Gaussian Process , ( Bayesian Optimization )

Decisions
Decision Tree , DT Evaluation

Decision Graphs =IDs , Variable Elimination for DG

( Markov Decision Processes , Value Iteration Algorithm ,) Partially Observed Markov Decision Processes , Policy Graph

Variational Approximation
Variational Approximation (, Latent Dirichlet Allocation ).
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