
POMDP

Definition (Partially Observed Markov Decision Processes POMDP)

Partially Observed Markov Decision Processes is defined by:
Finite set of states S, Si = S for any time t ∈ N0,

→ Initial belief b0(s) = P(S0)
The set of possible actions (decisions) at any time A = {a1, . . . , a|A|}

→ a set of observations Z = O = {z1, . . . , z|Z |}
Transition matrix T (st−1, at−1, st) = P(st |st−1, at−1)

→ observation matrix O(st , at−1, zt) = P(zt |st , at−1)
Reward(=utility) R(s, a) for each state (and action).
(discount factor γ ∈< 0, 1 >).

We maximize the expected cumulative reward maxπEπ [
∑∞

t=1 γ
tR(st , at)].

MDP The policy is a function of the state π(s)
POMDP The policy is a function of the history π(at−1, zt−1, . . . , z1, a0, b0)

or a function of the belief: b : S → ⟨0, 1⟩, π(b)
Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 10 / 1 - 112

POMDP

Definition (Partially Observed Markov Decision Processes POMDP)

Partially Observed Markov Decision Processes is defined by:
Finite set of states S, Si = S for any time t ∈ N0,

→ Initial belief b0(s) = P(S0)
The set of possible actions (decisions) at any time A = {a1, . . . , a|A|}

→ a set of observations Z = O = {z1, . . . , z|Z |}
Transition matrix T (st−1, at−1, st) = P(st |st−1, at−1)

→ observation matrix O(st , at−1, zt) = P(zt |st , at−1)
Reward(=utility) R(s, a) for each state (and action).
(discount factor γ ∈< 0, 1 >).

We maximize the expected cumulative reward maxπEπ [
∑∞

t=1 γ
tR(st , at)].

MDP The policy is a function of the state π(s)
POMDP The policy is a function of the history π(at−1, zt−1, . . . , z1, a0, b0)

or a function of the belief: b : S → ⟨0, 1⟩, π(b)
Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 10 / 1 - 112

POMDP

Definition (Partially Observed Markov Decision Processes POMDP)

Partially Observed Markov Decision Processes is defined by:
Finite set of states S, Si = S for any time t ∈ N0,

→ Initial belief b0(s) = P(S0)
The set of possible actions (decisions) at any time A = {a1, . . . , a|A|}

→ a set of observations Z = O = {z1, . . . , z|Z |}
Transition matrix T (st−1, at−1, st) = P(st |st−1, at−1)

→ observation matrix O(st , at−1, zt) = P(zt |st , at−1)
Reward(=utility) R(s, a) for each state (and action).
(discount factor γ ∈< 0, 1 >).

We maximize the expected cumulative reward maxπEπ [
∑∞

t=1 γ
tR(st , at)].

MDP The policy is a function of the state π(s)
POMDP The policy is a function of the history π(at−1, zt−1, . . . , z1, a0, b0)

or a function of the belief: b : S → ⟨0, 1⟩, π(b)
Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 10 / 1 - 112

POMDP

Definition (Partially Observed Markov Decision Processes POMDP)

Partially Observed Markov Decision Processes is defined by:
Finite set of states S, Si = S for any time t ∈ N0,

→ Initial belief b0(s) = P(S0)
The set of possible actions (decisions) at any time A = {a1, . . . , a|A|}

→ a set of observations Z = O = {z1, . . . , z|Z |}
Transition matrix T (st−1, at−1, st) = P(st |st−1, at−1)

→ observation matrix O(st , at−1, zt) = P(zt |st , at−1)
Reward(=utility) R(s, a) for each state (and action).
(discount factor γ ∈< 0, 1 >).

We maximize the expected cumulative reward maxπEπ [
∑∞

t=1 γ
tR(st , at)].

MDP The policy is a function of the state π(s)
POMDP The policy is a function of the history π(at−1, zt−1, . . . , z1, a0, b0)

or a function of the belief: b : S → ⟨0, 1⟩, π(b)
Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 10 / 1 - 112

POMDP

Definition (Partially Observed Markov Decision Processes POMDP)

Partially Observed Markov Decision Processes is defined by:
Finite set of states S, Si = S for any time t ∈ N0,

→ Initial belief b0(s) = P(S0)
The set of possible actions (decisions) at any time A = {a1, . . . , a|A|}

→ a set of observations Z = O = {z1, . . . , z|Z |}
Transition matrix T (st−1, at−1, st) = P(st |st−1, at−1)

→ observation matrix O(st , at−1, zt) = P(zt |st , at−1)
Reward(=utility) R(s, a) for each state (and action).
(discount factor γ ∈< 0, 1 >).

We maximize the expected cumulative reward maxπEπ [
∑∞

t=1 γ
tR(st , at)].

MDP The policy is a function of the state π(s)
POMDP The policy is a function of the history π(at−1, zt−1, . . . , z1, a0, b0)

or a function of the belief: b : S → ⟨0, 1⟩, π(b)
Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 10 / 1 - 112

POMDP

Definition (Partially Observed Markov Decision Processes POMDP)

Partially Observed Markov Decision Processes is defined by:
Finite set of states S, Si = S for any time t ∈ N0,

→ Initial belief b0(s) = P(S0)
The set of possible actions (decisions) at any time A = {a1, . . . , a|A|}

→ a set of observations Z = O = {z1, . . . , z|Z |}
Transition matrix T (st−1, at−1, st) = P(st |st−1, at−1)

→ observation matrix O(st , at−1, zt) = P(zt |st , at−1)
Reward(=utility) R(s, a) for each state (and action).
(discount factor γ ∈< 0, 1 >).

We maximize the expected cumulative reward maxπEπ [
∑∞

t=1 γ
tR(st , at)].

MDP The policy is a function of the state π(s)
POMDP The policy is a function of the history π(at−1, zt−1, . . . , z1, a0, b0)

or a function of the belief: b : S → ⟨0, 1⟩, π(b)
Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 10 / 1 - 112

POMDP

Definition (Partially Observed Markov Decision Processes POMDP)

Partially Observed Markov Decision Processes is defined by:
Finite set of states S, Si = S for any time t ∈ N0,

→ Initial belief b0(s) = P(S0)
The set of possible actions (decisions) at any time A = {a1, . . . , a|A|}

→ a set of observations Z = O = {z1, . . . , z|Z |}
Transition matrix T (st−1, at−1, st) = P(st |st−1, at−1)

→ observation matrix O(st , at−1, zt) = P(zt |st , at−1)
Reward(=utility) R(s, a) for each state (and action).
(discount factor γ ∈< 0, 1 >).

We maximize the expected cumulative reward maxπEπ [
∑∞

t=1 γ
tR(st , at)].

MDP The policy is a function of the state π(s)
POMDP The policy is a function of the history π(at−1, zt−1, . . . , z1, a0, b0)

or a function of the belief: b : S → ⟨0, 1⟩, π(b)
Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 10 / 1 - 112

POMDP

Definition (Partially Observed Markov Decision Processes POMDP)

Partially Observed Markov Decision Processes is defined by:
Finite set of states S, Si = S for any time t ∈ N0,

→ Initial belief b0(s) = P(S0)
The set of possible actions (decisions) at any time A = {a1, . . . , a|A|}

→ a set of observations Z = O = {z1, . . . , z|Z |}
Transition matrix T (st−1, at−1, st) = P(st |st−1, at−1)

→ observation matrix O(st , at−1, zt) = P(zt |st , at−1)
Reward(=utility) R(s, a) for each state (and action).
(discount factor γ ∈< 0, 1 >).

We maximize the expected cumulative reward maxπEπ [
∑∞

t=1 γ
tR(st , at)].

MDP The policy is a function of the state π(s)
POMDP The policy is a function of the history π(at−1, zt−1, . . . , z1, a0, b0)

or a function of the belief: b : S → ⟨0, 1⟩, π(b)
Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 10 / 1 - 112

POMDP

Definition (Partially Observed Markov Decision Processes POMDP)

Partially Observed Markov Decision Processes is defined by:
Finite set of states S, Si = S for any time t ∈ N0,

→ Initial belief b0(s) = P(S0)
The set of possible actions (decisions) at any time A = {a1, . . . , a|A|}

→ a set of observations Z = O = {z1, . . . , z|Z |}
Transition matrix T (st−1, at−1, st) = P(st |st−1, at−1)

→ observation matrix O(st , at−1, zt) = P(zt |st , at−1)
Reward(=utility) R(s, a) for each state (and action).
(discount factor γ ∈< 0, 1 >).

We maximize the expected cumulative reward maxπEπ [
∑∞

t=1 γ
tR(st , at)].

MDP The policy is a function of the state π(s)
POMDP The policy is a function of the history π(at−1, zt−1, . . . , z1, a0, b0)

or a function of the belief: b : S → ⟨0, 1⟩, π(b)
Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 10 / 1 - 112

POMDP

Definition (Partially Observed Markov Decision Processes POMDP)

Partially Observed Markov Decision Processes is defined by:
Finite set of states S, Si = S for any time t ∈ N0,

→ Initial belief b0(s) = P(S0)
The set of possible actions (decisions) at any time A = {a1, . . . , a|A|}

→ a set of observations Z = O = {z1, . . . , z|Z |}
Transition matrix T (st−1, at−1, st) = P(st |st−1, at−1)

→ observation matrix O(st , at−1, zt) = P(zt |st , at−1)
Reward(=utility) R(s, a) for each state (and action).
(discount factor γ ∈< 0, 1 >).

We maximize the expected cumulative reward maxπEπ [
∑∞

t=1 γ
tR(st , at)].

MDP The policy is a function of the state π(s)
POMDP The policy is a function of the history π(at−1, zt−1, . . . , z1, a0, b0)

or a function of the belief: b : S → ⟨0, 1⟩, π(b)
Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 10 / 1 - 112

POMDP

Definition (Partially Observed Markov Decision Processes POMDP)

Partially Observed Markov Decision Processes is defined by:
Finite set of states S, Si = S for any time t ∈ N0,

→ Initial belief b0(s) = P(S0)
The set of possible actions (decisions) at any time A = {a1, . . . , a|A|}

→ a set of observations Z = O = {z1, . . . , z|Z |}
Transition matrix T (st−1, at−1, st) = P(st |st−1, at−1)

→ observation matrix O(st , at−1, zt) = P(zt |st , at−1)
Reward(=utility) R(s, a) for each state (and action).
(discount factor γ ∈< 0, 1 >).

We maximize the expected cumulative reward maxπEπ [
∑∞

t=1 γ
tR(st , at)].

MDP The policy is a function of the state π(s)
POMDP The policy is a function of the history π(at−1, zt−1, . . . , z1, a0, b0)

or a function of the belief: b : S → ⟨0, 1⟩, π(b)
Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 10 / 1 - 112

Tiger Example

The example is a variant of the Monty Hall problem.
We face two doors.

There is a tiger behind one door,
there is a gold brick behind the other.

The Tiger is left or right S = {left, right}
We may open any door or listen A = {left, right, listen},
we search optimal policy for given observation and reward tables.
We observe Z only if we listen - we listen the tiger left TL or right TR
we reset the world at the beginning and after opening any door:

the initial belief P(S0) = ⟨0.5, 0.5⟩
The reward R is a function of the state and the action

U(gold , l/r) = 10, U(tiger , l/r) = −100, U(∗, listen) = −1, that is
Tiger
Action left right

Listen -1 -1
left -100 10

right 10 -100

Z | S=?, A=listen left right
TL 0.85 0.15
TR 0.15 0.85

NoInfo 0 0

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 11 / 1 - 112

Tiger Example

The example is a variant of the Monty Hall problem.
We face two doors.

There is a tiger behind one door,
there is a gold brick behind the other.

The Tiger is left or right S = {left, right}
We may open any door or listen A = {left, right, listen},
we search optimal policy for given observation and reward tables.
We observe Z only if we listen - we listen the tiger left TL or right TR
we reset the world at the beginning and after opening any door:

the initial belief P(S0) = ⟨0.5, 0.5⟩
The reward R is a function of the state and the action

U(gold , l/r) = 10, U(tiger , l/r) = −100, U(∗, listen) = −1, that is
Tiger
Action left right

Listen -1 -1
left -100 10

right 10 -100

Z | S=?, A=listen left right
TL 0.85 0.15
TR 0.15 0.85

NoInfo 0 0

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 11 / 1 - 112

Tiger Example

The example is a variant of the Monty Hall problem.
We face two doors.

There is a tiger behind one door,
there is a gold brick behind the other.

The Tiger is left or right S = {left, right}
We may open any door or listen A = {left, right, listen},
we search optimal policy for given observation and reward tables.
We observe Z only if we listen - we listen the tiger left TL or right TR
we reset the world at the beginning and after opening any door:

the initial belief P(S0) = ⟨0.5, 0.5⟩
The reward R is a function of the state and the action

U(gold , l/r) = 10, U(tiger , l/r) = −100, U(∗, listen) = −1, that is
Tiger
Action left right

Listen -1 -1
left -100 10

right 10 -100

Z | S=?, A=listen left right
TL 0.85 0.15
TR 0.15 0.85

NoInfo 0 0

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 11 / 1 - 112

Tiger Example

The example is a variant of the Monty Hall problem.
We face two doors.

There is a tiger behind one door,
there is a gold brick behind the other.

The Tiger is left or right S = {left, right}
We may open any door or listen A = {left, right, listen},
we search optimal policy for given observation and reward tables.
We observe Z only if we listen - we listen the tiger left TL or right TR
we reset the world at the beginning and after opening any door:

the initial belief P(S0) = ⟨0.5, 0.5⟩
The reward R is a function of the state and the action

U(gold , l/r) = 10, U(tiger , l/r) = −100, U(∗, listen) = −1, that is
Tiger
Action left right

Listen -1 -1
left -100 10

right 10 -100

Z | S=?, A=listen left right
TL 0.85 0.15
TR 0.15 0.85

NoInfo 0 0

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 11 / 1 - 112

Tiger Example

The example is a variant of the Monty Hall problem.
We face two doors.

There is a tiger behind one door,
there is a gold brick behind the other.

The Tiger is left or right S = {left, right}
We may open any door or listen A = {left, right, listen},
we search optimal policy for given observation and reward tables.
We observe Z only if we listen - we listen the tiger left TL or right TR
we reset the world at the beginning and after opening any door:

the initial belief P(S0) = ⟨0.5, 0.5⟩
The reward R is a function of the state and the action

U(gold , l/r) = 10, U(tiger , l/r) = −100, U(∗, listen) = −1, that is
Tiger
Action left right

Listen -1 -1
left -100 10

right 10 -100

Z | S=?, A=listen left right
TL 0.85 0.15
TR 0.15 0.85

NoInfo 0 0

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 11 / 1 - 112

Tiger Example

The example is a variant of the Monty Hall problem.
We face two doors.

There is a tiger behind one door,
there is a gold brick behind the other.

The Tiger is left or right S = {left, right}
We may open any door or listen A = {left, right, listen},
we search optimal policy for given observation and reward tables.
We observe Z only if we listen - we listen the tiger left TL or right TR
we reset the world at the beginning and after opening any door:

the initial belief P(S0) = ⟨0.5, 0.5⟩
The reward R is a function of the state and the action

U(gold , l/r) = 10, U(tiger , l/r) = −100, U(∗, listen) = −1, that is
Tiger
Action left right

Listen -1 -1
left -100 10

right 10 -100

Z | S=?, A=listen left right
TL 0.85 0.15
TR 0.15 0.85

NoInfo 0 0

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 11 / 1 - 112

Tiger Example

The example is a variant of the Monty Hall problem.
We face two doors.

There is a tiger behind one door,
there is a gold brick behind the other.

The Tiger is left or right S = {left, right}
We may open any door or listen A = {left, right, listen},
we search optimal policy for given observation and reward tables.
We observe Z only if we listen - we listen the tiger left TL or right TR
we reset the world at the beginning and after opening any door:

the initial belief P(S0) = ⟨0.5, 0.5⟩
The reward R is a function of the state and the action

U(gold , l/r) = 10, U(tiger , l/r) = −100, U(∗, listen) = −1, that is
Tiger
Action left right

Listen -1 -1
left -100 10

right 10 -100

Z | S=?, A=listen left right
TL 0.85 0.15
TR 0.15 0.85

NoInfo 0 0

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 11 / 1 - 112

Tiger Example

The example is a variant of the Monty Hall problem.
We face two doors.

There is a tiger behind one door,
there is a gold brick behind the other.

The Tiger is left or right S = {left, right}
We may open any door or listen A = {left, right, listen},
we search optimal policy for given observation and reward tables.
We observe Z only if we listen - we listen the tiger left TL or right TR
we reset the world at the beginning and after opening any door:

the initial belief P(S0) = ⟨0.5, 0.5⟩
The reward R is a function of the state and the action

U(gold , l/r) = 10, U(tiger , l/r) = −100, U(∗, listen) = −1, that is
Tiger
Action left right

Listen -1 -1
left -100 10

right 10 -100

Z | S=?, A=listen left right
TL 0.85 0.15
TR 0.15 0.85

NoInfo 0 0

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 11 / 1 - 112

Tiger Example

The example is a variant of the Monty Hall problem.
We face two doors.

There is a tiger behind one door,
there is a gold brick behind the other.

The Tiger is left or right S = {left, right}
We may open any door or listen A = {left, right, listen},
we search optimal policy for given observation and reward tables.
We observe Z only if we listen - we listen the tiger left TL or right TR
we reset the world at the beginning and after opening any door:

the initial belief P(S0) = ⟨0.5, 0.5⟩
The reward R is a function of the state and the action

U(gold , l/r) = 10, U(tiger , l/r) = −100, U(∗, listen) = −1, that is
Tiger
Action left right

Listen -1 -1
left -100 10

right 10 -100

Z | S=?, A=listen left right
TL 0.85 0.15
TR 0.15 0.85

NoInfo 0 0

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 11 / 1 - 112

Tiger Example

The example is a variant of the Monty Hall problem.
We face two doors.

There is a tiger behind one door,
there is a gold brick behind the other.

The Tiger is left or right S = {left, right}
We may open any door or listen A = {left, right, listen},
we search optimal policy for given observation and reward tables.
We observe Z only if we listen - we listen the tiger left TL or right TR
we reset the world at the beginning and after opening any door:

the initial belief P(S0) = ⟨0.5, 0.5⟩
The reward R is a function of the state and the action

U(gold , l/r) = 10, U(tiger , l/r) = −100, U(∗, listen) = −1, that is
Tiger
Action left right

Listen -1 -1
left -100 10

right 10 -100

Z | S=?, A=listen left right
TL 0.85 0.15
TR 0.15 0.85

NoInfo 0 0

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 11 / 1 - 112

Tiger Example

The example is a variant of the Monty Hall problem.
We face two doors.

There is a tiger behind one door,
there is a gold brick behind the other.

The Tiger is left or right S = {left, right}
We may open any door or listen A = {left, right, listen},
we search optimal policy for given observation and reward tables.
We observe Z only if we listen - we listen the tiger left TL or right TR
we reset the world at the beginning and after opening any door:

the initial belief P(S0) = ⟨0.5, 0.5⟩
The reward R is a function of the state and the action

U(gold , l/r) = 10, U(tiger , l/r) = −100, U(∗, listen) = −1, that is
Tiger
Action left right

Listen -1 -1
left -100 10

right 10 -100

Z | S=?, A=listen left right
TL 0.85 0.15
TR 0.15 0.85

NoInfo 0 0

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 11 / 1 - 112

Tiger Example

The example is a variant of the Monty Hall problem.
We face two doors.

There is a tiger behind one door,
there is a gold brick behind the other.

The Tiger is left or right S = {left, right}
We may open any door or listen A = {left, right, listen},
we search optimal policy for given observation and reward tables.
We observe Z only if we listen - we listen the tiger left TL or right TR
we reset the world at the beginning and after opening any door:

the initial belief P(S0) = ⟨0.5, 0.5⟩
The reward R is a function of the state and the action

U(gold , l/r) = 10, U(tiger , l/r) = −100, U(∗, listen) = −1, that is
Tiger
Action left right

Listen -1 -1
left -100 10

right 10 -100

Z | S=?, A=listen left right
TL 0.85 0.15
TR 0.15 0.85

NoInfo 0 0

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 11 / 1 - 112

Tiger Example

The example is a variant of the Monty Hall problem.
We face two doors.

There is a tiger behind one door,
there is a gold brick behind the other.

The Tiger is left or right S = {left, right}
We may open any door or listen A = {left, right, listen},
we search optimal policy for given observation and reward tables.
We observe Z only if we listen - we listen the tiger left TL or right TR
we reset the world at the beginning and after opening any door:

the initial belief P(S0) = ⟨0.5, 0.5⟩
The reward R is a function of the state and the action

U(gold , l/r) = 10, U(tiger , l/r) = −100, U(∗, listen) = −1, that is
Tiger
Action left right

Listen -1 -1
left -100 10

right 10 -100

Z | S=?, A=listen left right
TL 0.85 0.15
TR 0.15 0.85

NoInfo 0 0

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 11 / 1 - 112

POMPD

Finite horizon POMPD t, γ = 1:
t = 1
EUt=1(A = left/right) = −100+10

2 = −45
EUt=1(A = listen) = −1
horizon t = 2

T (st−1, at−1, st) = P(st |st−1, at−1)
O(st , at−1, zt) = P(zt |st , at−1)

and t = 4

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 12 / 1 - 112

POMPD

Finite horizon POMPD t, γ = 1:
t = 1
EUt=1(A = left/right) = −100+10

2 = −45
EUt=1(A = listen) = −1
horizon t = 2

T (st−1, at−1, st) = P(st |st−1, at−1)
O(st , at−1, zt) = P(zt |st , at−1)

and t = 4

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 12 / 1 - 112

POMPD
Finite horizon POMPD t, γ = 1:

t = 1
EUt=1(A = left/right) = −100+10

2 = −45
EUt=1(A = listen) = −1
horizon t = 2

T (st−1, at−1, st) = P(st |st−1, at−1)
O(st , at−1, zt) = P(zt |st , at−1)

and t = 4Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 12 / 1 - 112

Infinite Horizon

γ = 0.75
we iterate until convergence
Then, we create a graph by joining two successive time slices together.
We may omit nodes that are not reachable from the initial belief b0(s) = 0.5.

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 13 / 1 - 112

Infinite Horizon

γ = 0.75
we iterate until convergence
Then, we create a graph by joining two successive time slices together.
We may omit nodes that are not reachable from the initial belief b0(s) = 0.5.

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 13 / 1 - 112

Infinite Horizon

γ = 0.75
we iterate until convergence
Then, we create a graph by joining two successive time slices together.
We may omit nodes that are not reachable from the initial belief b0(s) = 0.5.

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 13 / 1 - 112

Infinite Horizon

γ = 0.75
we iterate until convergence
Then, we create a graph by joining two successive time slices together.
We may omit nodes that are not reachable from the initial belief b0(s) = 0.5.

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 13 / 1 - 112

Markov with respect to belief over states

The history is aggregated in the probability distribution over states
history ht = {a0, z1, a1, . . . , zt−1, at−1, zt}
belief bt(s) = P(S = s|zt , at−1, . . . , a0, b0),
initial belief b0(s) = P(S0).
In the tiger example a single number b(left), since the other probability is
1 − b(left).

We update belief after any iteration. The update consists of:
a transition - we eliminate unobserved st−1
an observation - we condition by zt .

belief update

τ(bt−1, at−1, zt) = bt(s |)

= ΣsO(s |, at−1, zt)T (s, at−1, s |)bt−1(s)
P(zt |bt−1, at−1)

Markov with respect to b since τ does not depend on time.

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 14 / 1 - 112

Markov with respect to belief over states

The history is aggregated in the probability distribution over states
history ht = {a0, z1, a1, . . . , zt−1, at−1, zt}
belief bt(s) = P(S = s|zt , at−1, . . . , a0, b0),
initial belief b0(s) = P(S0).
In the tiger example a single number b(left), since the other probability is
1 − b(left).

We update belief after any iteration. The update consists of:
a transition - we eliminate unobserved st−1
an observation - we condition by zt .

belief update

τ(bt−1, at−1, zt) = bt(s |)

= ΣsO(s |, at−1, zt)T (s, at−1, s |)bt−1(s)
P(zt |bt−1, at−1)

Markov with respect to b since τ does not depend on time.

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 14 / 1 - 112

Markov with respect to belief over states

The history is aggregated in the probability distribution over states
history ht = {a0, z1, a1, . . . , zt−1, at−1, zt}
belief bt(s) = P(S = s|zt , at−1, . . . , a0, b0),
initial belief b0(s) = P(S0).
In the tiger example a single number b(left), since the other probability is
1 − b(left).

We update belief after any iteration. The update consists of:
a transition - we eliminate unobserved st−1
an observation - we condition by zt .

belief update

τ(bt−1, at−1, zt) = bt(s |)

= ΣsO(s |, at−1, zt)T (s, at−1, s |)bt−1(s)
P(zt |bt−1, at−1)

Markov with respect to b since τ does not depend on time.

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 14 / 1 - 112

Markov with respect to belief over states

The history is aggregated in the probability distribution over states
history ht = {a0, z1, a1, . . . , zt−1, at−1, zt}
belief bt(s) = P(S = s|zt , at−1, . . . , a0, b0),
initial belief b0(s) = P(S0).
In the tiger example a single number b(left), since the other probability is
1 − b(left).

We update belief after any iteration. The update consists of:
a transition - we eliminate unobserved st−1
an observation - we condition by zt .

belief update

τ(bt−1, at−1, zt) = bt(s |)

= ΣsO(s |, at−1, zt)T (s, at−1, s |)bt−1(s)
P(zt |bt−1, at−1)

Markov with respect to b since τ does not depend on time.

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 14 / 1 - 112

Markov with respect to belief over states

The history is aggregated in the probability distribution over states
history ht = {a0, z1, a1, . . . , zt−1, at−1, zt}
belief bt(s) = P(S = s|zt , at−1, . . . , a0, b0),
initial belief b0(s) = P(S0).
In the tiger example a single number b(left), since the other probability is
1 − b(left).

We update belief after any iteration. The update consists of:
a transition - we eliminate unobserved st−1
an observation - we condition by zt .

belief update

τ(bt−1, at−1, zt) = bt(s |)

= ΣsO(s |, at−1, zt)T (s, at−1, s |)bt−1(s)
P(zt |bt−1, at−1)

Markov with respect to b since τ does not depend on time.

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 14 / 1 - 112

Markov with respect to belief over states

The history is aggregated in the probability distribution over states
history ht = {a0, z1, a1, . . . , zt−1, at−1, zt}
belief bt(s) = P(S = s|zt , at−1, . . . , a0, b0),
initial belief b0(s) = P(S0).
In the tiger example a single number b(left), since the other probability is
1 − b(left).

We update belief after any iteration. The update consists of:
a transition - we eliminate unobserved st−1
an observation - we condition by zt .

belief update

τ(bt−1, at−1, zt) = bt(s |)

= ΣsO(s |, at−1, zt)T (s, at−1, s |)bt−1(s)
P(zt |bt−1, at−1)

Markov with respect to b since τ does not depend on time.

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 14 / 1 - 112

Markov with respect to belief over states

The history is aggregated in the probability distribution over states
history ht = {a0, z1, a1, . . . , zt−1, at−1, zt}
belief bt(s) = P(S = s|zt , at−1, . . . , a0, b0),
initial belief b0(s) = P(S0).
In the tiger example a single number b(left), since the other probability is
1 − b(left).

We update belief after any iteration. The update consists of:
a transition - we eliminate unobserved st−1
an observation - we condition by zt .

belief update

τ(bt−1, at−1, zt) = bt(s |)

= ΣsO(s |, at−1, zt)T (s, at−1, s |)bt−1(s)
P(zt |bt−1, at−1)

Markov with respect to b since τ does not depend on time.

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 14 / 1 - 112

Markov with respect to belief over states

The history is aggregated in the probability distribution over states
history ht = {a0, z1, a1, . . . , zt−1, at−1, zt}
belief bt(s) = P(S = s|zt , at−1, . . . , a0, b0),
initial belief b0(s) = P(S0).
In the tiger example a single number b(left), since the other probability is
1 − b(left).

We update belief after any iteration. The update consists of:
a transition - we eliminate unobserved st−1
an observation - we condition by zt .

belief update

τ(bt−1, at−1, zt) = bt(s |)

= ΣsO(s |, at−1, zt)T (s, at−1, s |)bt−1(s)
P(zt |bt−1, at−1)

Markov with respect to b since τ does not depend on time.

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 14 / 1 - 112

Markov with respect to belief over states

The history is aggregated in the probability distribution over states
history ht = {a0, z1, a1, . . . , zt−1, at−1, zt}
belief bt(s) = P(S = s|zt , at−1, . . . , a0, b0),
initial belief b0(s) = P(S0).
In the tiger example a single number b(left), since the other probability is
1 − b(left).

We update belief after any iteration. The update consists of:
a transition - we eliminate unobserved st−1
an observation - we condition by zt .

belief update

τ(bt−1, at−1, zt) = bt(s |)

= ΣsO(s |, at−1, zt)T (s, at−1, s |)bt−1(s)
P(zt |bt−1, at−1)

Markov with respect to b since τ does not depend on time.

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 14 / 1 - 112

Markov with respect to belief over states

The history is aggregated in the probability distribution over states
history ht = {a0, z1, a1, . . . , zt−1, at−1, zt}
belief bt(s) = P(S = s|zt , at−1, . . . , a0, b0),
initial belief b0(s) = P(S0).
In the tiger example a single number b(left), since the other probability is
1 − b(left).

We update belief after any iteration. The update consists of:
a transition - we eliminate unobserved st−1
an observation - we condition by zt .

belief update

τ(bt−1, at−1, zt) = bt(s |)

= ΣsO(s |, at−1, zt)T (s, at−1, s |)bt−1(s)
P(zt |bt−1, at−1)

Markov with respect to b since τ does not depend on time.

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 14 / 1 - 112

Strategy, Value function

Strategy (policy) is a function π(b)→ a,
optimal strategy maximizes the expected discounted cumulative reward

π∗(b0) = argmaxπEπ

[∞∑
t=0

(γt · rt)|b0

]

value function
initial V0(b) = maxa

∑
s∈S R(s, a)b(s)

recursively
Vt(b) = maxa

[∑
s∈S R(s, a)b(s) + γ

∑
z∈Z P(z|a, b)Vt−1(τ(b, a, z))

]
,

optimal strategy for the horizon t:
π∗

t (b) = argmaxa
[∑

s∈S R(s, a)b(s) + γ
∑

z∈Z P(z |a, b)Vt−1(τ(b, a, z))
]
.

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 15 / 1 - 112

Strategy, Value function

Strategy (policy) is a function π(b)→ a,
optimal strategy maximizes the expected discounted cumulative reward

π∗(b0) = argmaxπEπ

[∞∑
t=0

(γt · rt)|b0

]

value function
initial V0(b) = maxa

∑
s∈S R(s, a)b(s)

recursively
Vt(b) = maxa

[∑
s∈S R(s, a)b(s) + γ

∑
z∈Z P(z|a, b)Vt−1(τ(b, a, z))

]
,

optimal strategy for the horizon t:
π∗

t (b) = argmaxa
[∑

s∈S R(s, a)b(s) + γ
∑

z∈Z P(z |a, b)Vt−1(τ(b, a, z))
]
.

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 15 / 1 - 112

Strategy, Value function

Strategy (policy) is a function π(b)→ a,
optimal strategy maximizes the expected discounted cumulative reward

π∗(b0) = argmaxπEπ

[∞∑
t=0

(γt · rt)|b0

]

value function
initial V0(b) = maxa

∑
s∈S R(s, a)b(s)

recursively
Vt(b) = maxa

[∑
s∈S R(s, a)b(s) + γ

∑
z∈Z P(z|a, b)Vt−1(τ(b, a, z))

]
,

optimal strategy for the horizon t:
π∗

t (b) = argmaxa
[∑

s∈S R(s, a)b(s) + γ
∑

z∈Z P(z |a, b)Vt−1(τ(b, a, z))
]
.

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 15 / 1 - 112

Strategy, Value function

Strategy (policy) is a function π(b)→ a,
optimal strategy maximizes the expected discounted cumulative reward

π∗(b0) = argmaxπEπ

[∞∑
t=0

(γt · rt)|b0

]

value function
initial V0(b) = maxa

∑
s∈S R(s, a)b(s)

recursively
Vt(b) = maxa

[∑
s∈S R(s, a)b(s) + γ

∑
z∈Z P(z|a, b)Vt−1(τ(b, a, z))

]
,

optimal strategy for the horizon t:
π∗

t (b) = argmaxa
[∑

s∈S R(s, a)b(s) + γ
∑

z∈Z P(z |a, b)Vt−1(τ(b, a, z))
]
.

+
+
+
+
+++

++++
++++

++++
++++

++++
++++

++++
++++

+
+
+
+
+

0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
2

4
6

8

x <− seq(0, 1, length.out = 100)sa
pp

ly
(x

, F
U

N
 =

 fu
nc

tio
n(

i)
V

T
(c

(i,
 1

 −
 i)

, 3
))

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 15 / 1 - 112

Strategy, Value function

Strategy (policy) is a function π(b)→ a,
optimal strategy maximizes the expected discounted cumulative reward

π∗(b0) = argmaxπEπ

[∞∑
t=0

(γt · rt)|b0

]

value function
initial V0(b) = maxa

∑
s∈S R(s, a)b(s)

recursively
Vt(b) = maxa

[∑
s∈S R(s, a)b(s) + γ

∑
z∈Z P(z|a, b)Vt−1(τ(b, a, z))

]
,

optimal strategy for the horizon t:
π∗

t (b) = argmaxa
[∑

s∈S R(s, a)b(s) + γ
∑

z∈Z P(z |a, b)Vt−1(τ(b, a, z))
]
.

+
+
+
+
+++

++++
++++

++++
++++

++++
++++

++++
++++

+
+
+
+
+

0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
2

4
6

8

x <− seq(0, 1, length.out = 100)sa
pp

ly
(x

, F
U

N
 =

 fu
nc

tio
n(

i)
V

T
(c

(i,
 1

 −
 i)

, 3
))

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 15 / 1 - 112

Strategy, Value function

Strategy (policy) is a function π(b)→ a,
optimal strategy maximizes the expected discounted cumulative reward

π∗(b0) = argmaxπEπ

[∞∑
t=0

(γt · rt)|b0

]

value function
initial V0(b) = maxa

∑
s∈S R(s, a)b(s)

recursively
Vt(b) = maxa

[∑
s∈S R(s, a)b(s) + γ

∑
z∈Z P(z|a, b)Vt−1(τ(b, a, z))

]
,

optimal strategy for the horizon t:
π∗

t (b) = argmaxa
[∑

s∈S R(s, a)b(s) + γ
∑

z∈Z P(z |a, b)Vt−1(τ(b, a, z))
]
.

+
+
+
+
+++

++++
++++

++++
++++

++++
++++

++++
++++

+
+
+
+
+

0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
2

4
6

8

x <− seq(0, 1, length.out = 100)sa
pp

ly
(x

, F
U

N
 =

 fu
nc

tio
n(

i)
V

T
(c

(i,
 1

 −
 i)

, 3
))

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 15 / 1 - 112

Strategy, Value function
Strategy (policy) is a function π(b)→ a,
optimal strategy maximizes the expected discounted cumulative reward

π∗(b0) = argmaxπEπ

[∞∑
t=0

(γt · rt)|b0

]

value function
initial V0(b) = maxa

∑
s∈S R(s, a)b(s)

recursively
Vt(b) = maxa

[∑
s∈S R(s, a)b(s) + γ

∑
z∈Z P(z|a, b)Vt−1(τ(b, a, z))

]
,

optimal strategy for the horizon t:
π∗

t (b) = argmaxa
[∑

s∈S R(s, a)b(s) + γ
∑

z∈Z P(z |a, b)Vt−1(τ(b, a, z))
]
.

+
+
+
+
+++

++++
++++

++++
++++

++++
++++

++++
++++

+
+
+
+
+

0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
2

4
6

8

x <− seq(0, 1, length.out = 100)sa
pp

ly
(x

, F
U

N
 =

 fu
nc

tio
n(

i)
V

T
(c

(i,
 1

 −
 i)

, 3
))

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 15 / 1 - 112

α vectors

|Γt | = O(|A| · |Γt−1||Z |)
value function Vt(b) can be represented by a finite number of hyperplanes

each hyperplane is represented as a vector α:

Vt(b) ⇔ Γt = {a; α0, α1, . . . , αm} = {a; v0, v1, . . . , vm}.
initial: Γ0(b) = {⟨a; R(s1, a), R(s2, a), . . . , R(s|S|, a)⟩}a∈A
at the time t: Vt(b) = maxα∈Γt

∑
s∈S α(s)b(s).

From
Vt(b) = maxa

[∑
s∈S R(s, a)b(s) + γ

∑
z∈Z P(z|a, b)Vt−1(τ(b, a, z))

]
:

τ(bt , at , zt+1) = Σs O(s|,at ,zt+1)T (s,at ,s|)bt (s)
Pr(zt+1|bt ,at)

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 16 / 1 - 112

α vectors

|Γt | = O(|A| · |Γt−1||Z |)
value function Vt(b) can be represented by a finite number of hyperplanes

each hyperplane is represented as a vector α:

Vt(b) ⇔ Γt = {a; α0, α1, . . . , αm} = {a; v0, v1, . . . , vm}.
initial: Γ0(b) = {⟨a; R(s1, a), R(s2, a), . . . , R(s|S|, a)⟩}a∈A
at the time t: Vt(b) = maxα∈Γt

∑
s∈S α(s)b(s).

From
Vt(b) = maxa

[∑
s∈S R(s, a)b(s) + γ

∑
z∈Z P(z|a, b)Vt−1(τ(b, a, z))

]
:

τ(bt , at , zt+1) = Σs O(s|,at ,zt+1)T (s,at ,s|)bt (s)
Pr(zt+1|bt ,at)

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 16 / 1 - 112

α vectors

|Γt | = O(|A| · |Γt−1||Z |)
value function Vt(b) can be represented by a finite number of hyperplanes

each hyperplane is represented as a vector α:

Vt(b) ⇔ Γt = {a; α0, α1, . . . , αm} = {a; v0, v1, . . . , vm}.
initial: Γ0(b) = {⟨a; R(s1, a), R(s2, a), . . . , R(s|S|, a)⟩}a∈A
at the time t: Vt(b) = maxα∈Γt

∑
s∈S α(s)b(s).

From
Vt(b) = maxa

[∑
s∈S R(s, a)b(s) + γ

∑
z∈Z P(z|a, b)Vt−1(τ(b, a, z))

]
:

τ(bt , at , zt+1) = Σs O(s|,at ,zt+1)T (s,at ,s|)bt (s)
Pr(zt+1|bt ,at)

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 16 / 1 - 112

α vectors

|Γt | = O(|A| · |Γt−1||Z |)
value function Vt(b) can be represented by a finite number of hyperplanes

each hyperplane is represented as a vector α:

Vt(b) ⇔ Γt = {a; α0, α1, . . . , αm} = {a; v0, v1, . . . , vm}.
initial: Γ0(b) = {⟨a; R(s1, a), R(s2, a), . . . , R(s|S|, a)⟩}a∈A
at the time t: Vt(b) = maxα∈Γt

∑
s∈S α(s)b(s).

From
Vt(b) = maxa

[∑
s∈S R(s, a)b(s) + γ

∑
z∈Z P(z|a, b)Vt−1(τ(b, a, z))

]
:

τ(bt , at , zt+1) = Σs O(s|,at ,zt+1)T (s,at ,s|)bt (s)
Pr(zt+1|bt ,at)

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 16 / 1 - 112

α vectors

|Γt | = O(|A| · |Γt−1||Z |)
value function Vt(b) can be represented by a finite number of hyperplanes

each hyperplane is represented as a vector α:

Vt(b) ⇔ Γt = {a; α0, α1, . . . , αm} = {a; v0, v1, . . . , vm}.
initial: Γ0(b) = {⟨a; R(s1, a), R(s2, a), . . . , R(s|S|, a)⟩}a∈A
at the time t: Vt(b) = maxα∈Γt

∑
s∈S α(s)b(s).

From
Vt(b) = maxa

[∑
s∈S R(s, a)b(s) + γ

∑
z∈Z P(z|a, b)Vt−1(τ(b, a, z))

]
:

τ(bt , at , zt+1) = Σs O(s|,at ,zt+1)T (s,at ,s|)bt (s)
Pr(zt+1|bt ,at)

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 16 / 1 - 112

α vectors

|Γt | = O(|A| · |Γt−1||Z |)
value function Vt(b) can be represented by a finite number of hyperplanes

each hyperplane is represented as a vector α:

Vt(b) ⇔ Γt = {a; α0, α1, . . . , αm} = {a; v0, v1, . . . , vm}.
initial: Γ0(b) = {⟨a; R(s1, a), R(s2, a), . . . , R(s|S|, a)⟩}a∈A
at the time t: Vt(b) = maxα∈Γt

∑
s∈S α(s)b(s).

From
Vt(b) = maxa

[∑
s∈S R(s, a)b(s) + γ

∑
z∈Z P(z|a, b)Vt−1(τ(b, a, z))

]
:

τ(bt , at , zt+1) = Σs O(s|,at ,zt+1)T (s,at ,s|)bt (s)
Pr(zt+1|bt ,at)

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 16 / 1 - 112

α vectors

|Γt | = O(|A| · |Γt−1||Z |)
value function Vt(b) can be represented by a finite number of hyperplanes

each hyperplane is represented as a vector α:

Vt(b) ⇔ Γt = {a; α0, α1, . . . , αm} = {a; v0, v1, . . . , vm}.
initial: Γ0(b) = {⟨a; R(s1, a), R(s2, a), . . . , R(s|S|, a)⟩}a∈A
at the time t: Vt(b) = maxα∈Γt

∑
s∈S α(s)b(s).

From
Vt(b) = maxa

[∑
s∈S R(s, a)b(s) + γ

∑
z∈Z P(z|a, b)Vt−1(τ(b, a, z))

]
:

τ(bt , at , zt+1) = Σs O(s|,at ,zt+1)T (s,at ,s|)bt (s)
Pr(zt+1|bt ,at)

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 16 / 1 - 112

α vectors

|Γt | = O(|A| · |Γt−1||Z |)
value function Vt(b) can be represented by a finite number of hyperplanes

each hyperplane is represented as a vector α:

Vt(b) ⇔ Γt = {a; α0, α1, . . . , αm} = {a; v0, v1, . . . , vm}.
initial: Γ0(b) = {⟨a; R(s1, a), R(s2, a), . . . , R(s|S|, a)⟩}a∈A
at the time t: Vt(b) = maxα∈Γt

∑
s∈S α(s)b(s).

From
Vt(b) = maxa

[∑
s∈S R(s, a)b(s) + γ

∑
z∈Z P(z|a, b)Vt−1(τ(b, a, z))

]
:

τ(bt , at , zt+1) = Σs O(s|,at ,zt+1)T (s,at ,s|)bt (s)
Pr(zt+1|bt ,at)

Vt(b) = maxa

[∑
s∈S

R(s, a)b(s)

+ γ
∑
z∈Z

maxα∈Γt−1

∑
s′∈S

∑
s∈S

T (s, a, s ′)O(s ′, a, z)α(s ′)b(s)
]

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 16 / 1 - 112

One Step of the Time Update

temporal sets ∀αi ∈ Γt−1 (j ∈ S is the α dimension):

Γa,+
t ← αa,+(j) = R(j , a)

Γa,z
t ← αa,z(j) = γ

∑
s′∈S

T (j , a, s ′)O(s ′, a, z)α(s ′),

The utility for the action a summed over possible observation results zk :

Γa
t = Γa,+

t + Γa,z1
t ⊕ Γa,z2

t ⊕ . . .⊕ Γa,zm
t

the new value function for the time t: Γt ←
⋃

a∈A Γa
t .

We remove all α that are dominated by others
there are strategies to remove them earlier
or to avoid to generate many of them at all |Γt | = O(|A| · |Γt−1||Z |).

https://h2r.github.io/pomdp-py/html/index.html

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 17 / 1 - 112

One Step of the Time Update

temporal sets ∀αi ∈ Γt−1 (j ∈ S is the α dimension):

Γa,+
t ← αa,+(j) = R(j , a)

Γa,z
t ← αa,z(j) = γ

∑
s′∈S

T (j , a, s ′)O(s ′, a, z)α(s ′),

The utility for the action a summed over possible observation results zk :

Γa
t = Γa,+

t + Γa,z1
t ⊕ Γa,z2

t ⊕ . . .⊕ Γa,zm
t

the new value function for the time t: Γt ←
⋃

a∈A Γa
t .

We remove all α that are dominated by others
there are strategies to remove them earlier
or to avoid to generate many of them at all |Γt | = O(|A| · |Γt−1||Z |).

https://h2r.github.io/pomdp-py/html/index.html

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 17 / 1 - 112

One Step of the Time Update

temporal sets ∀αi ∈ Γt−1 (j ∈ S is the α dimension):

Γa,+
t ← αa,+(j) = R(j , a)

Γa,z
t ← αa,z(j) = γ

∑
s′∈S

T (j , a, s ′)O(s ′, a, z)α(s ′),

The utility for the action a summed over possible observation results zk :

Γa
t = Γa,+

t + Γa,z1
t ⊕ Γa,z2

t ⊕ . . .⊕ Γa,zm
t

the new value function for the time t: Γt ←
⋃

a∈A Γa
t .

We remove all α that are dominated by others
there are strategies to remove them earlier
or to avoid to generate many of them at all |Γt | = O(|A| · |Γt−1||Z |).

https://h2r.github.io/pomdp-py/html/index.html

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 17 / 1 - 112

One Step of the Time Update

temporal sets ∀αi ∈ Γt−1 (j ∈ S is the α dimension):

Γa,+
t ← αa,+(j) = R(j , a)

Γa,z
t ← αa,z(j) = γ

∑
s′∈S

T (j , a, s ′)O(s ′, a, z)α(s ′),

The utility for the action a summed over possible observation results zk :

Γa
t = Γa,+

t + Γa,z1
t ⊕ Γa,z2

t ⊕ . . .⊕ Γa,zm
t

the new value function for the time t: Γt ←
⋃

a∈A Γa
t .

We remove all α that are dominated by others
there are strategies to remove them earlier
or to avoid to generate many of them at all |Γt | = O(|A| · |Γt−1||Z |).

https://h2r.github.io/pomdp-py/html/index.html

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 17 / 1 - 112

One Step of the Time Update

temporal sets ∀αi ∈ Γt−1 (j ∈ S is the α dimension):

Γa,+
t ← αa,+(j) = R(j , a)

Γa,z
t ← αa,z(j) = γ

∑
s′∈S

T (j , a, s ′)O(s ′, a, z)α(s ′),

The utility for the action a summed over possible observation results zk :

Γa
t = Γa,+

t + Γa,z1
t ⊕ Γa,z2

t ⊕ . . .⊕ Γa,zm
t

the new value function for the time t: Γt ←
⋃

a∈A Γa
t .

We remove all α that are dominated by others
there are strategies to remove them earlier
or to avoid to generate many of them at all |Γt | = O(|A| · |Γt−1||Z |).

https://h2r.github.io/pomdp-py/html/index.html

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 17 / 1 - 112

One Step of the Time Update

temporal sets ∀αi ∈ Γt−1 (j ∈ S is the α dimension):

Γa,+
t ← αa,+(j) = R(j , a)

Γa,z
t ← αa,z(j) = γ

∑
s′∈S

T (j , a, s ′)O(s ′, a, z)α(s ′),

The utility for the action a summed over possible observation results zk :

Γa
t = Γa,+

t + Γa,z1
t ⊕ Γa,z2

t ⊕ . . .⊕ Γa,zm
t

the new value function for the time t: Γt ←
⋃

a∈A Γa
t .

We remove all α that are dominated by others
there are strategies to remove them earlier
or to avoid to generate many of them at all |Γt | = O(|A| · |Γt−1||Z |).

https://h2r.github.io/pomdp-py/html/index.html

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 17 / 1 - 112

POMDP!

1: procedure policy_POMDP(T)
2: Γ = {[None; 0, . . . , 0]}
3: for t = 1 to T do
4: Γ′ = ∅
5: for all (a′, vk

1 , . . . , vk
N) ∈ Γ, all a ∈ A, all z ∈ O do

6: for j = 1 to N do ▷ for all states sj

7: vk
u,z,j = γ

∑N
i=1 vk

i p(z |si)p(si |a, sj)
8: end for
9: end for ▷ next: free choice k(z) ∈ Γ for every z

10: for all u, all k(1), . . . , k(M) = (1, . . . , 1) to (|Γ|, . . . , |Γ|) do
11: for j = 1 to N do
12: v ′

j =
[
r(sj , a) +

∑
z vk(z)

a,z,j

]
▷ aggregate over z ∈ O

13: end for
14: add (a; v ′

1, . . . , v ′
N) to Γ′ ▷ one Γa

t element
15: end for
16: (optimally prune Γ′)
17: Γ = Γ′

18: end for
19: return Γ
20: end procedure

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 18 / 1 - 112

POMPD policy!

From the set of α vectors Γ we get the policy:

policy

1: procedure policy_POMDP(Γ, b = [b1, . . . , bN])
2: â = arg max(a;vk

1 ,...,vk
N)∈Γ

∑N
i=1 vk

i bi
3: return â
4: end procedure

0 0.2 0.4 0.6 0.8 1
50

60

70

80

90

100

(a) pruned value function V30(b)

x2 p1 x1

0 0.2 0.4 0.6 0.8 1
50

60

70

80

90

100

(b) PBVI value function V30(b)

x2 p1 x1

Figure 15.7 The benefit of point-based value iteration over general value iteration:
Shown in (a) is the exact value function at horizon T = 30 for a different example,
which consists of 120 constraints, after pruning. On the right is the result of the PBVI
algorithm retaining only 11 linear functions. Both functions yield virtually indistin-
guishable results when applied to control.

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 19 / 1 - 112

Approximation - We evaluate only some b points

× for the rest of today lecture
Pineau & all.: Anytime
Point-Based Approximations for
Large POMDPs, JAIR 2006
Pearl the Nursebot
Find a person

ANYTIME POINT-BASED APPROXIMATIONS FOR LARGE POMDPS

10
0

10
1

10
2

10
3

0

0.5

1

1.5

2

2.5

belief points

R
ew

ar
d

Tiger−grid

10
0

10
1

10
2

10
3

0

10

20

30

40

50

60

belief points

E
rr

or

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

belief points

Hallway

10
0

10
1

10
2

10
3

0

5

10

15

20

belief points

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

belief points

Hallway2

10
0

10
1

10
2

10
3

5

10

15

20

belief points

10
0

10
1

10
2

10
3

−20

−15

−10

−5

belief points

Tag

10
0

10
1

10
2

10
3

0

100

200

300

400

500

belief points

Figure 10: Sum of discounted reward (top graphs) and estimate of the bound on the error (bottom
graphs) as a function of the number of selected belief points.

Figure 11: Pearl the Nursebot, interacting with elderly people at a nursing facility

An important component of this task is finding the patient whenever it is time to issue a reminder.
This task shares many similarities with the Tag problem presented in Section 6.2. In this case,
however, a robot-generated map of a real physical environment is used as the basis for the spatial
configuration of the domain. This map is shown in Figure 12. The white areas correspond to free
space, the black lines indicate walls (or other obstacles) and the dark gray areas are not visible or
accessible to the robot. One can easily imagine the patient’s room and physiotherapy unit lying at
either end of the corridor, with a common area shown in the upper-middle section.

The overall goal is for the robot to traverse the domain in order to find the missing patient and
then deliver a message. The robot must systematically explore the environment, reasoning about
both spatial coverage and human motion patterns, in order to find the person.

369

PINEAU, GORDON & THRUN

(a) t=1

(b) t=7

(c) t=12

(d) t=17

(e) t=29

Figure 14: Example of a PBVI policy successfully finding the person

374

PINEAU, GORDON & THRUN

(a) t=1

(b) t=7

(c) t=12

(d) t=17

(e) t=29

Figure 14: Example of a PBVI policy successfully finding the person

374

Finding Approximate POMDP Solutions Through Belief Compression

a bi−modal distribution
Particles form

(a) Original Belief

(b) Reconstruction

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9

K
L

 D
iv

er
ge

nc
e

Number of Bases

KL Divergence between Sampled Beliefs and Reconstructions

E-PCA
PCA

(c) Reconstruction performance

Figure 12: (a) A sample belief for the robot navigation task. (b) The reconstruction of this
belief from the learned E-PCA representation using 5 bases. (c) The average
KL divergence between the sample beliefs and their reconstructions against the
number of bases used. Notice that the E-PCA error falls close to 0 for 5 bases,
whereas conventional PCA has much worse reconstruction error even for 9 bases,
and is not improving rapidly.

(a) A sample belief (b) The reconstruction

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2 4 6 8 10 12 14 16

K
L

 D
iv

er
ge

nc
e

Number of Bases

KL Divergence between Sampled Beliefs and Reconstructions

(c) Average reconstruction
performance

Figure 13: (a) A sample belief for the navigation problem in Longwood, cf. Figure 2. (b)
The reconstruction from the learned E-PCA representation using 6 bases. (c)
The average KL divergence between the sample beliefs and their reconstructions
against the number of bases used.

Unfortunately, we can no longer use conventional POMDP value iteration to find the
optimal policy given the low-dimensional set of belief space features. POMDP value iter-
ation depends on the fact that the value function is convex over the belief space. When

19

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 20 / 1 - 112

Approximation - We evaluate only some b points

We evaluate the belief only in a finite number of points
only one α vector for each point

Γa,+
t ← αa,+(s) = R(s, a)

Γa,z
t ← αa,z(s) = γ

∑
s′∈S

T (s, a, s ′)O(s ′, a, z)α(s ′),

max for FINITE number of b ∈ B

αb = argmaxa

[∑
s∈S

R(s, a)b(s) +
∑
z∈Z

argmaxα∈Γa,z
t

∑
s∈S

α(s)b(s)
]

Γt =
⋃
b∈B
{αb}

The number of αs does not increase (with respect to the size of B).

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 21 / 1 - 112

Approximation - We evaluate only some b points

We evaluate the belief only in a finite number of points
only one α vector for each point

Γa,+
t ← αa,+(s) = R(s, a)

Γa,z
t ← αa,z(s) = γ

∑
s′∈S

T (s, a, s ′)O(s ′, a, z)α(s ′),

max for FINITE number of b ∈ B

αb = argmaxa

[∑
s∈S

R(s, a)b(s) +
∑
z∈Z

argmaxα∈Γa,z
t

∑
s∈S

α(s)b(s)
]

Γt =
⋃
b∈B
{αb}

The number of αs does not increase (with respect to the size of B).

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 21 / 1 - 112

Approximation - We evaluate only some b points

We evaluate the belief only in a finite number of points
only one α vector for each point

Γa,+
t ← αa,+(s) = R(s, a)

Γa,z
t ← αa,z(s) = γ

∑
s′∈S

T (s, a, s ′)O(s ′, a, z)α(s ′),

max for FINITE number of b ∈ B

αb = argmaxa

[∑
s∈S

R(s, a)b(s) +
∑
z∈Z

argmaxα∈Γa,z
t

∑
s∈S

α(s)b(s)
]

Γt =
⋃
b∈B
{αb}

The number of αs does not increase (with respect to the size of B).

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 21 / 1 - 112

Approximation - We evaluate only some b points

We evaluate the belief only in a finite number of points
only one α vector for each point

Γa,+
t ← αa,+(s) = R(s, a)

Γa,z
t ← αa,z(s) = γ

∑
s′∈S

T (s, a, s ′)O(s ′, a, z)α(s ′),

max for FINITE number of b ∈ B

αb = argmaxa

[∑
s∈S

R(s, a)b(s) +
∑
z∈Z

argmaxα∈Γa,z
t

∑
s∈S

α(s)b(s)
]

Γt =
⋃
b∈B
{αb}

The number of αs does not increase (with respect to the size of B).

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 21 / 1 - 112

POMDP Evaluation for the Fixed Number of B Points
1: procedure BACKUP(B,Γt−1)
2: for each action a ∈ A do
3: for each observation z ∈ Z do
4: for each solution vector αi ∈ Γt−1 do
5: αa,z(s) = γ

∑
s′∈S T (s, a, s ′)O(s ′, a, z)α(s ′), ∀s ∈ S

6: end for
7: Γa,z

t = ∪iα
a,z(s)

8: end for
9: end for

10: Γt = ∅
11: for each belief point b ∈ B do
12:

αb = argmaxa
[∑

s∈S R(s, a)b(s) +
∑

z∈Z argmaxα∈Γa,z
t

∑
s∈S α(s)b(s)

]
13: if αb /∈ Γt then
14: Γt = Γt ∪ αb
15: end if
16: end for
17: return Γt
18: end procedure

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 22 / 1 - 112

Iterative Number of Points POMDP

1: procedure PBVI-MAIN(BInit ,Γ0,N,T)
2: B = BInit
3: Γ = ΓInit
4: for N expansions do
5: for T iterations do
6: Γ = BACKUP(B, Γ)
7: end for
8: Bnew = EXPAND(B, Γ)
9: end for

10: return Γ
11: end procedure
T either a horizon or we select a error bound γt ||V ∗

0 − V ∗||.

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 23 / 1 - 112

Expand: New Points Selection
1) at random

2) greedy maximal error improvement
b′ a new candidate
the upper error bound in b′

ϵ(b′) ≤ minb∈B
∑

s∈S

{
(Rmax

1−γ
− α(s))(b′(s) − b(s)) b′(s) ≥ b(s)

(Rmin
1−γ

− α(s))(b′(s) − b(s)) b′(s) < b(s)
b on the fringe, the error weighted by the probability of observations:

ϵ(b) = max
a∈A

∑
z∈Z

O(b, a, z)ϵ(τ(b, a, z))

= max
a∈A

∑
z∈Z

[∑
s′∈S

∑
s∈S

T (s, a, s ′)O(s ′, a, z)b(s)

]
ϵ(τ(b, a, z)).

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 24 / 1 - 112

Expand: New Points Selection
1) at random

2) greedy maximal error improvement
b′ a new candidate
the upper error bound in b′

ϵ(b′) ≤ minb∈B
∑

s∈S

{
(Rmax

1−γ
− α(s))(b′(s) − b(s)) b′(s) ≥ b(s)

(Rmin
1−γ

− α(s))(b′(s) − b(s)) b′(s) < b(s)
b on the fringe, the error weighted by the probability of observations:

ϵ(b) = max
a∈A

∑
z∈Z

O(b, a, z)ϵ(τ(b, a, z))

= max
a∈A

∑
z∈Z

[∑
s′∈S

∑
s∈S

T (s, a, s ′)O(s ′, a, z)b(s)

]
ϵ(τ(b, a, z)).

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 24 / 1 - 112

Expand: New Points Selection
1) at random

2) greedy maximal error improvement
b′ a new candidate
the upper error bound in b′

ϵ(b′) ≤ minb∈B
∑

s∈S

{
(Rmax

1−γ
− α(s))(b′(s) − b(s)) b′(s) ≥ b(s)

(Rmin
1−γ

− α(s))(b′(s) − b(s)) b′(s) < b(s)
b on the fringe, the error weighted by the probability of observations:

ϵ(b) = max
a∈A

∑
z∈Z

O(b, a, z)ϵ(τ(b, a, z))

= max
a∈A

∑
z∈Z

[∑
s′∈S

∑
s∈S

T (s, a, s ′)O(s ′, a, z)b(s)

]
ϵ(τ(b, a, z)).

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 24 / 1 - 112

Expand: New Points Selection
1) at random

2) greedy maximal error improvement
b′ a new candidate
the upper error bound in b′

ϵ(b′) ≤ minb∈B
∑

s∈S

{
(Rmax

1−γ
− α(s))(b′(s) − b(s)) b′(s) ≥ b(s)

(Rmin
1−γ

− α(s))(b′(s) − b(s)) b′(s) < b(s)
b on the fringe, the error weighted by the probability of observations:

ϵ(b) = max
a∈A

∑
z∈Z

O(b, a, z)ϵ(τ(b, a, z))

= max
a∈A

∑
z∈Z

[∑
s′∈S

∑
s∈S

T (s, a, s ′)O(s ′, a, z)b(s)

]
ϵ(τ(b, a, z)).

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 24 / 1 - 112

Expand: New Points Selection
1) at random

2) greedy maximal error improvement
b′ a new candidate
the upper error bound in b′

ϵ(b′) ≤ minb∈B
∑

s∈S

{
(Rmax

1−γ
− α(s))(b′(s) − b(s)) b′(s) ≥ b(s)

(Rmin
1−γ

− α(s))(b′(s) − b(s)) b′(s) < b(s)
b on the fringe, the error weighted by the probability of observations:

ϵ(b) = max
a∈A

∑
z∈Z

O(b, a, z)ϵ(τ(b, a, z))

= max
a∈A

∑
z∈Z

[∑
s′∈S

∑
s∈S

T (s, a, s ′)O(s ′, a, z)b(s)

]
ϵ(τ(b, a, z)).

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 24 / 1 - 112

Augmented MDP Application

a) and c) plans that ignore
robot’s perceptual
uncertainty.
b) and d) was computed by
AMDP algorithm. It avoids
regions where the robot is
more likely to get lost.
Useful for sensors with
maximal range below 4m.

-2

0

2

4

6

8

10

12

14

16

18

20

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

E
nt

ro
py

 a
t G

oa
l

Maximum Range of Laser Range Sensor in Meters

Positional Uncertainty at Goal

Conventional Navigation
Coastal Navigation

Figure 16.2 Performance comparison of MDP planning and Augmented MDP plan-
ning. Shown here is the uncertainty (entropy) at the goal location as a function of the
sensor range. Courtesy of Nicholas Roy, MIT.

(a) (b)

(c) (d)

Figure 16.1 Examples of robot paths in a large, open environment, for two different
configurations (top row and bottom row). The diagrams (a) and (c) show paths gen-
erated by a conventional dynamic programming path planner that ignores the robot’s
perceptual uncertainty. The diagrams (b) and (d) are obtained using the augmented
MDP planner, which anticipates uncertainty and avoids regions where the robot is
more likely to get lost. Courtesy of Nicholas Roy, MIT.

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 25 / 1 - 112

Augmented MDP Application

a) and c) plans that ignore
robot’s perceptual
uncertainty.
b) and d) was computed by
AMDP algorithm. It avoids
regions where the robot is
more likely to get lost.
Useful for sensors with
maximal range below 4m.

-2

0

2

4

6

8

10

12

14

16

18

20

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

E
nt

ro
py

 a
t G

oa
l

Maximum Range of Laser Range Sensor in Meters

Positional Uncertainty at Goal

Conventional Navigation
Coastal Navigation

Figure 16.2 Performance comparison of MDP planning and Augmented MDP plan-
ning. Shown here is the uncertainty (entropy) at the goal location as a function of the
sensor range. Courtesy of Nicholas Roy, MIT.

(a) (b)

(c) (d)

Figure 16.1 Examples of robot paths in a large, open environment, for two different
configurations (top row and bottom row). The diagrams (a) and (c) show paths gen-
erated by a conventional dynamic programming path planner that ignores the robot’s
perceptual uncertainty. The diagrams (b) and (d) are obtained using the augmented
MDP planner, which anticipates uncertainty and avoids regions where the robot is
more likely to get lost. Courtesy of Nicholas Roy, MIT.

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 25 / 1 - 112

Augmented MDP Application

a) and c) plans that ignore
robot’s perceptual
uncertainty.
b) and d) was computed by
AMDP algorithm. It avoids
regions where the robot is
more likely to get lost.
Useful for sensors with
maximal range below 4m.

-2

0

2

4

6

8

10

12

14

16

18

20

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

E
nt

ro
py

 a
t G

oa
l

Maximum Range of Laser Range Sensor in Meters

Positional Uncertainty at Goal

Conventional Navigation
Coastal Navigation

Figure 16.2 Performance comparison of MDP planning and Augmented MDP plan-
ning. Shown here is the uncertainty (entropy) at the goal location as a function of the
sensor range. Courtesy of Nicholas Roy, MIT.

(a) (b)

(c) (d)

Figure 16.1 Examples of robot paths in a large, open environment, for two different
configurations (top row and bottom row). The diagrams (a) and (c) show paths gen-
erated by a conventional dynamic programming path planner that ignores the robot’s
perceptual uncertainty. The diagrams (b) and (d) are obtained using the augmented
MDP planner, which anticipates uncertainty and avoids regions where the robot is
more likely to get lost. Courtesy of Nicholas Roy, MIT.

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 25 / 1 - 112

QMPD
Each belief point adds a single linear ’Bellman’ equation

V̂ (b) = Eb[V̂ (s)] =
N∑

i=1
b(si)V̂ (si)

Line 4: The value function is calculated in the original space X and controls u
Line 6: The generalization to belief space.
V̂ can be used as an input to the POMDP evaluation.
we may continue with T iterations, even small values of T help.

QMDP

1: procedure QMDP(b)
2: V̂ = MDP_discrete_value_iteration()
3: for each action a ∈ A do
4: for each state s ∈ S do
5: Q(s, a) = R(s, a) + γ

∑
s′∈S V̂ (s)p(s ′|a, s)

6: end for
7: end for
8: return arg maxa

∑
s∈S b(s)Q(s, a)

9: end procedure
Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 26 / 1 - 112

Applications

Pengfei Zhu, Xin Li , Pascal Poupart, Guanghui Miao: On Improving Deep
Reinforcement Learning for POMDPs,
https://arxiv.org/abs/1704.07978v6
Maximilian Igl, Luisa Zintgraf, Tuan Anh Le, Frank Wood, Shimon Whiteson:
Deep Variational Reinforcement Learning for POMDPs, Proceedings of
the 35 th International Conference on Machine

Probabilistic Graphical Models Applications 13 19. prosince 2024 27 / 113 - 245

Applications

Pengfei Zhu, Xin Li , Pascal Poupart, Guanghui Miao: On Improving Deep
Reinforcement Learning for POMDPs,
https://arxiv.org/abs/1704.07978v6
Maximilian Igl, Luisa Zintgraf, Tuan Anh Le, Frank Wood, Shimon Whiteson:
Deep Variational Reinforcement Learning for POMDPs, Proceedings of
the 35 th International Conference on Machine

Probabilistic Graphical Models Applications 13 19. prosince 2024 27 / 113 - 245

Atari games
Simple screens, logic
18 actions
used to train an agent by Reinforcement learning with no prior information.
MDP if fully observable

Deep Variational Reinforcement Learning

(a) ChopperCommand

(b) Pong

(c) Bowling

(d) Centipede

(e) MsPacman

(f) BeamRider

Figure 8: Reconstructions and predictions using the learned generative model for several Atari games. First column: Current obseration
(potentially blank). Second column: Encoded and decoded reconstruction of the current observation. Columns 3 to 7: Predicted
observations using the learned generative model for timesteps dt ∈ {0, 1, 2, 3, 10, 30} into the future.

flickering for POMPD training (50% of figures are black)
Deep Variational Reinforcement Learning

(a) ChopperCommand

(b) Pong

(c) Bowling

(d) Centipede

(e) MsPacman

(f) BeamRider

Figure 8: Reconstructions and predictions using the learned generative model for several Atari games. First column: Current obseration
(potentially blank). Second column: Encoded and decoded reconstruction of the current observation. Columns 3 to 7: Predicted
observations using the learned generative model for timesteps dt ∈ {0, 1, 2, 3, 10, 30} into the future.

Wikipedie
Probabilistic Graphical Models Applications 13 19. prosince 2024 28 / 113 - 245

Atari games
Simple screens, logic
18 actions
used to train an agent by Reinforcement learning with no prior information.
MDP if fully observable

Deep Variational Reinforcement Learning

(a) ChopperCommand

(b) Pong

(c) Bowling

(d) Centipede

(e) MsPacman

(f) BeamRider

Figure 8: Reconstructions and predictions using the learned generative model for several Atari games. First column: Current obseration
(potentially blank). Second column: Encoded and decoded reconstruction of the current observation. Columns 3 to 7: Predicted
observations using the learned generative model for timesteps dt ∈ {0, 1, 2, 3, 10, 30} into the future.

flickering for POMPD training (50% of figures are black)
Deep Variational Reinforcement Learning

(a) ChopperCommand

(b) Pong

(c) Bowling

(d) Centipede

(e) MsPacman

(f) BeamRider

Figure 8: Reconstructions and predictions using the learned generative model for several Atari games. First column: Current obseration
(potentially blank). Second column: Encoded and decoded reconstruction of the current observation. Columns 3 to 7: Predicted
observations using the learned generative model for timesteps dt ∈ {0, 1, 2, 3, 10, 30} into the future.

Wikipedie
Probabilistic Graphical Models Applications 13 19. prosince 2024 28 / 113 - 245

Atari games
Simple screens, logic
18 actions
used to train an agent by Reinforcement learning with no prior information.
MDP if fully observable

Deep Variational Reinforcement Learning

(a) ChopperCommand

(b) Pong

(c) Bowling

(d) Centipede

(e) MsPacman

(f) BeamRider

Figure 8: Reconstructions and predictions using the learned generative model for several Atari games. First column: Current obseration
(potentially blank). Second column: Encoded and decoded reconstruction of the current observation. Columns 3 to 7: Predicted
observations using the learned generative model for timesteps dt ∈ {0, 1, 2, 3, 10, 30} into the future.

flickering for POMPD training (50% of figures are black)
Deep Variational Reinforcement Learning

(a) ChopperCommand

(b) Pong

(c) Bowling

(d) Centipede

(e) MsPacman

(f) BeamRider

Figure 8: Reconstructions and predictions using the learned generative model for several Atari games. First column: Current obseration
(potentially blank). Second column: Encoded and decoded reconstruction of the current observation. Columns 3 to 7: Predicted
observations using the learned generative model for timesteps dt ∈ {0, 1, 2, 3, 10, 30} into the future.

Wikipedie
Probabilistic Graphical Models Applications 13 19. prosince 2024 28 / 113 - 245

Atari games
Simple screens, logic
18 actions
used to train an agent by Reinforcement learning with no prior information.
MDP if fully observable

Deep Variational Reinforcement Learning

(a) ChopperCommand

(b) Pong

(c) Bowling

(d) Centipede

(e) MsPacman

(f) BeamRider

Figure 8: Reconstructions and predictions using the learned generative model for several Atari games. First column: Current obseration
(potentially blank). Second column: Encoded and decoded reconstruction of the current observation. Columns 3 to 7: Predicted
observations using the learned generative model for timesteps dt ∈ {0, 1, 2, 3, 10, 30} into the future.

flickering for POMPD training (50% of figures are black)
Deep Variational Reinforcement Learning

(a) ChopperCommand

(b) Pong

(c) Bowling

(d) Centipede

(e) MsPacman

(f) BeamRider

Figure 8: Reconstructions and predictions using the learned generative model for several Atari games. First column: Current obseration
(potentially blank). Second column: Encoded and decoded reconstruction of the current observation. Columns 3 to 7: Predicted
observations using the learned generative model for timesteps dt ∈ {0, 1, 2, 3, 10, 30} into the future.

Wikipedie
Probabilistic Graphical Models Applications 13 19. prosince 2024 28 / 113 - 245

Atari games
Simple screens, logic
18 actions
used to train an agent by Reinforcement learning with no prior information.
MDP if fully observable

Deep Variational Reinforcement Learning

(a) ChopperCommand

(b) Pong

(c) Bowling

(d) Centipede

(e) MsPacman

(f) BeamRider

Figure 8: Reconstructions and predictions using the learned generative model for several Atari games. First column: Current obseration
(potentially blank). Second column: Encoded and decoded reconstruction of the current observation. Columns 3 to 7: Predicted
observations using the learned generative model for timesteps dt ∈ {0, 1, 2, 3, 10, 30} into the future.

flickering for POMPD training (50% of figures are black)
Deep Variational Reinforcement Learning

(a) ChopperCommand

(b) Pong

(c) Bowling

(d) Centipede

(e) MsPacman

(f) BeamRider

Figure 8: Reconstructions and predictions using the learned generative model for several Atari games. First column: Current obseration
(potentially blank). Second column: Encoded and decoded reconstruction of the current observation. Columns 3 to 7: Predicted
observations using the learned generative model for timesteps dt ∈ {0, 1, 2, 3, 10, 30} into the future.

Wikipedie
Probabilistic Graphical Models Applications 13 19. prosince 2024 28 / 113 - 245

DeepQNetwork - Q function approx. by a neural network

standard reinforcement learning update

Q(s, a)← Q(s, a) + α(r + γmaxa′Q(s ′, a′)− Q(s, a))

NN θ is trained to minimize the loss function

L(θi) = Es,a,r ,s′ [(r + γmaxa′Q(s ′, a′; θold
i)− Q(s ′, a′; θi))2].

DRQN uses recurrent LSTM network

hidden state keeps the track in flickered images
ADRQN Action-specific Deep Recurent Q-network

Probabilistic Graphical Models Applications 13 19. prosince 2024 29 / 113 - 245

DeepQNetwork - Q function approx. by a neural network

standard reinforcement learning update

Q(s, a)← Q(s, a) + α(r + γmaxa′Q(s ′, a′)− Q(s, a))

NN θ is trained to minimize the loss function

L(θi) = Es,a,r ,s′ [(r + γmaxa′Q(s ′, a′; θold
i)− Q(s ′, a′; θi))2].

DRQN uses recurrent LSTM network

hidden state keeps the track in flickered images
ADRQN Action-specific Deep Recurent Q-network

Probabilistic Graphical Models Applications 13 19. prosince 2024 29 / 113 - 245

DeepQNetwork - Q function approx. by a neural network

standard reinforcement learning update

Q(s, a)← Q(s, a) + α(r + γmaxa′Q(s ′, a′)− Q(s, a))

NN θ is trained to minimize the loss function

L(θi) = Es,a,r ,s′ [(r + γmaxa′Q(s ′, a′; θold
i)− Q(s ′, a′; θi))2].

DRQN uses recurrent LSTM network

hidden state keeps the track in flickered images
ADRQN Action-specific Deep Recurent Q-network

Probabilistic Graphical Models Applications 13 19. prosince 2024 29 / 113 - 245

DeepQNetwork - Q function approx. by a neural network

standard reinforcement learning update

Q(s, a)← Q(s, a) + α(r + γmaxa′Q(s ′, a′)− Q(s, a))

NN θ is trained to minimize the loss function

L(θi) = Es,a,r ,s′ [(r + γmaxa′Q(s ′, a′; θold
i)− Q(s ′, a′; θi))2].

DRQN uses recurrent LSTM network

hidden state keeps the track in flickered images
ADRQN Action-specific Deep Recurent Q-network

Probabilistic Graphical Models Applications 13 19. prosince 2024 29 / 113 - 245

DeepQNetwork - Q function approx. by a neural network

standard reinforcement learning update

Q(s, a)← Q(s, a) + α(r + γmaxa′Q(s ′, a′)− Q(s, a))

NN θ is trained to minimize the loss function

L(θi) = Es,a,r ,s′ [(r + γmaxa′Q(s ′, a′; θold
i)− Q(s ′, a′; θi))2].

DRQN uses recurrent LSTM network

hidden state keeps the track in flickered images
ADRQN Action-specific Deep Recurent Q-network

Probabilistic Graphical Models Applications 13 19. prosince 2024 29 / 113 - 245

ADRQN Action-specific Deep Recurent Q-network
The observation (image) is aggregated by three convolutional layers to 3136
dimensions
the action is extended from 18 dimensional indicator vector to 512
dimensional vector
these are concatenated and fed to LSTM
result is reduced to the number of action dimension, an action is selected and
passed to simulator
the simulator provides the observation o and a new pass begins.

t -1a

to

ta

t+1o

Q values t+1ota

t+1a t+2oQ values

th

th

th

Figure 1: The input action is an 18-D vector followed by a fully connected (IP) layer with 512-D outputs. A single 84 × 84 frame will be
convolved as the observation via three convolutional layers with 32 8×8 filters with stride 4, 64 4×4 filters with stride 2, and 64 3×3 filters
with stride 1, respectively. The 512-D outputs of LSTM are fed to another fully connected layer and produce 18-D Q-values corresponding
to 18 actions in Atari games.

10 time steps during training. We take this setting for three
points. From the perspective of learning from whole history,
this setting can be more satisfy to our original idea compared
to a smaller setting of the length. Second is that this setting
can also guarantee the efficiency of experiments. It allows
that our experiments can be finished within several days. And
last point is to make a better comparison to DRQN as it take
a same setting of 10. Such empirical setting has proved its
efficacy to our framework.

The entire process of our proposed approach is presented
in Algorithm 1. First, we initialize the parameters of the Q-
network and the Target network with θ and θ− respectively.
For each episode, the first selected action is initialized to no-
operation, the first hidden layer’s input is initialized with a
zero vector and the first observation of each episode is initial-
ized with the preprocessed first frame. At each time step,
if the observation does not indicate “game over” (the end
of the episode), we select an action based on the ǫ-greedy
strategy and execute the action. Accordingly, the immedi-
ate reward and the next observation of the screen will be ob-
tained. The transition, once obtained, will be sequentially
stored in the history of the current episode. To update the
Q-network, we randomly sample a sequence of transitions
〈aj−1, oj , aj , rj , oj+1〉 to fit the unrolled LSTM layer. Then,
the hidden layer hj−1 of the Q-network and the hidden layer
hj of the target network are obtained. The difference between
these two network Q-values (i.e., Q-value yj and Q-network
value Q(hj−1, aj−1, oj , aj ; θ)) is used as the loss function to
update the network parameters θ via back propagation.

4 Experiments
We evaluate the training and testing performance of ADRQN
with several Atari games and their flickering version.

4.1 Experiments setup
• Flickering Atari game: [Hausknecht and Stone, 2015]

introduced a flickering version of the Atari games, which
modified the Atari games by obscuring the entire screen
with a certain probability at each time step, which
introduces partial observability and therefore yields a
POMDP. In their framework, before a frame is sent to
the neural network as input, each raw screen is either
fully observable or fully obscured with black pixels.

• Frame skip Scheme. We adopted the frame skip tech-
nique [Bellemare et al., 2013]. This mechanism is com-
monly used in most previous works of deep reinforce-
ment learning to efficiently simulate the environment.
In this mechanism, an agent performs the selected ac-
tion ai for k + 1 consecutive frames and treats the tran-
sition from the first frame f0 to frame fk+1 as the effect
of action ai, i.e. 〈f0, ai, f1, ..., ai, fk+1〉=〈f0, ai, fk+1〉.
Thus, a large number of frames can be skipped to ac-
celerate the training process, but with a tolerable perfor-
mance loss. In our experiments, k is set to 4.

• Hyperparameters. In our experiments, we also adopt
experience replay and set the replay memory size to
D = 400, 000 (i.e., storing 400,000 transitions). When
selecting an action, we follow the ǫ−greedy policy with
ǫ = 1 − 0.9∗iter

explore , where iter is the current number of
iterations performed and explore is the number of itera-
tions that epsilon reaches to a given value. In our setting,
ǫ will reach 0.1 and explore was set to 1, 000, 000. The
discount factor γ was set to 0.99. The target network
is updated by cloning the weights of the Q-network ev-
ery 10, 000 iterations. And we unrolled the LSTM to 10
time step when training as we said in Section 3.

• Random Updates. As suggested

Probabilistic Graphical Models Applications 13 19. prosince 2024 30 / 113 - 245

ADRQN Action-specific Deep Recurent Q-network
The observation (image) is aggregated by three convolutional layers to 3136
dimensions
the action is extended from 18 dimensional indicator vector to 512
dimensional vector
these are concatenated and fed to LSTM
result is reduced to the number of action dimension, an action is selected and
passed to simulator
the simulator provides the observation o and a new pass begins.

t -1a

to

ta

t+1o

Q values t+1ota

t+1a t+2oQ values

th

th

th

Figure 1: The input action is an 18-D vector followed by a fully connected (IP) layer with 512-D outputs. A single 84 × 84 frame will be
convolved as the observation via three convolutional layers with 32 8×8 filters with stride 4, 64 4×4 filters with stride 2, and 64 3×3 filters
with stride 1, respectively. The 512-D outputs of LSTM are fed to another fully connected layer and produce 18-D Q-values corresponding
to 18 actions in Atari games.

10 time steps during training. We take this setting for three
points. From the perspective of learning from whole history,
this setting can be more satisfy to our original idea compared
to a smaller setting of the length. Second is that this setting
can also guarantee the efficiency of experiments. It allows
that our experiments can be finished within several days. And
last point is to make a better comparison to DRQN as it take
a same setting of 10. Such empirical setting has proved its
efficacy to our framework.

The entire process of our proposed approach is presented
in Algorithm 1. First, we initialize the parameters of the Q-
network and the Target network with θ and θ− respectively.
For each episode, the first selected action is initialized to no-
operation, the first hidden layer’s input is initialized with a
zero vector and the first observation of each episode is initial-
ized with the preprocessed first frame. At each time step,
if the observation does not indicate “game over” (the end
of the episode), we select an action based on the ǫ-greedy
strategy and execute the action. Accordingly, the immedi-
ate reward and the next observation of the screen will be ob-
tained. The transition, once obtained, will be sequentially
stored in the history of the current episode. To update the
Q-network, we randomly sample a sequence of transitions
〈aj−1, oj , aj , rj , oj+1〉 to fit the unrolled LSTM layer. Then,
the hidden layer hj−1 of the Q-network and the hidden layer
hj of the target network are obtained. The difference between
these two network Q-values (i.e., Q-value yj and Q-network
value Q(hj−1, aj−1, oj , aj ; θ)) is used as the loss function to
update the network parameters θ via back propagation.

4 Experiments
We evaluate the training and testing performance of ADRQN
with several Atari games and their flickering version.

4.1 Experiments setup
• Flickering Atari game: [Hausknecht and Stone, 2015]

introduced a flickering version of the Atari games, which
modified the Atari games by obscuring the entire screen
with a certain probability at each time step, which
introduces partial observability and therefore yields a
POMDP. In their framework, before a frame is sent to
the neural network as input, each raw screen is either
fully observable or fully obscured with black pixels.

• Frame skip Scheme. We adopted the frame skip tech-
nique [Bellemare et al., 2013]. This mechanism is com-
monly used in most previous works of deep reinforce-
ment learning to efficiently simulate the environment.
In this mechanism, an agent performs the selected ac-
tion ai for k + 1 consecutive frames and treats the tran-
sition from the first frame f0 to frame fk+1 as the effect
of action ai, i.e. 〈f0, ai, f1, ..., ai, fk+1〉=〈f0, ai, fk+1〉.
Thus, a large number of frames can be skipped to ac-
celerate the training process, but with a tolerable perfor-
mance loss. In our experiments, k is set to 4.

• Hyperparameters. In our experiments, we also adopt
experience replay and set the replay memory size to
D = 400, 000 (i.e., storing 400,000 transitions). When
selecting an action, we follow the ǫ−greedy policy with
ǫ = 1 − 0.9∗iter

explore , where iter is the current number of
iterations performed and explore is the number of itera-
tions that epsilon reaches to a given value. In our setting,
ǫ will reach 0.1 and explore was set to 1, 000, 000. The
discount factor γ was set to 0.99. The target network
is updated by cloning the weights of the Q-network ev-
ery 10, 000 iterations. And we unrolled the LSTM to 10
time step when training as we said in Section 3.

• Random Updates. As suggested

Probabilistic Graphical Models Applications 13 19. prosince 2024 30 / 113 - 245

ADRQN Action-specific Deep Recurent Q-network
The observation (image) is aggregated by three convolutional layers to 3136
dimensions
the action is extended from 18 dimensional indicator vector to 512
dimensional vector
these are concatenated and fed to LSTM
result is reduced to the number of action dimension, an action is selected and
passed to simulator
the simulator provides the observation o and a new pass begins.

t -1a

to

ta

t+1o

Q values t+1ota

t+1a t+2oQ values

th

th

th

Figure 1: The input action is an 18-D vector followed by a fully connected (IP) layer with 512-D outputs. A single 84 × 84 frame will be
convolved as the observation via three convolutional layers with 32 8×8 filters with stride 4, 64 4×4 filters with stride 2, and 64 3×3 filters
with stride 1, respectively. The 512-D outputs of LSTM are fed to another fully connected layer and produce 18-D Q-values corresponding
to 18 actions in Atari games.

10 time steps during training. We take this setting for three
points. From the perspective of learning from whole history,
this setting can be more satisfy to our original idea compared
to a smaller setting of the length. Second is that this setting
can also guarantee the efficiency of experiments. It allows
that our experiments can be finished within several days. And
last point is to make a better comparison to DRQN as it take
a same setting of 10. Such empirical setting has proved its
efficacy to our framework.

The entire process of our proposed approach is presented
in Algorithm 1. First, we initialize the parameters of the Q-
network and the Target network with θ and θ− respectively.
For each episode, the first selected action is initialized to no-
operation, the first hidden layer’s input is initialized with a
zero vector and the first observation of each episode is initial-
ized with the preprocessed first frame. At each time step,
if the observation does not indicate “game over” (the end
of the episode), we select an action based on the ǫ-greedy
strategy and execute the action. Accordingly, the immedi-
ate reward and the next observation of the screen will be ob-
tained. The transition, once obtained, will be sequentially
stored in the history of the current episode. To update the
Q-network, we randomly sample a sequence of transitions
〈aj−1, oj , aj , rj , oj+1〉 to fit the unrolled LSTM layer. Then,
the hidden layer hj−1 of the Q-network and the hidden layer
hj of the target network are obtained. The difference between
these two network Q-values (i.e., Q-value yj and Q-network
value Q(hj−1, aj−1, oj , aj ; θ)) is used as the loss function to
update the network parameters θ via back propagation.

4 Experiments
We evaluate the training and testing performance of ADRQN
with several Atari games and their flickering version.

4.1 Experiments setup
• Flickering Atari game: [Hausknecht and Stone, 2015]

introduced a flickering version of the Atari games, which
modified the Atari games by obscuring the entire screen
with a certain probability at each time step, which
introduces partial observability and therefore yields a
POMDP. In their framework, before a frame is sent to
the neural network as input, each raw screen is either
fully observable or fully obscured with black pixels.

• Frame skip Scheme. We adopted the frame skip tech-
nique [Bellemare et al., 2013]. This mechanism is com-
monly used in most previous works of deep reinforce-
ment learning to efficiently simulate the environment.
In this mechanism, an agent performs the selected ac-
tion ai for k + 1 consecutive frames and treats the tran-
sition from the first frame f0 to frame fk+1 as the effect
of action ai, i.e. 〈f0, ai, f1, ..., ai, fk+1〉=〈f0, ai, fk+1〉.
Thus, a large number of frames can be skipped to ac-
celerate the training process, but with a tolerable perfor-
mance loss. In our experiments, k is set to 4.

• Hyperparameters. In our experiments, we also adopt
experience replay and set the replay memory size to
D = 400, 000 (i.e., storing 400,000 transitions). When
selecting an action, we follow the ǫ−greedy policy with
ǫ = 1 − 0.9∗iter

explore , where iter is the current number of
iterations performed and explore is the number of itera-
tions that epsilon reaches to a given value. In our setting,
ǫ will reach 0.1 and explore was set to 1, 000, 000. The
discount factor γ was set to 0.99. The target network
is updated by cloning the weights of the Q-network ev-
ery 10, 000 iterations. And we unrolled the LSTM to 10
time step when training as we said in Section 3.

• Random Updates. As suggested

Probabilistic Graphical Models Applications 13 19. prosince 2024 30 / 113 - 245

ADRQN Action-specific Deep Recurent Q-network
The observation (image) is aggregated by three convolutional layers to 3136
dimensions
the action is extended from 18 dimensional indicator vector to 512
dimensional vector
these are concatenated and fed to LSTM
result is reduced to the number of action dimension, an action is selected and
passed to simulator
the simulator provides the observation o and a new pass begins.

t -1a

to

ta

t+1o

Q values t+1ota

t+1a t+2oQ values

th

th

th

Figure 1: The input action is an 18-D vector followed by a fully connected (IP) layer with 512-D outputs. A single 84 × 84 frame will be
convolved as the observation via three convolutional layers with 32 8×8 filters with stride 4, 64 4×4 filters with stride 2, and 64 3×3 filters
with stride 1, respectively. The 512-D outputs of LSTM are fed to another fully connected layer and produce 18-D Q-values corresponding
to 18 actions in Atari games.

10 time steps during training. We take this setting for three
points. From the perspective of learning from whole history,
this setting can be more satisfy to our original idea compared
to a smaller setting of the length. Second is that this setting
can also guarantee the efficiency of experiments. It allows
that our experiments can be finished within several days. And
last point is to make a better comparison to DRQN as it take
a same setting of 10. Such empirical setting has proved its
efficacy to our framework.

The entire process of our proposed approach is presented
in Algorithm 1. First, we initialize the parameters of the Q-
network and the Target network with θ and θ− respectively.
For each episode, the first selected action is initialized to no-
operation, the first hidden layer’s input is initialized with a
zero vector and the first observation of each episode is initial-
ized with the preprocessed first frame. At each time step,
if the observation does not indicate “game over” (the end
of the episode), we select an action based on the ǫ-greedy
strategy and execute the action. Accordingly, the immedi-
ate reward and the next observation of the screen will be ob-
tained. The transition, once obtained, will be sequentially
stored in the history of the current episode. To update the
Q-network, we randomly sample a sequence of transitions
〈aj−1, oj , aj , rj , oj+1〉 to fit the unrolled LSTM layer. Then,
the hidden layer hj−1 of the Q-network and the hidden layer
hj of the target network are obtained. The difference between
these two network Q-values (i.e., Q-value yj and Q-network
value Q(hj−1, aj−1, oj , aj ; θ)) is used as the loss function to
update the network parameters θ via back propagation.

4 Experiments
We evaluate the training and testing performance of ADRQN
with several Atari games and their flickering version.

4.1 Experiments setup
• Flickering Atari game: [Hausknecht and Stone, 2015]

introduced a flickering version of the Atari games, which
modified the Atari games by obscuring the entire screen
with a certain probability at each time step, which
introduces partial observability and therefore yields a
POMDP. In their framework, before a frame is sent to
the neural network as input, each raw screen is either
fully observable or fully obscured with black pixels.

• Frame skip Scheme. We adopted the frame skip tech-
nique [Bellemare et al., 2013]. This mechanism is com-
monly used in most previous works of deep reinforce-
ment learning to efficiently simulate the environment.
In this mechanism, an agent performs the selected ac-
tion ai for k + 1 consecutive frames and treats the tran-
sition from the first frame f0 to frame fk+1 as the effect
of action ai, i.e. 〈f0, ai, f1, ..., ai, fk+1〉=〈f0, ai, fk+1〉.
Thus, a large number of frames can be skipped to ac-
celerate the training process, but with a tolerable perfor-
mance loss. In our experiments, k is set to 4.

• Hyperparameters. In our experiments, we also adopt
experience replay and set the replay memory size to
D = 400, 000 (i.e., storing 400,000 transitions). When
selecting an action, we follow the ǫ−greedy policy with
ǫ = 1 − 0.9∗iter

explore , where iter is the current number of
iterations performed and explore is the number of itera-
tions that epsilon reaches to a given value. In our setting,
ǫ will reach 0.1 and explore was set to 1, 000, 000. The
discount factor γ was set to 0.99. The target network
is updated by cloning the weights of the Q-network ev-
ery 10, 000 iterations. And we unrolled the LSTM to 10
time step when training as we said in Section 3.

• Random Updates. As suggested

Probabilistic Graphical Models Applications 13 19. prosince 2024 30 / 113 - 245

ADRQN Action-specific Deep Recurent Q-network
The observation (image) is aggregated by three convolutional layers to 3136
dimensions
the action is extended from 18 dimensional indicator vector to 512
dimensional vector
these are concatenated and fed to LSTM
result is reduced to the number of action dimension, an action is selected and
passed to simulator
the simulator provides the observation o and a new pass begins.

t -1a

to

ta

t+1o

Q values t+1ota

t+1a t+2oQ values

th

th

th

Figure 1: The input action is an 18-D vector followed by a fully connected (IP) layer with 512-D outputs. A single 84 × 84 frame will be
convolved as the observation via three convolutional layers with 32 8×8 filters with stride 4, 64 4×4 filters with stride 2, and 64 3×3 filters
with stride 1, respectively. The 512-D outputs of LSTM are fed to another fully connected layer and produce 18-D Q-values corresponding
to 18 actions in Atari games.

10 time steps during training. We take this setting for three
points. From the perspective of learning from whole history,
this setting can be more satisfy to our original idea compared
to a smaller setting of the length. Second is that this setting
can also guarantee the efficiency of experiments. It allows
that our experiments can be finished within several days. And
last point is to make a better comparison to DRQN as it take
a same setting of 10. Such empirical setting has proved its
efficacy to our framework.

The entire process of our proposed approach is presented
in Algorithm 1. First, we initialize the parameters of the Q-
network and the Target network with θ and θ− respectively.
For each episode, the first selected action is initialized to no-
operation, the first hidden layer’s input is initialized with a
zero vector and the first observation of each episode is initial-
ized with the preprocessed first frame. At each time step,
if the observation does not indicate “game over” (the end
of the episode), we select an action based on the ǫ-greedy
strategy and execute the action. Accordingly, the immedi-
ate reward and the next observation of the screen will be ob-
tained. The transition, once obtained, will be sequentially
stored in the history of the current episode. To update the
Q-network, we randomly sample a sequence of transitions
〈aj−1, oj , aj , rj , oj+1〉 to fit the unrolled LSTM layer. Then,
the hidden layer hj−1 of the Q-network and the hidden layer
hj of the target network are obtained. The difference between
these two network Q-values (i.e., Q-value yj and Q-network
value Q(hj−1, aj−1, oj , aj ; θ)) is used as the loss function to
update the network parameters θ via back propagation.

4 Experiments
We evaluate the training and testing performance of ADRQN
with several Atari games and their flickering version.

4.1 Experiments setup
• Flickering Atari game: [Hausknecht and Stone, 2015]

introduced a flickering version of the Atari games, which
modified the Atari games by obscuring the entire screen
with a certain probability at each time step, which
introduces partial observability and therefore yields a
POMDP. In their framework, before a frame is sent to
the neural network as input, each raw screen is either
fully observable or fully obscured with black pixels.

• Frame skip Scheme. We adopted the frame skip tech-
nique [Bellemare et al., 2013]. This mechanism is com-
monly used in most previous works of deep reinforce-
ment learning to efficiently simulate the environment.
In this mechanism, an agent performs the selected ac-
tion ai for k + 1 consecutive frames and treats the tran-
sition from the first frame f0 to frame fk+1 as the effect
of action ai, i.e. 〈f0, ai, f1, ..., ai, fk+1〉=〈f0, ai, fk+1〉.
Thus, a large number of frames can be skipped to ac-
celerate the training process, but with a tolerable perfor-
mance loss. In our experiments, k is set to 4.

• Hyperparameters. In our experiments, we also adopt
experience replay and set the replay memory size to
D = 400, 000 (i.e., storing 400,000 transitions). When
selecting an action, we follow the ǫ−greedy policy with
ǫ = 1 − 0.9∗iter

explore , where iter is the current number of
iterations performed and explore is the number of itera-
tions that epsilon reaches to a given value. In our setting,
ǫ will reach 0.1 and explore was set to 1, 000, 000. The
discount factor γ was set to 0.99. The target network
is updated by cloning the weights of the Q-network ev-
ery 10, 000 iterations. And we unrolled the LSTM to 10
time step when training as we said in Section 3.

• Random Updates. As suggested

Probabilistic Graphical Models Applications 13 19. prosince 2024 30 / 113 - 245

ADRQN Learning

Simulate M episodes
actual reward rj is used
future reward from the old
network θold

adjust weights θ by the gradient
of
[(rj +
γmaxaQ(hj , aj , oj+1, a; θold

i)−
Q(hj−1, aj−1, oj , aj ; θ))2]

Algorithm 1 Action-specific Deep Recurrent Q-Network

1: Initialize the replay memory D, # of iterations M
2: Initialize Q-Network and Target-Network with θ and θ−

respectively
3: for episode = 1 to M do
4: Initialize the first action a0 = no operation, h0 = 0
5: Init.the first obs.o1 with the preprocessed first screen
6: while ot 6= terminal do
7: Select a random action at with the probability ǫ
8: Else select at = argmaxa Q(ht−1, at−1, ot, a; θ)
9: Execute action at

10: Obtain reward rt and resulting observation ot+1

11: Store transition 〈{at−1, ot}, at, rt, ot+1〉 as one
record of the current episode in D

12: Randomly sample a minibatch of transition
sequences 〈aj−1, oj , aj, rj , oj+1〉 from D

13: Compute Q-value of target network

yj =

{
rj , oj+1= terminal
rj+γmax

a
Q(hj , aj , oj+1, a; θ

−), oj+1 6= terminal

14: Compute the gradient of (yj −
Q(hj−1, aj−1, oj , aj; θ))

2 to update θ
15: end while
16: end for

in [Hausknecht and Stone, 2015], random updates
can achieve the similar performance as conventional
sequential updates of the entire episode, but with much
lower training cost. Random updates consist of selecting
randomly a series of transitions from one episode as the
input. In our framework, this corresponds to utilizing
a sequence of action-observation pairs to perform the
updates. The initial hidden input h0 of the RNN is set to
the zero vector at the beginning of the update.

4.2 Training
Compared to the other approaches, the key idea of our frame-
work is to construct action-observation pairs as input to the
LSTM layer to retain more representative features for the Q-
network to learn recurrently. The actions are first encoded
with one-hot vectors, then processed by a fully connected
layer to construct a higher-dimensional vector that is concate-
nated with the output of the third convolutional layer for bet-
ter numerical stability. As the LSTM layer will be unrolled
for 10 time steps, we need to ensure that there are enough
transitions to be stored in the replay memory D so that we can
sample a minibatch of the transition sequences of length 10
each time we update the entire network. In our experiments,
we update the entire network until the replay memory is full.
Moreover, the scores obtained by playing the games are not
always stable since small changes of the weights may have a
significant impact on the outcome [Mnih et al., 2013]. And,
it may bring the instability to the policy which the network
have learned. Thus, we adopt an adaptive setting as done in
most previous works by replacing negative rewards by -1 and
positive rewards by +1.

When training the flickering versions of Atari games, we

0 500 1000 1500 2000 2500 3000

episode

−20

−10

0

10

20

sc
o
re

ADRQN

DDRQN

DRQN

ADRQN-op0.5

DDRQN-op0.5

DRQN-op0.5

Figure 2: Training results for Pong

0 2000 4000 6000 8000 10000 12000 14000 16000

episode

0

500

1000

1500

2000

sc
o
re

ADRQN

DDRQN

DRQN

ADRQN-op0.5

DDRQN-op0.5

DRQN-op0.5

Figure 3: Training results for Frostbite

set the probability of obscuring a frame to 0.5 as a compro-
mise. A lower probability may prevent learning due to a large
loss of information, and a higher probability may be less con-
vincing that the transformed version is a POMDP. Besides, it
is a fair setting to evaluate generalization performance since
it divides the test interval into two subintervals evenly. The
games Pong and Frostbite are both trained under the setting
of full observation and a 0.5 probability of obscuring a frame.
The training performances of Pong and Frostbite are shown
in Fig. 2 and 3 respectively. The reported scores are based on
averages of 10 and 100 episodes respectively.

We compared our model ADRQN with DRQN and
DDRQN on several Atari games. As DDRQN is proposed
for addressing multi-agent POMDP problems and it disabled
experience replay mechanism, we adapted it to a single-agent
version which also adopts the replay memory mechanism.
Fig. 2 and Fig. 3 show that ADRQN matches the perfor-
mance obtained by DRQN and DDRQN, and even performs
slightly better than them in the conventional setting (full ob-
servation), while the improvements of ADRQN over DRQN
and DDRQN in partially observable settings are very obvious.
Additionally, when trained under the setting of the observa-
tion probability as 0.5, ADRQN can obtain significant im-
provements in Frostbite(Fig. 3). We believe the gain comes
from the use of 〈action, observation〉 pair which speeds up
the training process in partially observable environments. In
general, our proposed model can lead to higher scores in par-
tially observable settings during the training process, which
supports the argument that action-observation pairs are im-
portant in POMDP problems.

Probabilistic Graphical Models Applications 13 19. prosince 2024 31 / 113 - 245

Deep Variational Reinforcement Learning for POMDPs

Mountain hike
POMPD

S = O = A = R2

state, observed state, the desired
step.
st+1 = st + ãt + ϵs,t
ϵ ∼ N(0, 0.25 · I)
ãt is at with the length capped to
|ãt | ≤ 0.5.
ot = st + ϵo,t
ϵ ∼ N(0, σ0 · I), σ0 ∈ {0, 1.5, 3}
Rt = r(xt , yt) − 0.01|ãt |, r the
color in the figure.
b0 ∼ N([−8.5, −8.5]T , I),
T=75 steps.

Deep Variational Reinforcement Learning

(Barto et al., 1995; McAllester & Singh, 1999; Pineau et al.,
2003; Ross et al., 2008; Oliehoek et al., 2008; Roijers et al.,
2015). In most realistic domains however, these are not
known a priori.

There are several approaches that utilise RNNs in POMDPs
(Bakker, 2002; Wierstra et al., 2007; Zhang et al., 2015;
Heess et al., 2015), including multi-agent settings (Foerster
et al., 2016), learning text-based fantasy games (Narasimhan
et al., 2015) or, most recently, applied to Atari (Hausknecht
& Stone, 2015; Zhu et al., 2017). As discussed in Section
3, our algorithm extends those approaches by enabling the
policy to explicitly reason about a model and the belief state.

Another more specialised approach called QMDP-Net
(Karkus et al., 2017) learns a value iteration network (VIN)
(Tamar et al., 2016) end-to-end and uses it as a transition
model for planning. However, a VIN makes strong assump-
tions about the transition function and in QMDP-Net the
belief update must be performed analytically.

The idea to learn a particle filter based policy that is trained
using policy gradients was previously proposed by Coquelin
et al. (2009). However, they assume a known model and
rely on finite differences for gradient estimation.

Instead of optimising an ELBO to learn a maximum-
likelihood approximation for the latent representation and
corresponding transition and observation model, previous
work also tried to learn those dynamics using spectral meth-
ods (Azizzadenesheli et al., 2016), a Bayesian approach
(Ross et al., 2011; Katt et al., 2017), or nonparametrically
(Doshi-Velez et al., 2015). However, these approaches do
not scale to large or continuous state and observation spaces.
For continuous states, actions, and observations with Gaus-
sian noise, a Gaussian process model can be learned (Deisen-
roth & Peters, 2012). An alternative to learning an (approxi-
mate) transition and observation model is to learn a model
over trajectories (Willems et al., 1995). However, this is
again only possible for small, discrete observation spaces.

Due to the complexity of the learning in POMDPs, previous
work already found benefits to using auxiliary losses. Un-
like the losses proposed by Lample & Chaplot (2017), we
do not require additional information from the environment.
The UNREAL agent (Jaderberg et al., 2016) is, similarly
to our work, motivated by the idea to improve the latent
representation by utilising all the information already ob-
tained from the environment. While their work focuses
on finding unsupervised auxiliary losses that provide good
training signals, our goal is to use the auxiliary loss to better
align the network computations with the task at hand by
incorporating prior knowledge as an inductive bias.

There is some evidence from recent experiments on the
dopamine system in mice (Babayan et al., 2018) showing
that their response to ambiguous information is consistent

with a theory operating on belief states.

5. Experiments
We evaluate DVRL on Mountain Hike and on flickering Atari.
We show that DVRL deals better with noisy or partially oc-
cluded observations and that this scales to high dimensional
and continuous observation spaces like images and complex
tasks. We also perform a series of ablation studies, showing
the importance of using many particles, including the ELBO
training objective in the loss function, and jointly optimising
the ELBO and RL losses.

More details about the environments and model architec-
tures can be found in Appendix A together with additional
results and visualisations. All plots and reported results are
smoothed over time and parallel executed environments. We
average over five random seeds, with shaded areas indicating
the standard deviation.

5.1. Mountain Hike

−10 −5 0 5 10

−10

−5

0

5

10

DVRL

RNN
−4.8

−4.2

−3.6

−3.0

−2.4

−1.8

−1.2

−0.6

0.0

Figure 3: Mountain Hike is a continuous control task with obser-
vation noise σo = 3. Background colour indicates rewards. Red
line: trajectory for RNN based encoder. Black line: trajectory for
DVRL encoder. Dots: received observations. Both runs share the
same noise values εi,t. DVRL achieves higher returns (see Fig. 4)
by better estimating its current location and remaining on the high
reward mountain ridge.

In this task, the agent has to navigate along a mountain
ridge, but only receives noisy measurements of its current
location. Specifically, we have S = O = A = R2 where
st = [xt, yt]

T ∈ S and ot = [x̂t, ŷt]
T ∈ O are true and

observed coordinates respectively and at = [∆xt,∆yt]
T ∈

A is the desired step. Transitions are given by st+1 =
st+ ãt+εs,t with εs,t ∼ N (·|0, 0.25 ·I) and ãt is the vector
at with length capped to ‖ãt‖ ≤ 0.5. Observations are
noisy with ot = st+εo,t with εo,t ∼ N (·|0, σo ·I) and σo ∈
{0, 1.5, 3}. The reward at each timestep isRt = r(xt, yt)−
0.01‖at‖ where r(xt, yt) is shown in Figure 3. The starting
position is sampled from s0 ∼ N (·|[−8.5,−8.5]T , I) and
each episode ends after 75 steps.

Red: Recurrent Neural Network
Black: Deep Variational
Reinforcement Learning
dots: observations.

Probabilistic Graphical Models Applications 13 19. prosince 2024 32 / 113 - 245

Deep Variational Reinforcement Learning for POMDPs

Mountain hike
POMPD

S = O = A = R2

state, observed state, the desired
step.
st+1 = st + ãt + ϵs,t
ϵ ∼ N(0, 0.25 · I)
ãt is at with the length capped to
|ãt | ≤ 0.5.
ot = st + ϵo,t
ϵ ∼ N(0, σ0 · I), σ0 ∈ {0, 1.5, 3}
Rt = r(xt , yt) − 0.01|ãt |, r the
color in the figure.
b0 ∼ N([−8.5, −8.5]T , I),
T=75 steps.

Deep Variational Reinforcement Learning

(Barto et al., 1995; McAllester & Singh, 1999; Pineau et al.,
2003; Ross et al., 2008; Oliehoek et al., 2008; Roijers et al.,
2015). In most realistic domains however, these are not
known a priori.

There are several approaches that utilise RNNs in POMDPs
(Bakker, 2002; Wierstra et al., 2007; Zhang et al., 2015;
Heess et al., 2015), including multi-agent settings (Foerster
et al., 2016), learning text-based fantasy games (Narasimhan
et al., 2015) or, most recently, applied to Atari (Hausknecht
& Stone, 2015; Zhu et al., 2017). As discussed in Section
3, our algorithm extends those approaches by enabling the
policy to explicitly reason about a model and the belief state.

Another more specialised approach called QMDP-Net
(Karkus et al., 2017) learns a value iteration network (VIN)
(Tamar et al., 2016) end-to-end and uses it as a transition
model for planning. However, a VIN makes strong assump-
tions about the transition function and in QMDP-Net the
belief update must be performed analytically.

The idea to learn a particle filter based policy that is trained
using policy gradients was previously proposed by Coquelin
et al. (2009). However, they assume a known model and
rely on finite differences for gradient estimation.

Instead of optimising an ELBO to learn a maximum-
likelihood approximation for the latent representation and
corresponding transition and observation model, previous
work also tried to learn those dynamics using spectral meth-
ods (Azizzadenesheli et al., 2016), a Bayesian approach
(Ross et al., 2011; Katt et al., 2017), or nonparametrically
(Doshi-Velez et al., 2015). However, these approaches do
not scale to large or continuous state and observation spaces.
For continuous states, actions, and observations with Gaus-
sian noise, a Gaussian process model can be learned (Deisen-
roth & Peters, 2012). An alternative to learning an (approxi-
mate) transition and observation model is to learn a model
over trajectories (Willems et al., 1995). However, this is
again only possible for small, discrete observation spaces.

Due to the complexity of the learning in POMDPs, previous
work already found benefits to using auxiliary losses. Un-
like the losses proposed by Lample & Chaplot (2017), we
do not require additional information from the environment.
The UNREAL agent (Jaderberg et al., 2016) is, similarly
to our work, motivated by the idea to improve the latent
representation by utilising all the information already ob-
tained from the environment. While their work focuses
on finding unsupervised auxiliary losses that provide good
training signals, our goal is to use the auxiliary loss to better
align the network computations with the task at hand by
incorporating prior knowledge as an inductive bias.

There is some evidence from recent experiments on the
dopamine system in mice (Babayan et al., 2018) showing
that their response to ambiguous information is consistent

with a theory operating on belief states.

5. Experiments
We evaluate DVRL on Mountain Hike and on flickering Atari.
We show that DVRL deals better with noisy or partially oc-
cluded observations and that this scales to high dimensional
and continuous observation spaces like images and complex
tasks. We also perform a series of ablation studies, showing
the importance of using many particles, including the ELBO
training objective in the loss function, and jointly optimising
the ELBO and RL losses.

More details about the environments and model architec-
tures can be found in Appendix A together with additional
results and visualisations. All plots and reported results are
smoothed over time and parallel executed environments. We
average over five random seeds, with shaded areas indicating
the standard deviation.

5.1. Mountain Hike

−10 −5 0 5 10

−10

−5

0

5

10

DVRL

RNN
−4.8

−4.2

−3.6

−3.0

−2.4

−1.8

−1.2

−0.6

0.0

Figure 3: Mountain Hike is a continuous control task with obser-
vation noise σo = 3. Background colour indicates rewards. Red
line: trajectory for RNN based encoder. Black line: trajectory for
DVRL encoder. Dots: received observations. Both runs share the
same noise values εi,t. DVRL achieves higher returns (see Fig. 4)
by better estimating its current location and remaining on the high
reward mountain ridge.

In this task, the agent has to navigate along a mountain
ridge, but only receives noisy measurements of its current
location. Specifically, we have S = O = A = R2 where
st = [xt, yt]

T ∈ S and ot = [x̂t, ŷt]
T ∈ O are true and

observed coordinates respectively and at = [∆xt,∆yt]
T ∈

A is the desired step. Transitions are given by st+1 =
st+ ãt+εs,t with εs,t ∼ N (·|0, 0.25 ·I) and ãt is the vector
at with length capped to ‖ãt‖ ≤ 0.5. Observations are
noisy with ot = st+εo,t with εo,t ∼ N (·|0, σo ·I) and σo ∈
{0, 1.5, 3}. The reward at each timestep isRt = r(xt, yt)−
0.01‖at‖ where r(xt, yt) is shown in Figure 3. The starting
position is sampled from s0 ∼ N (·|[−8.5,−8.5]T , I) and
each episode ends after 75 steps.

Red: Recurrent Neural Network
Black: Deep Variational
Reinforcement Learning
dots: observations.

Probabilistic Graphical Models Applications 13 19. prosince 2024 32 / 113 - 245

Deep Variational Reinforcement Learning for POMDPs

Mountain hike
POMPD

S = O = A = R2

state, observed state, the desired
step.
st+1 = st + ãt + ϵs,t
ϵ ∼ N(0, 0.25 · I)
ãt is at with the length capped to
|ãt | ≤ 0.5.
ot = st + ϵo,t
ϵ ∼ N(0, σ0 · I), σ0 ∈ {0, 1.5, 3}
Rt = r(xt , yt) − 0.01|ãt |, r the
color in the figure.
b0 ∼ N([−8.5, −8.5]T , I),
T=75 steps.

Deep Variational Reinforcement Learning

(Barto et al., 1995; McAllester & Singh, 1999; Pineau et al.,
2003; Ross et al., 2008; Oliehoek et al., 2008; Roijers et al.,
2015). In most realistic domains however, these are not
known a priori.

There are several approaches that utilise RNNs in POMDPs
(Bakker, 2002; Wierstra et al., 2007; Zhang et al., 2015;
Heess et al., 2015), including multi-agent settings (Foerster
et al., 2016), learning text-based fantasy games (Narasimhan
et al., 2015) or, most recently, applied to Atari (Hausknecht
& Stone, 2015; Zhu et al., 2017). As discussed in Section
3, our algorithm extends those approaches by enabling the
policy to explicitly reason about a model and the belief state.

Another more specialised approach called QMDP-Net
(Karkus et al., 2017) learns a value iteration network (VIN)
(Tamar et al., 2016) end-to-end and uses it as a transition
model for planning. However, a VIN makes strong assump-
tions about the transition function and in QMDP-Net the
belief update must be performed analytically.

The idea to learn a particle filter based policy that is trained
using policy gradients was previously proposed by Coquelin
et al. (2009). However, they assume a known model and
rely on finite differences for gradient estimation.

Instead of optimising an ELBO to learn a maximum-
likelihood approximation for the latent representation and
corresponding transition and observation model, previous
work also tried to learn those dynamics using spectral meth-
ods (Azizzadenesheli et al., 2016), a Bayesian approach
(Ross et al., 2011; Katt et al., 2017), or nonparametrically
(Doshi-Velez et al., 2015). However, these approaches do
not scale to large or continuous state and observation spaces.
For continuous states, actions, and observations with Gaus-
sian noise, a Gaussian process model can be learned (Deisen-
roth & Peters, 2012). An alternative to learning an (approxi-
mate) transition and observation model is to learn a model
over trajectories (Willems et al., 1995). However, this is
again only possible for small, discrete observation spaces.

Due to the complexity of the learning in POMDPs, previous
work already found benefits to using auxiliary losses. Un-
like the losses proposed by Lample & Chaplot (2017), we
do not require additional information from the environment.
The UNREAL agent (Jaderberg et al., 2016) is, similarly
to our work, motivated by the idea to improve the latent
representation by utilising all the information already ob-
tained from the environment. While their work focuses
on finding unsupervised auxiliary losses that provide good
training signals, our goal is to use the auxiliary loss to better
align the network computations with the task at hand by
incorporating prior knowledge as an inductive bias.

There is some evidence from recent experiments on the
dopamine system in mice (Babayan et al., 2018) showing
that their response to ambiguous information is consistent

with a theory operating on belief states.

5. Experiments
We evaluate DVRL on Mountain Hike and on flickering Atari.
We show that DVRL deals better with noisy or partially oc-
cluded observations and that this scales to high dimensional
and continuous observation spaces like images and complex
tasks. We also perform a series of ablation studies, showing
the importance of using many particles, including the ELBO
training objective in the loss function, and jointly optimising
the ELBO and RL losses.

More details about the environments and model architec-
tures can be found in Appendix A together with additional
results and visualisations. All plots and reported results are
smoothed over time and parallel executed environments. We
average over five random seeds, with shaded areas indicating
the standard deviation.

5.1. Mountain Hike

−10 −5 0 5 10

−10

−5

0

5

10

DVRL

RNN
−4.8

−4.2

−3.6

−3.0

−2.4

−1.8

−1.2

−0.6

0.0

Figure 3: Mountain Hike is a continuous control task with obser-
vation noise σo = 3. Background colour indicates rewards. Red
line: trajectory for RNN based encoder. Black line: trajectory for
DVRL encoder. Dots: received observations. Both runs share the
same noise values εi,t. DVRL achieves higher returns (see Fig. 4)
by better estimating its current location and remaining on the high
reward mountain ridge.

In this task, the agent has to navigate along a mountain
ridge, but only receives noisy measurements of its current
location. Specifically, we have S = O = A = R2 where
st = [xt, yt]

T ∈ S and ot = [x̂t, ŷt]
T ∈ O are true and

observed coordinates respectively and at = [∆xt,∆yt]
T ∈

A is the desired step. Transitions are given by st+1 =
st+ ãt+εs,t with εs,t ∼ N (·|0, 0.25 ·I) and ãt is the vector
at with length capped to ‖ãt‖ ≤ 0.5. Observations are
noisy with ot = st+εo,t with εo,t ∼ N (·|0, σo ·I) and σo ∈
{0, 1.5, 3}. The reward at each timestep isRt = r(xt, yt)−
0.01‖at‖ where r(xt, yt) is shown in Figure 3. The starting
position is sampled from s0 ∼ N (·|[−8.5,−8.5]T , I) and
each episode ends after 75 steps.

Red: Recurrent Neural Network
Black: Deep Variational
Reinforcement Learning
dots: observations.

Probabilistic Graphical Models Applications 13 19. prosince 2024 32 / 113 - 245

Deep Variational Reinforcement Learning for POMDPs

Mountain hike
POMPD

S = O = A = R2

state, observed state, the desired
step.
st+1 = st + ãt + ϵs,t
ϵ ∼ N(0, 0.25 · I)
ãt is at with the length capped to
|ãt | ≤ 0.5.
ot = st + ϵo,t
ϵ ∼ N(0, σ0 · I), σ0 ∈ {0, 1.5, 3}
Rt = r(xt , yt) − 0.01|ãt |, r the
color in the figure.
b0 ∼ N([−8.5, −8.5]T , I),
T=75 steps.

Deep Variational Reinforcement Learning

(Barto et al., 1995; McAllester & Singh, 1999; Pineau et al.,
2003; Ross et al., 2008; Oliehoek et al., 2008; Roijers et al.,
2015). In most realistic domains however, these are not
known a priori.

There are several approaches that utilise RNNs in POMDPs
(Bakker, 2002; Wierstra et al., 2007; Zhang et al., 2015;
Heess et al., 2015), including multi-agent settings (Foerster
et al., 2016), learning text-based fantasy games (Narasimhan
et al., 2015) or, most recently, applied to Atari (Hausknecht
& Stone, 2015; Zhu et al., 2017). As discussed in Section
3, our algorithm extends those approaches by enabling the
policy to explicitly reason about a model and the belief state.

Another more specialised approach called QMDP-Net
(Karkus et al., 2017) learns a value iteration network (VIN)
(Tamar et al., 2016) end-to-end and uses it as a transition
model for planning. However, a VIN makes strong assump-
tions about the transition function and in QMDP-Net the
belief update must be performed analytically.

The idea to learn a particle filter based policy that is trained
using policy gradients was previously proposed by Coquelin
et al. (2009). However, they assume a known model and
rely on finite differences for gradient estimation.

Instead of optimising an ELBO to learn a maximum-
likelihood approximation for the latent representation and
corresponding transition and observation model, previous
work also tried to learn those dynamics using spectral meth-
ods (Azizzadenesheli et al., 2016), a Bayesian approach
(Ross et al., 2011; Katt et al., 2017), or nonparametrically
(Doshi-Velez et al., 2015). However, these approaches do
not scale to large or continuous state and observation spaces.
For continuous states, actions, and observations with Gaus-
sian noise, a Gaussian process model can be learned (Deisen-
roth & Peters, 2012). An alternative to learning an (approxi-
mate) transition and observation model is to learn a model
over trajectories (Willems et al., 1995). However, this is
again only possible for small, discrete observation spaces.

Due to the complexity of the learning in POMDPs, previous
work already found benefits to using auxiliary losses. Un-
like the losses proposed by Lample & Chaplot (2017), we
do not require additional information from the environment.
The UNREAL agent (Jaderberg et al., 2016) is, similarly
to our work, motivated by the idea to improve the latent
representation by utilising all the information already ob-
tained from the environment. While their work focuses
on finding unsupervised auxiliary losses that provide good
training signals, our goal is to use the auxiliary loss to better
align the network computations with the task at hand by
incorporating prior knowledge as an inductive bias.

There is some evidence from recent experiments on the
dopamine system in mice (Babayan et al., 2018) showing
that their response to ambiguous information is consistent

with a theory operating on belief states.

5. Experiments
We evaluate DVRL on Mountain Hike and on flickering Atari.
We show that DVRL deals better with noisy or partially oc-
cluded observations and that this scales to high dimensional
and continuous observation spaces like images and complex
tasks. We also perform a series of ablation studies, showing
the importance of using many particles, including the ELBO
training objective in the loss function, and jointly optimising
the ELBO and RL losses.

More details about the environments and model architec-
tures can be found in Appendix A together with additional
results and visualisations. All plots and reported results are
smoothed over time and parallel executed environments. We
average over five random seeds, with shaded areas indicating
the standard deviation.

5.1. Mountain Hike

−10 −5 0 5 10

−10

−5

0

5

10

DVRL

RNN
−4.8

−4.2

−3.6

−3.0

−2.4

−1.8

−1.2

−0.6

0.0

Figure 3: Mountain Hike is a continuous control task with obser-
vation noise σo = 3. Background colour indicates rewards. Red
line: trajectory for RNN based encoder. Black line: trajectory for
DVRL encoder. Dots: received observations. Both runs share the
same noise values εi,t. DVRL achieves higher returns (see Fig. 4)
by better estimating its current location and remaining on the high
reward mountain ridge.

In this task, the agent has to navigate along a mountain
ridge, but only receives noisy measurements of its current
location. Specifically, we have S = O = A = R2 where
st = [xt, yt]

T ∈ S and ot = [x̂t, ŷt]
T ∈ O are true and

observed coordinates respectively and at = [∆xt,∆yt]
T ∈

A is the desired step. Transitions are given by st+1 =
st+ ãt+εs,t with εs,t ∼ N (·|0, 0.25 ·I) and ãt is the vector
at with length capped to ‖ãt‖ ≤ 0.5. Observations are
noisy with ot = st+εo,t with εo,t ∼ N (·|0, σo ·I) and σo ∈
{0, 1.5, 3}. The reward at each timestep isRt = r(xt, yt)−
0.01‖at‖ where r(xt, yt) is shown in Figure 3. The starting
position is sampled from s0 ∼ N (·|[−8.5,−8.5]T , I) and
each episode ends after 75 steps.

Red: Recurrent Neural Network
Black: Deep Variational
Reinforcement Learning
dots: observations.

Probabilistic Graphical Models Applications 13 19. prosince 2024 32 / 113 - 245

Deep Variational Reinforcement Learning for POMDPs

Mountain hike
POMPD

S = O = A = R2

state, observed state, the desired
step.
st+1 = st + ãt + ϵs,t
ϵ ∼ N(0, 0.25 · I)
ãt is at with the length capped to
|ãt | ≤ 0.5.
ot = st + ϵo,t
ϵ ∼ N(0, σ0 · I), σ0 ∈ {0, 1.5, 3}
Rt = r(xt , yt) − 0.01|ãt |, r the
color in the figure.
b0 ∼ N([−8.5, −8.5]T , I),
T=75 steps.

Deep Variational Reinforcement Learning

(Barto et al., 1995; McAllester & Singh, 1999; Pineau et al.,
2003; Ross et al., 2008; Oliehoek et al., 2008; Roijers et al.,
2015). In most realistic domains however, these are not
known a priori.

There are several approaches that utilise RNNs in POMDPs
(Bakker, 2002; Wierstra et al., 2007; Zhang et al., 2015;
Heess et al., 2015), including multi-agent settings (Foerster
et al., 2016), learning text-based fantasy games (Narasimhan
et al., 2015) or, most recently, applied to Atari (Hausknecht
& Stone, 2015; Zhu et al., 2017). As discussed in Section
3, our algorithm extends those approaches by enabling the
policy to explicitly reason about a model and the belief state.

Another more specialised approach called QMDP-Net
(Karkus et al., 2017) learns a value iteration network (VIN)
(Tamar et al., 2016) end-to-end and uses it as a transition
model for planning. However, a VIN makes strong assump-
tions about the transition function and in QMDP-Net the
belief update must be performed analytically.

The idea to learn a particle filter based policy that is trained
using policy gradients was previously proposed by Coquelin
et al. (2009). However, they assume a known model and
rely on finite differences for gradient estimation.

Instead of optimising an ELBO to learn a maximum-
likelihood approximation for the latent representation and
corresponding transition and observation model, previous
work also tried to learn those dynamics using spectral meth-
ods (Azizzadenesheli et al., 2016), a Bayesian approach
(Ross et al., 2011; Katt et al., 2017), or nonparametrically
(Doshi-Velez et al., 2015). However, these approaches do
not scale to large or continuous state and observation spaces.
For continuous states, actions, and observations with Gaus-
sian noise, a Gaussian process model can be learned (Deisen-
roth & Peters, 2012). An alternative to learning an (approxi-
mate) transition and observation model is to learn a model
over trajectories (Willems et al., 1995). However, this is
again only possible for small, discrete observation spaces.

Due to the complexity of the learning in POMDPs, previous
work already found benefits to using auxiliary losses. Un-
like the losses proposed by Lample & Chaplot (2017), we
do not require additional information from the environment.
The UNREAL agent (Jaderberg et al., 2016) is, similarly
to our work, motivated by the idea to improve the latent
representation by utilising all the information already ob-
tained from the environment. While their work focuses
on finding unsupervised auxiliary losses that provide good
training signals, our goal is to use the auxiliary loss to better
align the network computations with the task at hand by
incorporating prior knowledge as an inductive bias.

There is some evidence from recent experiments on the
dopamine system in mice (Babayan et al., 2018) showing
that their response to ambiguous information is consistent

with a theory operating on belief states.

5. Experiments
We evaluate DVRL on Mountain Hike and on flickering Atari.
We show that DVRL deals better with noisy or partially oc-
cluded observations and that this scales to high dimensional
and continuous observation spaces like images and complex
tasks. We also perform a series of ablation studies, showing
the importance of using many particles, including the ELBO
training objective in the loss function, and jointly optimising
the ELBO and RL losses.

More details about the environments and model architec-
tures can be found in Appendix A together with additional
results and visualisations. All plots and reported results are
smoothed over time and parallel executed environments. We
average over five random seeds, with shaded areas indicating
the standard deviation.

5.1. Mountain Hike

−10 −5 0 5 10

−10

−5

0

5

10

DVRL

RNN
−4.8

−4.2

−3.6

−3.0

−2.4

−1.8

−1.2

−0.6

0.0

Figure 3: Mountain Hike is a continuous control task with obser-
vation noise σo = 3. Background colour indicates rewards. Red
line: trajectory for RNN based encoder. Black line: trajectory for
DVRL encoder. Dots: received observations. Both runs share the
same noise values εi,t. DVRL achieves higher returns (see Fig. 4)
by better estimating its current location and remaining on the high
reward mountain ridge.

In this task, the agent has to navigate along a mountain
ridge, but only receives noisy measurements of its current
location. Specifically, we have S = O = A = R2 where
st = [xt, yt]

T ∈ S and ot = [x̂t, ŷt]
T ∈ O are true and

observed coordinates respectively and at = [∆xt,∆yt]
T ∈

A is the desired step. Transitions are given by st+1 =
st+ ãt+εs,t with εs,t ∼ N (·|0, 0.25 ·I) and ãt is the vector
at with length capped to ‖ãt‖ ≤ 0.5. Observations are
noisy with ot = st+εo,t with εo,t ∼ N (·|0, σo ·I) and σo ∈
{0, 1.5, 3}. The reward at each timestep isRt = r(xt, yt)−
0.01‖at‖ where r(xt, yt) is shown in Figure 3. The starting
position is sampled from s0 ∼ N (·|[−8.5,−8.5]T , I) and
each episode ends after 75 steps.

Red: Recurrent Neural Network
Black: Deep Variational
Reinforcement Learning
dots: observations.

Probabilistic Graphical Models Applications 13 19. prosince 2024 32 / 113 - 245

Deep Variational Reinforcement Learning for POMDPs

Mountain hike
POMPD

S = O = A = R2

state, observed state, the desired
step.
st+1 = st + ãt + ϵs,t
ϵ ∼ N(0, 0.25 · I)
ãt is at with the length capped to
|ãt | ≤ 0.5.
ot = st + ϵo,t
ϵ ∼ N(0, σ0 · I), σ0 ∈ {0, 1.5, 3}
Rt = r(xt , yt) − 0.01|ãt |, r the
color in the figure.
b0 ∼ N([−8.5, −8.5]T , I),
T=75 steps.

Deep Variational Reinforcement Learning

(Barto et al., 1995; McAllester & Singh, 1999; Pineau et al.,
2003; Ross et al., 2008; Oliehoek et al., 2008; Roijers et al.,
2015). In most realistic domains however, these are not
known a priori.

There are several approaches that utilise RNNs in POMDPs
(Bakker, 2002; Wierstra et al., 2007; Zhang et al., 2015;
Heess et al., 2015), including multi-agent settings (Foerster
et al., 2016), learning text-based fantasy games (Narasimhan
et al., 2015) or, most recently, applied to Atari (Hausknecht
& Stone, 2015; Zhu et al., 2017). As discussed in Section
3, our algorithm extends those approaches by enabling the
policy to explicitly reason about a model and the belief state.

Another more specialised approach called QMDP-Net
(Karkus et al., 2017) learns a value iteration network (VIN)
(Tamar et al., 2016) end-to-end and uses it as a transition
model for planning. However, a VIN makes strong assump-
tions about the transition function and in QMDP-Net the
belief update must be performed analytically.

The idea to learn a particle filter based policy that is trained
using policy gradients was previously proposed by Coquelin
et al. (2009). However, they assume a known model and
rely on finite differences for gradient estimation.

Instead of optimising an ELBO to learn a maximum-
likelihood approximation for the latent representation and
corresponding transition and observation model, previous
work also tried to learn those dynamics using spectral meth-
ods (Azizzadenesheli et al., 2016), a Bayesian approach
(Ross et al., 2011; Katt et al., 2017), or nonparametrically
(Doshi-Velez et al., 2015). However, these approaches do
not scale to large or continuous state and observation spaces.
For continuous states, actions, and observations with Gaus-
sian noise, a Gaussian process model can be learned (Deisen-
roth & Peters, 2012). An alternative to learning an (approxi-
mate) transition and observation model is to learn a model
over trajectories (Willems et al., 1995). However, this is
again only possible for small, discrete observation spaces.

Due to the complexity of the learning in POMDPs, previous
work already found benefits to using auxiliary losses. Un-
like the losses proposed by Lample & Chaplot (2017), we
do not require additional information from the environment.
The UNREAL agent (Jaderberg et al., 2016) is, similarly
to our work, motivated by the idea to improve the latent
representation by utilising all the information already ob-
tained from the environment. While their work focuses
on finding unsupervised auxiliary losses that provide good
training signals, our goal is to use the auxiliary loss to better
align the network computations with the task at hand by
incorporating prior knowledge as an inductive bias.

There is some evidence from recent experiments on the
dopamine system in mice (Babayan et al., 2018) showing
that their response to ambiguous information is consistent

with a theory operating on belief states.

5. Experiments
We evaluate DVRL on Mountain Hike and on flickering Atari.
We show that DVRL deals better with noisy or partially oc-
cluded observations and that this scales to high dimensional
and continuous observation spaces like images and complex
tasks. We also perform a series of ablation studies, showing
the importance of using many particles, including the ELBO
training objective in the loss function, and jointly optimising
the ELBO and RL losses.

More details about the environments and model architec-
tures can be found in Appendix A together with additional
results and visualisations. All plots and reported results are
smoothed over time and parallel executed environments. We
average over five random seeds, with shaded areas indicating
the standard deviation.

5.1. Mountain Hike

−10 −5 0 5 10

−10

−5

0

5

10

DVRL

RNN
−4.8

−4.2

−3.6

−3.0

−2.4

−1.8

−1.2

−0.6

0.0

Figure 3: Mountain Hike is a continuous control task with obser-
vation noise σo = 3. Background colour indicates rewards. Red
line: trajectory for RNN based encoder. Black line: trajectory for
DVRL encoder. Dots: received observations. Both runs share the
same noise values εi,t. DVRL achieves higher returns (see Fig. 4)
by better estimating its current location and remaining on the high
reward mountain ridge.

In this task, the agent has to navigate along a mountain
ridge, but only receives noisy measurements of its current
location. Specifically, we have S = O = A = R2 where
st = [xt, yt]

T ∈ S and ot = [x̂t, ŷt]
T ∈ O are true and

observed coordinates respectively and at = [∆xt,∆yt]
T ∈

A is the desired step. Transitions are given by st+1 =
st+ ãt+εs,t with εs,t ∼ N (·|0, 0.25 ·I) and ãt is the vector
at with length capped to ‖ãt‖ ≤ 0.5. Observations are
noisy with ot = st+εo,t with εo,t ∼ N (·|0, σo ·I) and σo ∈
{0, 1.5, 3}. The reward at each timestep isRt = r(xt, yt)−
0.01‖at‖ where r(xt, yt) is shown in Figure 3. The starting
position is sampled from s0 ∼ N (·|[−8.5,−8.5]T , I) and
each episode ends after 75 steps.

Red: Recurrent Neural Network
Black: Deep Variational
Reinforcement Learning
dots: observations.

Probabilistic Graphical Models Applications 13 19. prosince 2024 32 / 113 - 245

Deep Variational Reinforcement Learning for POMDPs

Mountain hike
POMPD

S = O = A = R2

state, observed state, the desired
step.
st+1 = st + ãt + ϵs,t
ϵ ∼ N(0, 0.25 · I)
ãt is at with the length capped to
|ãt | ≤ 0.5.
ot = st + ϵo,t
ϵ ∼ N(0, σ0 · I), σ0 ∈ {0, 1.5, 3}
Rt = r(xt , yt) − 0.01|ãt |, r the
color in the figure.
b0 ∼ N([−8.5, −8.5]T , I),
T=75 steps.

Deep Variational Reinforcement Learning

(Barto et al., 1995; McAllester & Singh, 1999; Pineau et al.,
2003; Ross et al., 2008; Oliehoek et al., 2008; Roijers et al.,
2015). In most realistic domains however, these are not
known a priori.

There are several approaches that utilise RNNs in POMDPs
(Bakker, 2002; Wierstra et al., 2007; Zhang et al., 2015;
Heess et al., 2015), including multi-agent settings (Foerster
et al., 2016), learning text-based fantasy games (Narasimhan
et al., 2015) or, most recently, applied to Atari (Hausknecht
& Stone, 2015; Zhu et al., 2017). As discussed in Section
3, our algorithm extends those approaches by enabling the
policy to explicitly reason about a model and the belief state.

Another more specialised approach called QMDP-Net
(Karkus et al., 2017) learns a value iteration network (VIN)
(Tamar et al., 2016) end-to-end and uses it as a transition
model for planning. However, a VIN makes strong assump-
tions about the transition function and in QMDP-Net the
belief update must be performed analytically.

The idea to learn a particle filter based policy that is trained
using policy gradients was previously proposed by Coquelin
et al. (2009). However, they assume a known model and
rely on finite differences for gradient estimation.

Instead of optimising an ELBO to learn a maximum-
likelihood approximation for the latent representation and
corresponding transition and observation model, previous
work also tried to learn those dynamics using spectral meth-
ods (Azizzadenesheli et al., 2016), a Bayesian approach
(Ross et al., 2011; Katt et al., 2017), or nonparametrically
(Doshi-Velez et al., 2015). However, these approaches do
not scale to large or continuous state and observation spaces.
For continuous states, actions, and observations with Gaus-
sian noise, a Gaussian process model can be learned (Deisen-
roth & Peters, 2012). An alternative to learning an (approxi-
mate) transition and observation model is to learn a model
over trajectories (Willems et al., 1995). However, this is
again only possible for small, discrete observation spaces.

Due to the complexity of the learning in POMDPs, previous
work already found benefits to using auxiliary losses. Un-
like the losses proposed by Lample & Chaplot (2017), we
do not require additional information from the environment.
The UNREAL agent (Jaderberg et al., 2016) is, similarly
to our work, motivated by the idea to improve the latent
representation by utilising all the information already ob-
tained from the environment. While their work focuses
on finding unsupervised auxiliary losses that provide good
training signals, our goal is to use the auxiliary loss to better
align the network computations with the task at hand by
incorporating prior knowledge as an inductive bias.

There is some evidence from recent experiments on the
dopamine system in mice (Babayan et al., 2018) showing
that their response to ambiguous information is consistent

with a theory operating on belief states.

5. Experiments
We evaluate DVRL on Mountain Hike and on flickering Atari.
We show that DVRL deals better with noisy or partially oc-
cluded observations and that this scales to high dimensional
and continuous observation spaces like images and complex
tasks. We also perform a series of ablation studies, showing
the importance of using many particles, including the ELBO
training objective in the loss function, and jointly optimising
the ELBO and RL losses.

More details about the environments and model architec-
tures can be found in Appendix A together with additional
results and visualisations. All plots and reported results are
smoothed over time and parallel executed environments. We
average over five random seeds, with shaded areas indicating
the standard deviation.

5.1. Mountain Hike

−10 −5 0 5 10

−10

−5

0

5

10

DVRL

RNN
−4.8

−4.2

−3.6

−3.0

−2.4

−1.8

−1.2

−0.6

0.0

Figure 3: Mountain Hike is a continuous control task with obser-
vation noise σo = 3. Background colour indicates rewards. Red
line: trajectory for RNN based encoder. Black line: trajectory for
DVRL encoder. Dots: received observations. Both runs share the
same noise values εi,t. DVRL achieves higher returns (see Fig. 4)
by better estimating its current location and remaining on the high
reward mountain ridge.

In this task, the agent has to navigate along a mountain
ridge, but only receives noisy measurements of its current
location. Specifically, we have S = O = A = R2 where
st = [xt, yt]

T ∈ S and ot = [x̂t, ŷt]
T ∈ O are true and

observed coordinates respectively and at = [∆xt,∆yt]
T ∈

A is the desired step. Transitions are given by st+1 =
st+ ãt+εs,t with εs,t ∼ N (·|0, 0.25 ·I) and ãt is the vector
at with length capped to ‖ãt‖ ≤ 0.5. Observations are
noisy with ot = st+εo,t with εo,t ∼ N (·|0, σo ·I) and σo ∈
{0, 1.5, 3}. The reward at each timestep isRt = r(xt, yt)−
0.01‖at‖ where r(xt, yt) is shown in Figure 3. The starting
position is sampled from s0 ∼ N (·|[−8.5,−8.5]T , I) and
each episode ends after 75 steps.

Red: Recurrent Neural Network
Black: Deep Variational
Reinforcement Learning
dots: observations.

Probabilistic Graphical Models Applications 13 19. prosince 2024 32 / 113 - 245

Deep Variational Reinforcement Learning for POMDPs

Mountain hike
POMPD

S = O = A = R2

state, observed state, the desired
step.
st+1 = st + ãt + ϵs,t
ϵ ∼ N(0, 0.25 · I)
ãt is at with the length capped to
|ãt | ≤ 0.5.
ot = st + ϵo,t
ϵ ∼ N(0, σ0 · I), σ0 ∈ {0, 1.5, 3}
Rt = r(xt , yt) − 0.01|ãt |, r the
color in the figure.
b0 ∼ N([−8.5, −8.5]T , I),
T=75 steps.

Deep Variational Reinforcement Learning

(Barto et al., 1995; McAllester & Singh, 1999; Pineau et al.,
2003; Ross et al., 2008; Oliehoek et al., 2008; Roijers et al.,
2015). In most realistic domains however, these are not
known a priori.

There are several approaches that utilise RNNs in POMDPs
(Bakker, 2002; Wierstra et al., 2007; Zhang et al., 2015;
Heess et al., 2015), including multi-agent settings (Foerster
et al., 2016), learning text-based fantasy games (Narasimhan
et al., 2015) or, most recently, applied to Atari (Hausknecht
& Stone, 2015; Zhu et al., 2017). As discussed in Section
3, our algorithm extends those approaches by enabling the
policy to explicitly reason about a model and the belief state.

Another more specialised approach called QMDP-Net
(Karkus et al., 2017) learns a value iteration network (VIN)
(Tamar et al., 2016) end-to-end and uses it as a transition
model for planning. However, a VIN makes strong assump-
tions about the transition function and in QMDP-Net the
belief update must be performed analytically.

The idea to learn a particle filter based policy that is trained
using policy gradients was previously proposed by Coquelin
et al. (2009). However, they assume a known model and
rely on finite differences for gradient estimation.

Instead of optimising an ELBO to learn a maximum-
likelihood approximation for the latent representation and
corresponding transition and observation model, previous
work also tried to learn those dynamics using spectral meth-
ods (Azizzadenesheli et al., 2016), a Bayesian approach
(Ross et al., 2011; Katt et al., 2017), or nonparametrically
(Doshi-Velez et al., 2015). However, these approaches do
not scale to large or continuous state and observation spaces.
For continuous states, actions, and observations with Gaus-
sian noise, a Gaussian process model can be learned (Deisen-
roth & Peters, 2012). An alternative to learning an (approxi-
mate) transition and observation model is to learn a model
over trajectories (Willems et al., 1995). However, this is
again only possible for small, discrete observation spaces.

Due to the complexity of the learning in POMDPs, previous
work already found benefits to using auxiliary losses. Un-
like the losses proposed by Lample & Chaplot (2017), we
do not require additional information from the environment.
The UNREAL agent (Jaderberg et al., 2016) is, similarly
to our work, motivated by the idea to improve the latent
representation by utilising all the information already ob-
tained from the environment. While their work focuses
on finding unsupervised auxiliary losses that provide good
training signals, our goal is to use the auxiliary loss to better
align the network computations with the task at hand by
incorporating prior knowledge as an inductive bias.

There is some evidence from recent experiments on the
dopamine system in mice (Babayan et al., 2018) showing
that their response to ambiguous information is consistent

with a theory operating on belief states.

5. Experiments
We evaluate DVRL on Mountain Hike and on flickering Atari.
We show that DVRL deals better with noisy or partially oc-
cluded observations and that this scales to high dimensional
and continuous observation spaces like images and complex
tasks. We also perform a series of ablation studies, showing
the importance of using many particles, including the ELBO
training objective in the loss function, and jointly optimising
the ELBO and RL losses.

More details about the environments and model architec-
tures can be found in Appendix A together with additional
results and visualisations. All plots and reported results are
smoothed over time and parallel executed environments. We
average over five random seeds, with shaded areas indicating
the standard deviation.

5.1. Mountain Hike

−10 −5 0 5 10

−10

−5

0

5

10

DVRL

RNN
−4.8

−4.2

−3.6

−3.0

−2.4

−1.8

−1.2

−0.6

0.0

Figure 3: Mountain Hike is a continuous control task with obser-
vation noise σo = 3. Background colour indicates rewards. Red
line: trajectory for RNN based encoder. Black line: trajectory for
DVRL encoder. Dots: received observations. Both runs share the
same noise values εi,t. DVRL achieves higher returns (see Fig. 4)
by better estimating its current location and remaining on the high
reward mountain ridge.

In this task, the agent has to navigate along a mountain
ridge, but only receives noisy measurements of its current
location. Specifically, we have S = O = A = R2 where
st = [xt, yt]

T ∈ S and ot = [x̂t, ŷt]
T ∈ O are true and

observed coordinates respectively and at = [∆xt,∆yt]
T ∈

A is the desired step. Transitions are given by st+1 =
st+ ãt+εs,t with εs,t ∼ N (·|0, 0.25 ·I) and ãt is the vector
at with length capped to ‖ãt‖ ≤ 0.5. Observations are
noisy with ot = st+εo,t with εo,t ∼ N (·|0, σo ·I) and σo ∈
{0, 1.5, 3}. The reward at each timestep isRt = r(xt, yt)−
0.01‖at‖ where r(xt, yt) is shown in Figure 3. The starting
position is sampled from s0 ∼ N (·|[−8.5,−8.5]T , I) and
each episode ends after 75 steps.

Red: Recurrent Neural Network
Black: Deep Variational
Reinforcement Learning
dots: observations.

Probabilistic Graphical Models Applications 13 19. prosince 2024 32 / 113 - 245

Deep Variational Reinforcement Learning for POMDPs

Mountain hike
POMPD

S = O = A = R2

state, observed state, the desired
step.
st+1 = st + ãt + ϵs,t
ϵ ∼ N(0, 0.25 · I)
ãt is at with the length capped to
|ãt | ≤ 0.5.
ot = st + ϵo,t
ϵ ∼ N(0, σ0 · I), σ0 ∈ {0, 1.5, 3}
Rt = r(xt , yt) − 0.01|ãt |, r the
color in the figure.
b0 ∼ N([−8.5, −8.5]T , I),
T=75 steps.

Deep Variational Reinforcement Learning

(Barto et al., 1995; McAllester & Singh, 1999; Pineau et al.,
2003; Ross et al., 2008; Oliehoek et al., 2008; Roijers et al.,
2015). In most realistic domains however, these are not
known a priori.

There are several approaches that utilise RNNs in POMDPs
(Bakker, 2002; Wierstra et al., 2007; Zhang et al., 2015;
Heess et al., 2015), including multi-agent settings (Foerster
et al., 2016), learning text-based fantasy games (Narasimhan
et al., 2015) or, most recently, applied to Atari (Hausknecht
& Stone, 2015; Zhu et al., 2017). As discussed in Section
3, our algorithm extends those approaches by enabling the
policy to explicitly reason about a model and the belief state.

Another more specialised approach called QMDP-Net
(Karkus et al., 2017) learns a value iteration network (VIN)
(Tamar et al., 2016) end-to-end and uses it as a transition
model for planning. However, a VIN makes strong assump-
tions about the transition function and in QMDP-Net the
belief update must be performed analytically.

The idea to learn a particle filter based policy that is trained
using policy gradients was previously proposed by Coquelin
et al. (2009). However, they assume a known model and
rely on finite differences for gradient estimation.

Instead of optimising an ELBO to learn a maximum-
likelihood approximation for the latent representation and
corresponding transition and observation model, previous
work also tried to learn those dynamics using spectral meth-
ods (Azizzadenesheli et al., 2016), a Bayesian approach
(Ross et al., 2011; Katt et al., 2017), or nonparametrically
(Doshi-Velez et al., 2015). However, these approaches do
not scale to large or continuous state and observation spaces.
For continuous states, actions, and observations with Gaus-
sian noise, a Gaussian process model can be learned (Deisen-
roth & Peters, 2012). An alternative to learning an (approxi-
mate) transition and observation model is to learn a model
over trajectories (Willems et al., 1995). However, this is
again only possible for small, discrete observation spaces.

Due to the complexity of the learning in POMDPs, previous
work already found benefits to using auxiliary losses. Un-
like the losses proposed by Lample & Chaplot (2017), we
do not require additional information from the environment.
The UNREAL agent (Jaderberg et al., 2016) is, similarly
to our work, motivated by the idea to improve the latent
representation by utilising all the information already ob-
tained from the environment. While their work focuses
on finding unsupervised auxiliary losses that provide good
training signals, our goal is to use the auxiliary loss to better
align the network computations with the task at hand by
incorporating prior knowledge as an inductive bias.

There is some evidence from recent experiments on the
dopamine system in mice (Babayan et al., 2018) showing
that their response to ambiguous information is consistent

with a theory operating on belief states.

5. Experiments
We evaluate DVRL on Mountain Hike and on flickering Atari.
We show that DVRL deals better with noisy or partially oc-
cluded observations and that this scales to high dimensional
and continuous observation spaces like images and complex
tasks. We also perform a series of ablation studies, showing
the importance of using many particles, including the ELBO
training objective in the loss function, and jointly optimising
the ELBO and RL losses.

More details about the environments and model architec-
tures can be found in Appendix A together with additional
results and visualisations. All plots and reported results are
smoothed over time and parallel executed environments. We
average over five random seeds, with shaded areas indicating
the standard deviation.

5.1. Mountain Hike

−10 −5 0 5 10

−10

−5

0

5

10

DVRL

RNN
−4.8

−4.2

−3.6

−3.0

−2.4

−1.8

−1.2

−0.6

0.0

Figure 3: Mountain Hike is a continuous control task with obser-
vation noise σo = 3. Background colour indicates rewards. Red
line: trajectory for RNN based encoder. Black line: trajectory for
DVRL encoder. Dots: received observations. Both runs share the
same noise values εi,t. DVRL achieves higher returns (see Fig. 4)
by better estimating its current location and remaining on the high
reward mountain ridge.

In this task, the agent has to navigate along a mountain
ridge, but only receives noisy measurements of its current
location. Specifically, we have S = O = A = R2 where
st = [xt, yt]

T ∈ S and ot = [x̂t, ŷt]
T ∈ O are true and

observed coordinates respectively and at = [∆xt,∆yt]
T ∈

A is the desired step. Transitions are given by st+1 =
st+ ãt+εs,t with εs,t ∼ N (·|0, 0.25 ·I) and ãt is the vector
at with length capped to ‖ãt‖ ≤ 0.5. Observations are
noisy with ot = st+εo,t with εo,t ∼ N (·|0, σo ·I) and σo ∈
{0, 1.5, 3}. The reward at each timestep isRt = r(xt, yt)−
0.01‖at‖ where r(xt, yt) is shown in Figure 3. The starting
position is sampled from s0 ∼ N (·|[−8.5,−8.5]T , I) and
each episode ends after 75 steps.

Red: Recurrent Neural Network
Black: Deep Variational
Reinforcement Learning
dots: observations.

Probabilistic Graphical Models Applications 13 19. prosince 2024 32 / 113 - 245

Deep Variational Reinforcement Learning for POMDPs

Mountain hike
POMPD

S = O = A = R2

state, observed state, the desired
step.
st+1 = st + ãt + ϵs,t
ϵ ∼ N(0, 0.25 · I)
ãt is at with the length capped to
|ãt | ≤ 0.5.
ot = st + ϵo,t
ϵ ∼ N(0, σ0 · I), σ0 ∈ {0, 1.5, 3}
Rt = r(xt , yt) − 0.01|ãt |, r the
color in the figure.
b0 ∼ N([−8.5, −8.5]T , I),
T=75 steps.

Deep Variational Reinforcement Learning

(Barto et al., 1995; McAllester & Singh, 1999; Pineau et al.,
2003; Ross et al., 2008; Oliehoek et al., 2008; Roijers et al.,
2015). In most realistic domains however, these are not
known a priori.

There are several approaches that utilise RNNs in POMDPs
(Bakker, 2002; Wierstra et al., 2007; Zhang et al., 2015;
Heess et al., 2015), including multi-agent settings (Foerster
et al., 2016), learning text-based fantasy games (Narasimhan
et al., 2015) or, most recently, applied to Atari (Hausknecht
& Stone, 2015; Zhu et al., 2017). As discussed in Section
3, our algorithm extends those approaches by enabling the
policy to explicitly reason about a model and the belief state.

Another more specialised approach called QMDP-Net
(Karkus et al., 2017) learns a value iteration network (VIN)
(Tamar et al., 2016) end-to-end and uses it as a transition
model for planning. However, a VIN makes strong assump-
tions about the transition function and in QMDP-Net the
belief update must be performed analytically.

The idea to learn a particle filter based policy that is trained
using policy gradients was previously proposed by Coquelin
et al. (2009). However, they assume a known model and
rely on finite differences for gradient estimation.

Instead of optimising an ELBO to learn a maximum-
likelihood approximation for the latent representation and
corresponding transition and observation model, previous
work also tried to learn those dynamics using spectral meth-
ods (Azizzadenesheli et al., 2016), a Bayesian approach
(Ross et al., 2011; Katt et al., 2017), or nonparametrically
(Doshi-Velez et al., 2015). However, these approaches do
not scale to large or continuous state and observation spaces.
For continuous states, actions, and observations with Gaus-
sian noise, a Gaussian process model can be learned (Deisen-
roth & Peters, 2012). An alternative to learning an (approxi-
mate) transition and observation model is to learn a model
over trajectories (Willems et al., 1995). However, this is
again only possible for small, discrete observation spaces.

Due to the complexity of the learning in POMDPs, previous
work already found benefits to using auxiliary losses. Un-
like the losses proposed by Lample & Chaplot (2017), we
do not require additional information from the environment.
The UNREAL agent (Jaderberg et al., 2016) is, similarly
to our work, motivated by the idea to improve the latent
representation by utilising all the information already ob-
tained from the environment. While their work focuses
on finding unsupervised auxiliary losses that provide good
training signals, our goal is to use the auxiliary loss to better
align the network computations with the task at hand by
incorporating prior knowledge as an inductive bias.

There is some evidence from recent experiments on the
dopamine system in mice (Babayan et al., 2018) showing
that their response to ambiguous information is consistent

with a theory operating on belief states.

5. Experiments
We evaluate DVRL on Mountain Hike and on flickering Atari.
We show that DVRL deals better with noisy or partially oc-
cluded observations and that this scales to high dimensional
and continuous observation spaces like images and complex
tasks. We also perform a series of ablation studies, showing
the importance of using many particles, including the ELBO
training objective in the loss function, and jointly optimising
the ELBO and RL losses.

More details about the environments and model architec-
tures can be found in Appendix A together with additional
results and visualisations. All plots and reported results are
smoothed over time and parallel executed environments. We
average over five random seeds, with shaded areas indicating
the standard deviation.

5.1. Mountain Hike

−10 −5 0 5 10

−10

−5

0

5

10

DVRL

RNN
−4.8

−4.2

−3.6

−3.0

−2.4

−1.8

−1.2

−0.6

0.0

Figure 3: Mountain Hike is a continuous control task with obser-
vation noise σo = 3. Background colour indicates rewards. Red
line: trajectory for RNN based encoder. Black line: trajectory for
DVRL encoder. Dots: received observations. Both runs share the
same noise values εi,t. DVRL achieves higher returns (see Fig. 4)
by better estimating its current location and remaining on the high
reward mountain ridge.

In this task, the agent has to navigate along a mountain
ridge, but only receives noisy measurements of its current
location. Specifically, we have S = O = A = R2 where
st = [xt, yt]

T ∈ S and ot = [x̂t, ŷt]
T ∈ O are true and

observed coordinates respectively and at = [∆xt,∆yt]
T ∈

A is the desired step. Transitions are given by st+1 =
st+ ãt+εs,t with εs,t ∼ N (·|0, 0.25 ·I) and ãt is the vector
at with length capped to ‖ãt‖ ≤ 0.5. Observations are
noisy with ot = st+εo,t with εo,t ∼ N (·|0, σo ·I) and σo ∈
{0, 1.5, 3}. The reward at each timestep isRt = r(xt, yt)−
0.01‖at‖ where r(xt, yt) is shown in Figure 3. The starting
position is sampled from s0 ∼ N (·|[−8.5,−8.5]T , I) and
each episode ends after 75 steps.

Red: Recurrent Neural Network
Black: Deep Variational
Reinforcement Learning
dots: observations.

Probabilistic Graphical Models Applications 13 19. prosince 2024 32 / 113 - 245

Deep Variational Reinforcement Learning for POMDPs

Mountain hike
POMPD

S = O = A = R2

state, observed state, the desired
step.
st+1 = st + ãt + ϵs,t
ϵ ∼ N(0, 0.25 · I)
ãt is at with the length capped to
|ãt | ≤ 0.5.
ot = st + ϵo,t
ϵ ∼ N(0, σ0 · I), σ0 ∈ {0, 1.5, 3}
Rt = r(xt , yt) − 0.01|ãt |, r the
color in the figure.
b0 ∼ N([−8.5, −8.5]T , I),
T=75 steps.

Deep Variational Reinforcement Learning

(Barto et al., 1995; McAllester & Singh, 1999; Pineau et al.,
2003; Ross et al., 2008; Oliehoek et al., 2008; Roijers et al.,
2015). In most realistic domains however, these are not
known a priori.

There are several approaches that utilise RNNs in POMDPs
(Bakker, 2002; Wierstra et al., 2007; Zhang et al., 2015;
Heess et al., 2015), including multi-agent settings (Foerster
et al., 2016), learning text-based fantasy games (Narasimhan
et al., 2015) or, most recently, applied to Atari (Hausknecht
& Stone, 2015; Zhu et al., 2017). As discussed in Section
3, our algorithm extends those approaches by enabling the
policy to explicitly reason about a model and the belief state.

Another more specialised approach called QMDP-Net
(Karkus et al., 2017) learns a value iteration network (VIN)
(Tamar et al., 2016) end-to-end and uses it as a transition
model for planning. However, a VIN makes strong assump-
tions about the transition function and in QMDP-Net the
belief update must be performed analytically.

The idea to learn a particle filter based policy that is trained
using policy gradients was previously proposed by Coquelin
et al. (2009). However, they assume a known model and
rely on finite differences for gradient estimation.

Instead of optimising an ELBO to learn a maximum-
likelihood approximation for the latent representation and
corresponding transition and observation model, previous
work also tried to learn those dynamics using spectral meth-
ods (Azizzadenesheli et al., 2016), a Bayesian approach
(Ross et al., 2011; Katt et al., 2017), or nonparametrically
(Doshi-Velez et al., 2015). However, these approaches do
not scale to large or continuous state and observation spaces.
For continuous states, actions, and observations with Gaus-
sian noise, a Gaussian process model can be learned (Deisen-
roth & Peters, 2012). An alternative to learning an (approxi-
mate) transition and observation model is to learn a model
over trajectories (Willems et al., 1995). However, this is
again only possible for small, discrete observation spaces.

Due to the complexity of the learning in POMDPs, previous
work already found benefits to using auxiliary losses. Un-
like the losses proposed by Lample & Chaplot (2017), we
do not require additional information from the environment.
The UNREAL agent (Jaderberg et al., 2016) is, similarly
to our work, motivated by the idea to improve the latent
representation by utilising all the information already ob-
tained from the environment. While their work focuses
on finding unsupervised auxiliary losses that provide good
training signals, our goal is to use the auxiliary loss to better
align the network computations with the task at hand by
incorporating prior knowledge as an inductive bias.

There is some evidence from recent experiments on the
dopamine system in mice (Babayan et al., 2018) showing
that their response to ambiguous information is consistent

with a theory operating on belief states.

5. Experiments
We evaluate DVRL on Mountain Hike and on flickering Atari.
We show that DVRL deals better with noisy or partially oc-
cluded observations and that this scales to high dimensional
and continuous observation spaces like images and complex
tasks. We also perform a series of ablation studies, showing
the importance of using many particles, including the ELBO
training objective in the loss function, and jointly optimising
the ELBO and RL losses.

More details about the environments and model architec-
tures can be found in Appendix A together with additional
results and visualisations. All plots and reported results are
smoothed over time and parallel executed environments. We
average over five random seeds, with shaded areas indicating
the standard deviation.

5.1. Mountain Hike

−10 −5 0 5 10

−10

−5

0

5

10

DVRL

RNN
−4.8

−4.2

−3.6

−3.0

−2.4

−1.8

−1.2

−0.6

0.0

Figure 3: Mountain Hike is a continuous control task with obser-
vation noise σo = 3. Background colour indicates rewards. Red
line: trajectory for RNN based encoder. Black line: trajectory for
DVRL encoder. Dots: received observations. Both runs share the
same noise values εi,t. DVRL achieves higher returns (see Fig. 4)
by better estimating its current location and remaining on the high
reward mountain ridge.

In this task, the agent has to navigate along a mountain
ridge, but only receives noisy measurements of its current
location. Specifically, we have S = O = A = R2 where
st = [xt, yt]

T ∈ S and ot = [x̂t, ŷt]
T ∈ O are true and

observed coordinates respectively and at = [∆xt,∆yt]
T ∈

A is the desired step. Transitions are given by st+1 =
st+ ãt+εs,t with εs,t ∼ N (·|0, 0.25 ·I) and ãt is the vector
at with length capped to ‖ãt‖ ≤ 0.5. Observations are
noisy with ot = st+εo,t with εo,t ∼ N (·|0, σo ·I) and σo ∈
{0, 1.5, 3}. The reward at each timestep isRt = r(xt, yt)−
0.01‖at‖ where r(xt, yt) is shown in Figure 3. The starting
position is sampled from s0 ∼ N (·|[−8.5,−8.5]T , I) and
each episode ends after 75 steps.

Red: Recurrent Neural Network
Black: Deep Variational
Reinforcement Learning
dots: observations.

Probabilistic Graphical Models Applications 13 19. prosince 2024 32 / 113 - 245

Deep Variational Reinforcement Learning for POMDPs

Mountain hike
POMPD

S = O = A = R2

state, observed state, the desired
step.
st+1 = st + ãt + ϵs,t
ϵ ∼ N(0, 0.25 · I)
ãt is at with the length capped to
|ãt | ≤ 0.5.
ot = st + ϵo,t
ϵ ∼ N(0, σ0 · I), σ0 ∈ {0, 1.5, 3}
Rt = r(xt , yt) − 0.01|ãt |, r the
color in the figure.
b0 ∼ N([−8.5, −8.5]T , I),
T=75 steps.

Deep Variational Reinforcement Learning

(Barto et al., 1995; McAllester & Singh, 1999; Pineau et al.,
2003; Ross et al., 2008; Oliehoek et al., 2008; Roijers et al.,
2015). In most realistic domains however, these are not
known a priori.

There are several approaches that utilise RNNs in POMDPs
(Bakker, 2002; Wierstra et al., 2007; Zhang et al., 2015;
Heess et al., 2015), including multi-agent settings (Foerster
et al., 2016), learning text-based fantasy games (Narasimhan
et al., 2015) or, most recently, applied to Atari (Hausknecht
& Stone, 2015; Zhu et al., 2017). As discussed in Section
3, our algorithm extends those approaches by enabling the
policy to explicitly reason about a model and the belief state.

Another more specialised approach called QMDP-Net
(Karkus et al., 2017) learns a value iteration network (VIN)
(Tamar et al., 2016) end-to-end and uses it as a transition
model for planning. However, a VIN makes strong assump-
tions about the transition function and in QMDP-Net the
belief update must be performed analytically.

The idea to learn a particle filter based policy that is trained
using policy gradients was previously proposed by Coquelin
et al. (2009). However, they assume a known model and
rely on finite differences for gradient estimation.

Instead of optimising an ELBO to learn a maximum-
likelihood approximation for the latent representation and
corresponding transition and observation model, previous
work also tried to learn those dynamics using spectral meth-
ods (Azizzadenesheli et al., 2016), a Bayesian approach
(Ross et al., 2011; Katt et al., 2017), or nonparametrically
(Doshi-Velez et al., 2015). However, these approaches do
not scale to large or continuous state and observation spaces.
For continuous states, actions, and observations with Gaus-
sian noise, a Gaussian process model can be learned (Deisen-
roth & Peters, 2012). An alternative to learning an (approxi-
mate) transition and observation model is to learn a model
over trajectories (Willems et al., 1995). However, this is
again only possible for small, discrete observation spaces.

Due to the complexity of the learning in POMDPs, previous
work already found benefits to using auxiliary losses. Un-
like the losses proposed by Lample & Chaplot (2017), we
do not require additional information from the environment.
The UNREAL agent (Jaderberg et al., 2016) is, similarly
to our work, motivated by the idea to improve the latent
representation by utilising all the information already ob-
tained from the environment. While their work focuses
on finding unsupervised auxiliary losses that provide good
training signals, our goal is to use the auxiliary loss to better
align the network computations with the task at hand by
incorporating prior knowledge as an inductive bias.

There is some evidence from recent experiments on the
dopamine system in mice (Babayan et al., 2018) showing
that their response to ambiguous information is consistent

with a theory operating on belief states.

5. Experiments
We evaluate DVRL on Mountain Hike and on flickering Atari.
We show that DVRL deals better with noisy or partially oc-
cluded observations and that this scales to high dimensional
and continuous observation spaces like images and complex
tasks. We also perform a series of ablation studies, showing
the importance of using many particles, including the ELBO
training objective in the loss function, and jointly optimising
the ELBO and RL losses.

More details about the environments and model architec-
tures can be found in Appendix A together with additional
results and visualisations. All plots and reported results are
smoothed over time and parallel executed environments. We
average over five random seeds, with shaded areas indicating
the standard deviation.

5.1. Mountain Hike

−10 −5 0 5 10

−10

−5

0

5

10

DVRL

RNN
−4.8

−4.2

−3.6

−3.0

−2.4

−1.8

−1.2

−0.6

0.0

Figure 3: Mountain Hike is a continuous control task with obser-
vation noise σo = 3. Background colour indicates rewards. Red
line: trajectory for RNN based encoder. Black line: trajectory for
DVRL encoder. Dots: received observations. Both runs share the
same noise values εi,t. DVRL achieves higher returns (see Fig. 4)
by better estimating its current location and remaining on the high
reward mountain ridge.

In this task, the agent has to navigate along a mountain
ridge, but only receives noisy measurements of its current
location. Specifically, we have S = O = A = R2 where
st = [xt, yt]

T ∈ S and ot = [x̂t, ŷt]
T ∈ O are true and

observed coordinates respectively and at = [∆xt,∆yt]
T ∈

A is the desired step. Transitions are given by st+1 =
st+ ãt+εs,t with εs,t ∼ N (·|0, 0.25 ·I) and ãt is the vector
at with length capped to ‖ãt‖ ≤ 0.5. Observations are
noisy with ot = st+εo,t with εo,t ∼ N (·|0, σo ·I) and σo ∈
{0, 1.5, 3}. The reward at each timestep isRt = r(xt, yt)−
0.01‖at‖ where r(xt, yt) is shown in Figure 3. The starting
position is sampled from s0 ∼ N (·|[−8.5,−8.5]T , I) and
each episode ends after 75 steps.

Red: Recurrent Neural Network
Black: Deep Variational
Reinforcement Learning
dots: observations.

Probabilistic Graphical Models Applications 13 19. prosince 2024 32 / 113 - 245

Deep Variational Reinforcement Learning for POMDPs

Mountain hike
POMPD

S = O = A = R2

state, observed state, the desired
step.
st+1 = st + ãt + ϵs,t
ϵ ∼ N(0, 0.25 · I)
ãt is at with the length capped to
|ãt | ≤ 0.5.
ot = st + ϵo,t
ϵ ∼ N(0, σ0 · I), σ0 ∈ {0, 1.5, 3}
Rt = r(xt , yt) − 0.01|ãt |, r the
color in the figure.
b0 ∼ N([−8.5, −8.5]T , I),
T=75 steps.

Deep Variational Reinforcement Learning

(Barto et al., 1995; McAllester & Singh, 1999; Pineau et al.,
2003; Ross et al., 2008; Oliehoek et al., 2008; Roijers et al.,
2015). In most realistic domains however, these are not
known a priori.

There are several approaches that utilise RNNs in POMDPs
(Bakker, 2002; Wierstra et al., 2007; Zhang et al., 2015;
Heess et al., 2015), including multi-agent settings (Foerster
et al., 2016), learning text-based fantasy games (Narasimhan
et al., 2015) or, most recently, applied to Atari (Hausknecht
& Stone, 2015; Zhu et al., 2017). As discussed in Section
3, our algorithm extends those approaches by enabling the
policy to explicitly reason about a model and the belief state.

Another more specialised approach called QMDP-Net
(Karkus et al., 2017) learns a value iteration network (VIN)
(Tamar et al., 2016) end-to-end and uses it as a transition
model for planning. However, a VIN makes strong assump-
tions about the transition function and in QMDP-Net the
belief update must be performed analytically.

The idea to learn a particle filter based policy that is trained
using policy gradients was previously proposed by Coquelin
et al. (2009). However, they assume a known model and
rely on finite differences for gradient estimation.

Instead of optimising an ELBO to learn a maximum-
likelihood approximation for the latent representation and
corresponding transition and observation model, previous
work also tried to learn those dynamics using spectral meth-
ods (Azizzadenesheli et al., 2016), a Bayesian approach
(Ross et al., 2011; Katt et al., 2017), or nonparametrically
(Doshi-Velez et al., 2015). However, these approaches do
not scale to large or continuous state and observation spaces.
For continuous states, actions, and observations with Gaus-
sian noise, a Gaussian process model can be learned (Deisen-
roth & Peters, 2012). An alternative to learning an (approxi-
mate) transition and observation model is to learn a model
over trajectories (Willems et al., 1995). However, this is
again only possible for small, discrete observation spaces.

Due to the complexity of the learning in POMDPs, previous
work already found benefits to using auxiliary losses. Un-
like the losses proposed by Lample & Chaplot (2017), we
do not require additional information from the environment.
The UNREAL agent (Jaderberg et al., 2016) is, similarly
to our work, motivated by the idea to improve the latent
representation by utilising all the information already ob-
tained from the environment. While their work focuses
on finding unsupervised auxiliary losses that provide good
training signals, our goal is to use the auxiliary loss to better
align the network computations with the task at hand by
incorporating prior knowledge as an inductive bias.

There is some evidence from recent experiments on the
dopamine system in mice (Babayan et al., 2018) showing
that their response to ambiguous information is consistent

with a theory operating on belief states.

5. Experiments
We evaluate DVRL on Mountain Hike and on flickering Atari.
We show that DVRL deals better with noisy or partially oc-
cluded observations and that this scales to high dimensional
and continuous observation spaces like images and complex
tasks. We also perform a series of ablation studies, showing
the importance of using many particles, including the ELBO
training objective in the loss function, and jointly optimising
the ELBO and RL losses.

More details about the environments and model architec-
tures can be found in Appendix A together with additional
results and visualisations. All plots and reported results are
smoothed over time and parallel executed environments. We
average over five random seeds, with shaded areas indicating
the standard deviation.

5.1. Mountain Hike

−10 −5 0 5 10

−10

−5

0

5

10

DVRL

RNN
−4.8

−4.2

−3.6

−3.0

−2.4

−1.8

−1.2

−0.6

0.0

Figure 3: Mountain Hike is a continuous control task with obser-
vation noise σo = 3. Background colour indicates rewards. Red
line: trajectory for RNN based encoder. Black line: trajectory for
DVRL encoder. Dots: received observations. Both runs share the
same noise values εi,t. DVRL achieves higher returns (see Fig. 4)
by better estimating its current location and remaining on the high
reward mountain ridge.

In this task, the agent has to navigate along a mountain
ridge, but only receives noisy measurements of its current
location. Specifically, we have S = O = A = R2 where
st = [xt, yt]

T ∈ S and ot = [x̂t, ŷt]
T ∈ O are true and

observed coordinates respectively and at = [∆xt,∆yt]
T ∈

A is the desired step. Transitions are given by st+1 =
st+ ãt+εs,t with εs,t ∼ N (·|0, 0.25 ·I) and ãt is the vector
at with length capped to ‖ãt‖ ≤ 0.5. Observations are
noisy with ot = st+εo,t with εo,t ∼ N (·|0, σo ·I) and σo ∈
{0, 1.5, 3}. The reward at each timestep isRt = r(xt, yt)−
0.01‖at‖ where r(xt, yt) is shown in Figure 3. The starting
position is sampled from s0 ∼ N (·|[−8.5,−8.5]T , I) and
each episode ends after 75 steps.

Red: Recurrent Neural Network
Black: Deep Variational
Reinforcement Learning
dots: observations.

Probabilistic Graphical Models Applications 13 19. prosince 2024 32 / 113 - 245

Deep Variational Reinforcement Learning for POMDPs

Mountain hike
POMPD

S = O = A = R2

state, observed state, the desired
step.
st+1 = st + ãt + ϵs,t
ϵ ∼ N(0, 0.25 · I)
ãt is at with the length capped to
|ãt | ≤ 0.5.
ot = st + ϵo,t
ϵ ∼ N(0, σ0 · I), σ0 ∈ {0, 1.5, 3}
Rt = r(xt , yt) − 0.01|ãt |, r the
color in the figure.
b0 ∼ N([−8.5, −8.5]T , I),
T=75 steps.

Deep Variational Reinforcement Learning

(Barto et al., 1995; McAllester & Singh, 1999; Pineau et al.,
2003; Ross et al., 2008; Oliehoek et al., 2008; Roijers et al.,
2015). In most realistic domains however, these are not
known a priori.

There are several approaches that utilise RNNs in POMDPs
(Bakker, 2002; Wierstra et al., 2007; Zhang et al., 2015;
Heess et al., 2015), including multi-agent settings (Foerster
et al., 2016), learning text-based fantasy games (Narasimhan
et al., 2015) or, most recently, applied to Atari (Hausknecht
& Stone, 2015; Zhu et al., 2017). As discussed in Section
3, our algorithm extends those approaches by enabling the
policy to explicitly reason about a model and the belief state.

Another more specialised approach called QMDP-Net
(Karkus et al., 2017) learns a value iteration network (VIN)
(Tamar et al., 2016) end-to-end and uses it as a transition
model for planning. However, a VIN makes strong assump-
tions about the transition function and in QMDP-Net the
belief update must be performed analytically.

The idea to learn a particle filter based policy that is trained
using policy gradients was previously proposed by Coquelin
et al. (2009). However, they assume a known model and
rely on finite differences for gradient estimation.

Instead of optimising an ELBO to learn a maximum-
likelihood approximation for the latent representation and
corresponding transition and observation model, previous
work also tried to learn those dynamics using spectral meth-
ods (Azizzadenesheli et al., 2016), a Bayesian approach
(Ross et al., 2011; Katt et al., 2017), or nonparametrically
(Doshi-Velez et al., 2015). However, these approaches do
not scale to large or continuous state and observation spaces.
For continuous states, actions, and observations with Gaus-
sian noise, a Gaussian process model can be learned (Deisen-
roth & Peters, 2012). An alternative to learning an (approxi-
mate) transition and observation model is to learn a model
over trajectories (Willems et al., 1995). However, this is
again only possible for small, discrete observation spaces.

Due to the complexity of the learning in POMDPs, previous
work already found benefits to using auxiliary losses. Un-
like the losses proposed by Lample & Chaplot (2017), we
do not require additional information from the environment.
The UNREAL agent (Jaderberg et al., 2016) is, similarly
to our work, motivated by the idea to improve the latent
representation by utilising all the information already ob-
tained from the environment. While their work focuses
on finding unsupervised auxiliary losses that provide good
training signals, our goal is to use the auxiliary loss to better
align the network computations with the task at hand by
incorporating prior knowledge as an inductive bias.

There is some evidence from recent experiments on the
dopamine system in mice (Babayan et al., 2018) showing
that their response to ambiguous information is consistent

with a theory operating on belief states.

5. Experiments
We evaluate DVRL on Mountain Hike and on flickering Atari.
We show that DVRL deals better with noisy or partially oc-
cluded observations and that this scales to high dimensional
and continuous observation spaces like images and complex
tasks. We also perform a series of ablation studies, showing
the importance of using many particles, including the ELBO
training objective in the loss function, and jointly optimising
the ELBO and RL losses.

More details about the environments and model architec-
tures can be found in Appendix A together with additional
results and visualisations. All plots and reported results are
smoothed over time and parallel executed environments. We
average over five random seeds, with shaded areas indicating
the standard deviation.

5.1. Mountain Hike

−10 −5 0 5 10

−10

−5

0

5

10

DVRL

RNN
−4.8

−4.2

−3.6

−3.0

−2.4

−1.8

−1.2

−0.6

0.0

Figure 3: Mountain Hike is a continuous control task with obser-
vation noise σo = 3. Background colour indicates rewards. Red
line: trajectory for RNN based encoder. Black line: trajectory for
DVRL encoder. Dots: received observations. Both runs share the
same noise values εi,t. DVRL achieves higher returns (see Fig. 4)
by better estimating its current location and remaining on the high
reward mountain ridge.

In this task, the agent has to navigate along a mountain
ridge, but only receives noisy measurements of its current
location. Specifically, we have S = O = A = R2 where
st = [xt, yt]

T ∈ S and ot = [x̂t, ŷt]
T ∈ O are true and

observed coordinates respectively and at = [∆xt,∆yt]
T ∈

A is the desired step. Transitions are given by st+1 =
st+ ãt+εs,t with εs,t ∼ N (·|0, 0.25 ·I) and ãt is the vector
at with length capped to ‖ãt‖ ≤ 0.5. Observations are
noisy with ot = st+εo,t with εo,t ∼ N (·|0, σo ·I) and σo ∈
{0, 1.5, 3}. The reward at each timestep isRt = r(xt, yt)−
0.01‖at‖ where r(xt, yt) is shown in Figure 3. The starting
position is sampled from s0 ∼ N (·|[−8.5,−8.5]T , I) and
each episode ends after 75 steps.

Red: Recurrent Neural Network
Black: Deep Variational
Reinforcement Learning
dots: observations.

Probabilistic Graphical Models Applications 13 19. prosince 2024 32 / 113 - 245

Deep Variational Reinforcement Learning for POMDPs

Mountain hike
POMPD

S = O = A = R2

state, observed state, the desired
step.
st+1 = st + ãt + ϵs,t
ϵ ∼ N(0, 0.25 · I)
ãt is at with the length capped to
|ãt | ≤ 0.5.
ot = st + ϵo,t
ϵ ∼ N(0, σ0 · I), σ0 ∈ {0, 1.5, 3}
Rt = r(xt , yt) − 0.01|ãt |, r the
color in the figure.
b0 ∼ N([−8.5, −8.5]T , I),
T=75 steps.

Deep Variational Reinforcement Learning

(Barto et al., 1995; McAllester & Singh, 1999; Pineau et al.,
2003; Ross et al., 2008; Oliehoek et al., 2008; Roijers et al.,
2015). In most realistic domains however, these are not
known a priori.

There are several approaches that utilise RNNs in POMDPs
(Bakker, 2002; Wierstra et al., 2007; Zhang et al., 2015;
Heess et al., 2015), including multi-agent settings (Foerster
et al., 2016), learning text-based fantasy games (Narasimhan
et al., 2015) or, most recently, applied to Atari (Hausknecht
& Stone, 2015; Zhu et al., 2017). As discussed in Section
3, our algorithm extends those approaches by enabling the
policy to explicitly reason about a model and the belief state.

Another more specialised approach called QMDP-Net
(Karkus et al., 2017) learns a value iteration network (VIN)
(Tamar et al., 2016) end-to-end and uses it as a transition
model for planning. However, a VIN makes strong assump-
tions about the transition function and in QMDP-Net the
belief update must be performed analytically.

The idea to learn a particle filter based policy that is trained
using policy gradients was previously proposed by Coquelin
et al. (2009). However, they assume a known model and
rely on finite differences for gradient estimation.

Instead of optimising an ELBO to learn a maximum-
likelihood approximation for the latent representation and
corresponding transition and observation model, previous
work also tried to learn those dynamics using spectral meth-
ods (Azizzadenesheli et al., 2016), a Bayesian approach
(Ross et al., 2011; Katt et al., 2017), or nonparametrically
(Doshi-Velez et al., 2015). However, these approaches do
not scale to large or continuous state and observation spaces.
For continuous states, actions, and observations with Gaus-
sian noise, a Gaussian process model can be learned (Deisen-
roth & Peters, 2012). An alternative to learning an (approxi-
mate) transition and observation model is to learn a model
over trajectories (Willems et al., 1995). However, this is
again only possible for small, discrete observation spaces.

Due to the complexity of the learning in POMDPs, previous
work already found benefits to using auxiliary losses. Un-
like the losses proposed by Lample & Chaplot (2017), we
do not require additional information from the environment.
The UNREAL agent (Jaderberg et al., 2016) is, similarly
to our work, motivated by the idea to improve the latent
representation by utilising all the information already ob-
tained from the environment. While their work focuses
on finding unsupervised auxiliary losses that provide good
training signals, our goal is to use the auxiliary loss to better
align the network computations with the task at hand by
incorporating prior knowledge as an inductive bias.

There is some evidence from recent experiments on the
dopamine system in mice (Babayan et al., 2018) showing
that their response to ambiguous information is consistent

with a theory operating on belief states.

5. Experiments
We evaluate DVRL on Mountain Hike and on flickering Atari.
We show that DVRL deals better with noisy or partially oc-
cluded observations and that this scales to high dimensional
and continuous observation spaces like images and complex
tasks. We also perform a series of ablation studies, showing
the importance of using many particles, including the ELBO
training objective in the loss function, and jointly optimising
the ELBO and RL losses.

More details about the environments and model architec-
tures can be found in Appendix A together with additional
results and visualisations. All plots and reported results are
smoothed over time and parallel executed environments. We
average over five random seeds, with shaded areas indicating
the standard deviation.

5.1. Mountain Hike

−10 −5 0 5 10

−10

−5

0

5

10

DVRL

RNN
−4.8

−4.2

−3.6

−3.0

−2.4

−1.8

−1.2

−0.6

0.0

Figure 3: Mountain Hike is a continuous control task with obser-
vation noise σo = 3. Background colour indicates rewards. Red
line: trajectory for RNN based encoder. Black line: trajectory for
DVRL encoder. Dots: received observations. Both runs share the
same noise values εi,t. DVRL achieves higher returns (see Fig. 4)
by better estimating its current location and remaining on the high
reward mountain ridge.

In this task, the agent has to navigate along a mountain
ridge, but only receives noisy measurements of its current
location. Specifically, we have S = O = A = R2 where
st = [xt, yt]

T ∈ S and ot = [x̂t, ŷt]
T ∈ O are true and

observed coordinates respectively and at = [∆xt,∆yt]
T ∈

A is the desired step. Transitions are given by st+1 =
st+ ãt+εs,t with εs,t ∼ N (·|0, 0.25 ·I) and ãt is the vector
at with length capped to ‖ãt‖ ≤ 0.5. Observations are
noisy with ot = st+εo,t with εo,t ∼ N (·|0, σo ·I) and σo ∈
{0, 1.5, 3}. The reward at each timestep isRt = r(xt, yt)−
0.01‖at‖ where r(xt, yt) is shown in Figure 3. The starting
position is sampled from s0 ∼ N (·|[−8.5,−8.5]T , I) and
each episode ends after 75 steps.

Red: Recurrent Neural Network
Black: Deep Variational
Reinforcement Learning
dots: observations.

Probabilistic Graphical Models Applications 13 19. prosince 2024 32 / 113 - 245

Deep Variational Reinforcement Learning for POMDPs

Recurrent Neural Network
ht latent state
the current update ns steps
computational graphs ng steps
ng > ns greatly improves the
performance.

DVRL
K = 30 particles (hk

t , zk
t ,wk

t)
hk

t the latent state of an RNN
zk

t an additional state to learn the
transition
wk

t an particle importance weight.

Deep Variational Reinforcement Learning for POMDPs

Maximilian Igl 1 Luisa Zintgraf 1 Tuan Anh Le 1 Frank Wood 2 Shimon Whiteson 1

Abstract
Many real-world sequential decision making prob-
lems are partially observable by nature, and the
environment model is typically unknown. Con-
sequently, there is great need for reinforcement
learning methods that can tackle such problems
given only a stream of incomplete and noisy ob-
servations. In this paper, we propose deep varia-
tional reinforcement learning (DVRL), which in-
troduces an inductive bias that allows an agent
to learn a generative model of the environment
and perform inference in that model to effectively
aggregate the available information. We develop
an n-step approximation to the evidence lower
bound (ELBO), allowing the model to be trained
jointly with the policy. This ensures that the la-
tent state representation is suitable for the control
task. In experiments on Mountain Hike and flick-
ering Atari we show that our method outperforms
previous approaches relying on recurrent neural
networks to encode the past.

1. Introduction
Most deep reinforcement learning (RL) methods assume
that the state of the environment is fully observable at every
time step. However, this assumption often does not hold in
reality, as occlusions and noisy sensors may limit the agent’s
perceptual abilities. Such problems can be formalised as
partially observable Markov decision processes (POMDPs)
(Astrom, 1965; Kaelbling et al., 1998). Because we usually
do not have access to the true generative model of our envi-
ronment, there is a need for reinforcement learning methods
that can tackle POMDPs when only a stream of observations
is given, without any prior knowledge of the latent state
space or the transition and observation functions.

POMDPs are notoriously hard to solve: since the current ob-

1University of Oxford, United Kingdom 2University of British
Columbia, Canada. Correspondence to: Maximilian Igl <maxim-
ilian.igl@eng.ox.ac.uk>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

(a) RNN-based approach. The RNN acts as an encoder for the
action-observation history, on which actor and critic are condi-
tioned. The networks are updated end-to-end with an RL loss.

(b) DVRL. The agent learns a generative model which is used to
update a belief distribution. Actor and critic now condition on the
belief. The generative model is learned to optimise both the ELBO
and the RL loss.

Figure 1: Comparison of RNN and DVRL encoders.

servation does in general not carry all relevant information
for choosing an action, information must be aggregated over
time and in general the entire history must be taken into
account.

This history can be encoded either by remembering features
of the past (McCallum, 1993) or by performing inference to
determine the distribution over possible latent states (Kael-
bling et al., 1998). However, the computation of this belief
state requires knowledge of the model.

Most previous work in deep learning relies on training a re-
current neural network (RNN) to summarize the past. Exam-
ples are the deep recurrent Q-network (DRQN) (Hausknecht
& Stone, 2015) and the action-specific deep recurrent Q-
network (ADRQN) (Zhu et al., 2017). Because these ap-
proaches are completely model-free, they place a heavy
burden on the RNN. Since performing inference implicitly
requires a known or learned model, they are likely to sum-
marise the history either by only remembering features of
the past or by computing simple heuristics instead of actual
belief states. This is often suboptimal in complex tasks.
Generalisation is also often easier over beliefs than over

ar
X

iv
:1

80
6.

02
42

6v
1

 [
cs

.L
G

]
 6

 J
un

 2
01

8

Probabilistic Graphical Models Applications 13 19. prosince 2024 33 / 113 - 245

Deep Variational Reinforcement Learning for POMDPs

Recurrent Neural Network
ht latent state
the current update ns steps
computational graphs ng steps
ng > ns greatly improves the
performance.

DVRL
K = 30 particles (hk

t , zk
t ,wk

t)
hk

t the latent state of an RNN
zk

t an additional state to learn the
transition
wk

t an particle importance weight.

Deep Variational Reinforcement Learning for POMDPs

Maximilian Igl 1 Luisa Zintgraf 1 Tuan Anh Le 1 Frank Wood 2 Shimon Whiteson 1

Abstract
Many real-world sequential decision making prob-
lems are partially observable by nature, and the
environment model is typically unknown. Con-
sequently, there is great need for reinforcement
learning methods that can tackle such problems
given only a stream of incomplete and noisy ob-
servations. In this paper, we propose deep varia-
tional reinforcement learning (DVRL), which in-
troduces an inductive bias that allows an agent
to learn a generative model of the environment
and perform inference in that model to effectively
aggregate the available information. We develop
an n-step approximation to the evidence lower
bound (ELBO), allowing the model to be trained
jointly with the policy. This ensures that the la-
tent state representation is suitable for the control
task. In experiments on Mountain Hike and flick-
ering Atari we show that our method outperforms
previous approaches relying on recurrent neural
networks to encode the past.

1. Introduction
Most deep reinforcement learning (RL) methods assume
that the state of the environment is fully observable at every
time step. However, this assumption often does not hold in
reality, as occlusions and noisy sensors may limit the agent’s
perceptual abilities. Such problems can be formalised as
partially observable Markov decision processes (POMDPs)
(Astrom, 1965; Kaelbling et al., 1998). Because we usually
do not have access to the true generative model of our envi-
ronment, there is a need for reinforcement learning methods
that can tackle POMDPs when only a stream of observations
is given, without any prior knowledge of the latent state
space or the transition and observation functions.

POMDPs are notoriously hard to solve: since the current ob-

1University of Oxford, United Kingdom 2University of British
Columbia, Canada. Correspondence to: Maximilian Igl <maxim-
ilian.igl@eng.ox.ac.uk>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

(a) RNN-based approach. The RNN acts as an encoder for the
action-observation history, on which actor and critic are condi-
tioned. The networks are updated end-to-end with an RL loss.

(b) DVRL. The agent learns a generative model which is used to
update a belief distribution. Actor and critic now condition on the
belief. The generative model is learned to optimise both the ELBO
and the RL loss.

Figure 1: Comparison of RNN and DVRL encoders.

servation does in general not carry all relevant information
for choosing an action, information must be aggregated over
time and in general the entire history must be taken into
account.

This history can be encoded either by remembering features
of the past (McCallum, 1993) or by performing inference to
determine the distribution over possible latent states (Kael-
bling et al., 1998). However, the computation of this belief
state requires knowledge of the model.

Most previous work in deep learning relies on training a re-
current neural network (RNN) to summarize the past. Exam-
ples are the deep recurrent Q-network (DRQN) (Hausknecht
& Stone, 2015) and the action-specific deep recurrent Q-
network (ADRQN) (Zhu et al., 2017). Because these ap-
proaches are completely model-free, they place a heavy
burden on the RNN. Since performing inference implicitly
requires a known or learned model, they are likely to sum-
marise the history either by only remembering features of
the past or by computing simple heuristics instead of actual
belief states. This is often suboptimal in complex tasks.
Generalisation is also often easier over beliefs than over

ar
X

iv
:1

80
6.

02
42

6v
1

 [
cs

.L
G

]
 6

 J
un

 2
01

8

Probabilistic Graphical Models Applications 13 19. prosince 2024 33 / 113 - 245

Deep Variational Reinforcement Learning for POMDPs

Recurrent Neural Network
ht latent state
the current update ns steps
computational graphs ng steps
ng > ns greatly improves the
performance.

DVRL
K = 30 particles (hk

t , zk
t ,wk

t)
hk

t the latent state of an RNN
zk

t an additional state to learn the
transition
wk

t an particle importance weight.

Deep Variational Reinforcement Learning for POMDPs

Maximilian Igl 1 Luisa Zintgraf 1 Tuan Anh Le 1 Frank Wood 2 Shimon Whiteson 1

Abstract
Many real-world sequential decision making prob-
lems are partially observable by nature, and the
environment model is typically unknown. Con-
sequently, there is great need for reinforcement
learning methods that can tackle such problems
given only a stream of incomplete and noisy ob-
servations. In this paper, we propose deep varia-
tional reinforcement learning (DVRL), which in-
troduces an inductive bias that allows an agent
to learn a generative model of the environment
and perform inference in that model to effectively
aggregate the available information. We develop
an n-step approximation to the evidence lower
bound (ELBO), allowing the model to be trained
jointly with the policy. This ensures that the la-
tent state representation is suitable for the control
task. In experiments on Mountain Hike and flick-
ering Atari we show that our method outperforms
previous approaches relying on recurrent neural
networks to encode the past.

1. Introduction
Most deep reinforcement learning (RL) methods assume
that the state of the environment is fully observable at every
time step. However, this assumption often does not hold in
reality, as occlusions and noisy sensors may limit the agent’s
perceptual abilities. Such problems can be formalised as
partially observable Markov decision processes (POMDPs)
(Astrom, 1965; Kaelbling et al., 1998). Because we usually
do not have access to the true generative model of our envi-
ronment, there is a need for reinforcement learning methods
that can tackle POMDPs when only a stream of observations
is given, without any prior knowledge of the latent state
space or the transition and observation functions.

POMDPs are notoriously hard to solve: since the current ob-

1University of Oxford, United Kingdom 2University of British
Columbia, Canada. Correspondence to: Maximilian Igl <maxim-
ilian.igl@eng.ox.ac.uk>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

(a) RNN-based approach. The RNN acts as an encoder for the
action-observation history, on which actor and critic are condi-
tioned. The networks are updated end-to-end with an RL loss.

(b) DVRL. The agent learns a generative model which is used to
update a belief distribution. Actor and critic now condition on the
belief. The generative model is learned to optimise both the ELBO
and the RL loss.

Figure 1: Comparison of RNN and DVRL encoders.

servation does in general not carry all relevant information
for choosing an action, information must be aggregated over
time and in general the entire history must be taken into
account.

This history can be encoded either by remembering features
of the past (McCallum, 1993) or by performing inference to
determine the distribution over possible latent states (Kael-
bling et al., 1998). However, the computation of this belief
state requires knowledge of the model.

Most previous work in deep learning relies on training a re-
current neural network (RNN) to summarize the past. Exam-
ples are the deep recurrent Q-network (DRQN) (Hausknecht
& Stone, 2015) and the action-specific deep recurrent Q-
network (ADRQN) (Zhu et al., 2017). Because these ap-
proaches are completely model-free, they place a heavy
burden on the RNN. Since performing inference implicitly
requires a known or learned model, they are likely to sum-
marise the history either by only remembering features of
the past or by computing simple heuristics instead of actual
belief states. This is often suboptimal in complex tasks.
Generalisation is also often easier over beliefs than over

ar
X

iv
:1

80
6.

02
42

6v
1

 [
cs

.L
G

]
 6

 J
un

 2
01

8

Probabilistic Graphical Models Applications 13 19. prosince 2024 33 / 113 - 245

Deep Variational Reinforcement Learning for POMDPs

Recurrent Neural Network
ht latent state
the current update ns steps
computational graphs ng steps
ng > ns greatly improves the
performance.

DVRL
K = 30 particles (hk

t , zk
t ,wk

t)
hk

t the latent state of an RNN
zk

t an additional state to learn the
transition
wk

t an particle importance weight.

Deep Variational Reinforcement Learning for POMDPs

Maximilian Igl 1 Luisa Zintgraf 1 Tuan Anh Le 1 Frank Wood 2 Shimon Whiteson 1

Abstract
Many real-world sequential decision making prob-
lems are partially observable by nature, and the
environment model is typically unknown. Con-
sequently, there is great need for reinforcement
learning methods that can tackle such problems
given only a stream of incomplete and noisy ob-
servations. In this paper, we propose deep varia-
tional reinforcement learning (DVRL), which in-
troduces an inductive bias that allows an agent
to learn a generative model of the environment
and perform inference in that model to effectively
aggregate the available information. We develop
an n-step approximation to the evidence lower
bound (ELBO), allowing the model to be trained
jointly with the policy. This ensures that the la-
tent state representation is suitable for the control
task. In experiments on Mountain Hike and flick-
ering Atari we show that our method outperforms
previous approaches relying on recurrent neural
networks to encode the past.

1. Introduction
Most deep reinforcement learning (RL) methods assume
that the state of the environment is fully observable at every
time step. However, this assumption often does not hold in
reality, as occlusions and noisy sensors may limit the agent’s
perceptual abilities. Such problems can be formalised as
partially observable Markov decision processes (POMDPs)
(Astrom, 1965; Kaelbling et al., 1998). Because we usually
do not have access to the true generative model of our envi-
ronment, there is a need for reinforcement learning methods
that can tackle POMDPs when only a stream of observations
is given, without any prior knowledge of the latent state
space or the transition and observation functions.

POMDPs are notoriously hard to solve: since the current ob-

1University of Oxford, United Kingdom 2University of British
Columbia, Canada. Correspondence to: Maximilian Igl <maxim-
ilian.igl@eng.ox.ac.uk>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

(a) RNN-based approach. The RNN acts as an encoder for the
action-observation history, on which actor and critic are condi-
tioned. The networks are updated end-to-end with an RL loss.

(b) DVRL. The agent learns a generative model which is used to
update a belief distribution. Actor and critic now condition on the
belief. The generative model is learned to optimise both the ELBO
and the RL loss.

Figure 1: Comparison of RNN and DVRL encoders.

servation does in general not carry all relevant information
for choosing an action, information must be aggregated over
time and in general the entire history must be taken into
account.

This history can be encoded either by remembering features
of the past (McCallum, 1993) or by performing inference to
determine the distribution over possible latent states (Kael-
bling et al., 1998). However, the computation of this belief
state requires knowledge of the model.

Most previous work in deep learning relies on training a re-
current neural network (RNN) to summarize the past. Exam-
ples are the deep recurrent Q-network (DRQN) (Hausknecht
& Stone, 2015) and the action-specific deep recurrent Q-
network (ADRQN) (Zhu et al., 2017). Because these ap-
proaches are completely model-free, they place a heavy
burden on the RNN. Since performing inference implicitly
requires a known or learned model, they are likely to sum-
marise the history either by only remembering features of
the past or by computing simple heuristics instead of actual
belief states. This is often suboptimal in complex tasks.
Generalisation is also often easier over beliefs than over

ar
X

iv
:1

80
6.

02
42

6v
1

 [
cs

.L
G

]
 6

 J
un

 2
01

8

Probabilistic Graphical Models Applications 13 19. prosince 2024 33 / 113 - 245

Deep Variational Reinforcement Learning for POMDPs

Recurrent Neural Network
ht latent state
the current update ns steps
computational graphs ng steps
ng > ns greatly improves the
performance.

DVRL
K = 30 particles (hk

t , zk
t ,wk

t)
hk

t the latent state of an RNN
zk

t an additional state to learn the
transition
wk

t an particle importance weight.

Deep Variational Reinforcement Learning for POMDPs

Maximilian Igl 1 Luisa Zintgraf 1 Tuan Anh Le 1 Frank Wood 2 Shimon Whiteson 1

Abstract
Many real-world sequential decision making prob-
lems are partially observable by nature, and the
environment model is typically unknown. Con-
sequently, there is great need for reinforcement
learning methods that can tackle such problems
given only a stream of incomplete and noisy ob-
servations. In this paper, we propose deep varia-
tional reinforcement learning (DVRL), which in-
troduces an inductive bias that allows an agent
to learn a generative model of the environment
and perform inference in that model to effectively
aggregate the available information. We develop
an n-step approximation to the evidence lower
bound (ELBO), allowing the model to be trained
jointly with the policy. This ensures that the la-
tent state representation is suitable for the control
task. In experiments on Mountain Hike and flick-
ering Atari we show that our method outperforms
previous approaches relying on recurrent neural
networks to encode the past.

1. Introduction
Most deep reinforcement learning (RL) methods assume
that the state of the environment is fully observable at every
time step. However, this assumption often does not hold in
reality, as occlusions and noisy sensors may limit the agent’s
perceptual abilities. Such problems can be formalised as
partially observable Markov decision processes (POMDPs)
(Astrom, 1965; Kaelbling et al., 1998). Because we usually
do not have access to the true generative model of our envi-
ronment, there is a need for reinforcement learning methods
that can tackle POMDPs when only a stream of observations
is given, without any prior knowledge of the latent state
space or the transition and observation functions.

POMDPs are notoriously hard to solve: since the current ob-

1University of Oxford, United Kingdom 2University of British
Columbia, Canada. Correspondence to: Maximilian Igl <maxim-
ilian.igl@eng.ox.ac.uk>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

(a) RNN-based approach. The RNN acts as an encoder for the
action-observation history, on which actor and critic are condi-
tioned. The networks are updated end-to-end with an RL loss.

(b) DVRL. The agent learns a generative model which is used to
update a belief distribution. Actor and critic now condition on the
belief. The generative model is learned to optimise both the ELBO
and the RL loss.

Figure 1: Comparison of RNN and DVRL encoders.

servation does in general not carry all relevant information
for choosing an action, information must be aggregated over
time and in general the entire history must be taken into
account.

This history can be encoded either by remembering features
of the past (McCallum, 1993) or by performing inference to
determine the distribution over possible latent states (Kael-
bling et al., 1998). However, the computation of this belief
state requires knowledge of the model.

Most previous work in deep learning relies on training a re-
current neural network (RNN) to summarize the past. Exam-
ples are the deep recurrent Q-network (DRQN) (Hausknecht
& Stone, 2015) and the action-specific deep recurrent Q-
network (ADRQN) (Zhu et al., 2017). Because these ap-
proaches are completely model-free, they place a heavy
burden on the RNN. Since performing inference implicitly
requires a known or learned model, they are likely to sum-
marise the history either by only remembering features of
the past or by computing simple heuristics instead of actual
belief states. This is often suboptimal in complex tasks.
Generalisation is also often easier over beliefs than over

ar
X

iv
:1

80
6.

02
42

6v
1

 [
cs

.L
G

]
 6

 J
un

 2
01

8

Probabilistic Graphical Models Applications 13 19. prosince 2024 33 / 113 - 245

Deep Variational Reinforcement Learning for POMDPs

Recurrent Neural Network
ht latent state
the current update ns steps
computational graphs ng steps
ng > ns greatly improves the
performance.

DVRL
K = 30 particles (hk

t , zk
t ,wk

t)
hk

t the latent state of an RNN
zk

t an additional state to learn the
transition
wk

t an particle importance weight.

Deep Variational Reinforcement Learning for POMDPs

Maximilian Igl 1 Luisa Zintgraf 1 Tuan Anh Le 1 Frank Wood 2 Shimon Whiteson 1

Abstract
Many real-world sequential decision making prob-
lems are partially observable by nature, and the
environment model is typically unknown. Con-
sequently, there is great need for reinforcement
learning methods that can tackle such problems
given only a stream of incomplete and noisy ob-
servations. In this paper, we propose deep varia-
tional reinforcement learning (DVRL), which in-
troduces an inductive bias that allows an agent
to learn a generative model of the environment
and perform inference in that model to effectively
aggregate the available information. We develop
an n-step approximation to the evidence lower
bound (ELBO), allowing the model to be trained
jointly with the policy. This ensures that the la-
tent state representation is suitable for the control
task. In experiments on Mountain Hike and flick-
ering Atari we show that our method outperforms
previous approaches relying on recurrent neural
networks to encode the past.

1. Introduction
Most deep reinforcement learning (RL) methods assume
that the state of the environment is fully observable at every
time step. However, this assumption often does not hold in
reality, as occlusions and noisy sensors may limit the agent’s
perceptual abilities. Such problems can be formalised as
partially observable Markov decision processes (POMDPs)
(Astrom, 1965; Kaelbling et al., 1998). Because we usually
do not have access to the true generative model of our envi-
ronment, there is a need for reinforcement learning methods
that can tackle POMDPs when only a stream of observations
is given, without any prior knowledge of the latent state
space or the transition and observation functions.

POMDPs are notoriously hard to solve: since the current ob-

1University of Oxford, United Kingdom 2University of British
Columbia, Canada. Correspondence to: Maximilian Igl <maxim-
ilian.igl@eng.ox.ac.uk>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

(a) RNN-based approach. The RNN acts as an encoder for the
action-observation history, on which actor and critic are condi-
tioned. The networks are updated end-to-end with an RL loss.

(b) DVRL. The agent learns a generative model which is used to
update a belief distribution. Actor and critic now condition on the
belief. The generative model is learned to optimise both the ELBO
and the RL loss.

Figure 1: Comparison of RNN and DVRL encoders.

servation does in general not carry all relevant information
for choosing an action, information must be aggregated over
time and in general the entire history must be taken into
account.

This history can be encoded either by remembering features
of the past (McCallum, 1993) or by performing inference to
determine the distribution over possible latent states (Kael-
bling et al., 1998). However, the computation of this belief
state requires knowledge of the model.

Most previous work in deep learning relies on training a re-
current neural network (RNN) to summarize the past. Exam-
ples are the deep recurrent Q-network (DRQN) (Hausknecht
& Stone, 2015) and the action-specific deep recurrent Q-
network (ADRQN) (Zhu et al., 2017). Because these ap-
proaches are completely model-free, they place a heavy
burden on the RNN. Since performing inference implicitly
requires a known or learned model, they are likely to sum-
marise the history either by only remembering features of
the past or by computing simple heuristics instead of actual
belief states. This is often suboptimal in complex tasks.
Generalisation is also often easier over beliefs than over

ar
X

iv
:1

80
6.

02
42

6v
1

 [
cs

.L
G

]
 6

 J
un

 2
01

8

Probabilistic Graphical Models Applications 13 19. prosince 2024 33 / 113 - 245

Deep Variational Reinforcement Learning for POMDPs

Recurrent Neural Network
ht latent state
the current update ns steps
computational graphs ng steps
ng > ns greatly improves the
performance.

DVRL
K = 30 particles (hk

t , zk
t ,wk

t)
hk

t the latent state of an RNN
zk

t an additional state to learn the
transition
wk

t an particle importance weight.

Deep Variational Reinforcement Learning for POMDPs

Maximilian Igl 1 Luisa Zintgraf 1 Tuan Anh Le 1 Frank Wood 2 Shimon Whiteson 1

Abstract
Many real-world sequential decision making prob-
lems are partially observable by nature, and the
environment model is typically unknown. Con-
sequently, there is great need for reinforcement
learning methods that can tackle such problems
given only a stream of incomplete and noisy ob-
servations. In this paper, we propose deep varia-
tional reinforcement learning (DVRL), which in-
troduces an inductive bias that allows an agent
to learn a generative model of the environment
and perform inference in that model to effectively
aggregate the available information. We develop
an n-step approximation to the evidence lower
bound (ELBO), allowing the model to be trained
jointly with the policy. This ensures that the la-
tent state representation is suitable for the control
task. In experiments on Mountain Hike and flick-
ering Atari we show that our method outperforms
previous approaches relying on recurrent neural
networks to encode the past.

1. Introduction
Most deep reinforcement learning (RL) methods assume
that the state of the environment is fully observable at every
time step. However, this assumption often does not hold in
reality, as occlusions and noisy sensors may limit the agent’s
perceptual abilities. Such problems can be formalised as
partially observable Markov decision processes (POMDPs)
(Astrom, 1965; Kaelbling et al., 1998). Because we usually
do not have access to the true generative model of our envi-
ronment, there is a need for reinforcement learning methods
that can tackle POMDPs when only a stream of observations
is given, without any prior knowledge of the latent state
space or the transition and observation functions.

POMDPs are notoriously hard to solve: since the current ob-

1University of Oxford, United Kingdom 2University of British
Columbia, Canada. Correspondence to: Maximilian Igl <maxim-
ilian.igl@eng.ox.ac.uk>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

(a) RNN-based approach. The RNN acts as an encoder for the
action-observation history, on which actor and critic are condi-
tioned. The networks are updated end-to-end with an RL loss.

(b) DVRL. The agent learns a generative model which is used to
update a belief distribution. Actor and critic now condition on the
belief. The generative model is learned to optimise both the ELBO
and the RL loss.

Figure 1: Comparison of RNN and DVRL encoders.

servation does in general not carry all relevant information
for choosing an action, information must be aggregated over
time and in general the entire history must be taken into
account.

This history can be encoded either by remembering features
of the past (McCallum, 1993) or by performing inference to
determine the distribution over possible latent states (Kael-
bling et al., 1998). However, the computation of this belief
state requires knowledge of the model.

Most previous work in deep learning relies on training a re-
current neural network (RNN) to summarize the past. Exam-
ples are the deep recurrent Q-network (DRQN) (Hausknecht
& Stone, 2015) and the action-specific deep recurrent Q-
network (ADRQN) (Zhu et al., 2017). Because these ap-
proaches are completely model-free, they place a heavy
burden on the RNN. Since performing inference implicitly
requires a known or learned model, they are likely to sum-
marise the history either by only remembering features of
the past or by computing simple heuristics instead of actual
belief states. This is often suboptimal in complex tasks.
Generalisation is also often easier over beliefs than over

ar
X

iv
:1

80
6.

02
42

6v
1

 [
cs

.L
G

]
 6

 J
un

 2
01

8

Probabilistic Graphical Models Applications 13 19. prosince 2024 33 / 113 - 245

Deep Variational Reinforcement Learning for POMDPs

Recurrent Neural Network
ht latent state
the current update ns steps
computational graphs ng steps
ng > ns greatly improves the
performance.

DVRL
K = 30 particles (hk

t , zk
t ,wk

t)
hk

t the latent state of an RNN
zk

t an additional state to learn the
transition
wk

t an particle importance weight.

Deep Variational Reinforcement Learning for POMDPs

Maximilian Igl 1 Luisa Zintgraf 1 Tuan Anh Le 1 Frank Wood 2 Shimon Whiteson 1

Abstract
Many real-world sequential decision making prob-
lems are partially observable by nature, and the
environment model is typically unknown. Con-
sequently, there is great need for reinforcement
learning methods that can tackle such problems
given only a stream of incomplete and noisy ob-
servations. In this paper, we propose deep varia-
tional reinforcement learning (DVRL), which in-
troduces an inductive bias that allows an agent
to learn a generative model of the environment
and perform inference in that model to effectively
aggregate the available information. We develop
an n-step approximation to the evidence lower
bound (ELBO), allowing the model to be trained
jointly with the policy. This ensures that the la-
tent state representation is suitable for the control
task. In experiments on Mountain Hike and flick-
ering Atari we show that our method outperforms
previous approaches relying on recurrent neural
networks to encode the past.

1. Introduction
Most deep reinforcement learning (RL) methods assume
that the state of the environment is fully observable at every
time step. However, this assumption often does not hold in
reality, as occlusions and noisy sensors may limit the agent’s
perceptual abilities. Such problems can be formalised as
partially observable Markov decision processes (POMDPs)
(Astrom, 1965; Kaelbling et al., 1998). Because we usually
do not have access to the true generative model of our envi-
ronment, there is a need for reinforcement learning methods
that can tackle POMDPs when only a stream of observations
is given, without any prior knowledge of the latent state
space or the transition and observation functions.

POMDPs are notoriously hard to solve: since the current ob-

1University of Oxford, United Kingdom 2University of British
Columbia, Canada. Correspondence to: Maximilian Igl <maxim-
ilian.igl@eng.ox.ac.uk>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

(a) RNN-based approach. The RNN acts as an encoder for the
action-observation history, on which actor and critic are condi-
tioned. The networks are updated end-to-end with an RL loss.

(b) DVRL. The agent learns a generative model which is used to
update a belief distribution. Actor and critic now condition on the
belief. The generative model is learned to optimise both the ELBO
and the RL loss.

Figure 1: Comparison of RNN and DVRL encoders.

servation does in general not carry all relevant information
for choosing an action, information must be aggregated over
time and in general the entire history must be taken into
account.

This history can be encoded either by remembering features
of the past (McCallum, 1993) or by performing inference to
determine the distribution over possible latent states (Kael-
bling et al., 1998). However, the computation of this belief
state requires knowledge of the model.

Most previous work in deep learning relies on training a re-
current neural network (RNN) to summarize the past. Exam-
ples are the deep recurrent Q-network (DRQN) (Hausknecht
& Stone, 2015) and the action-specific deep recurrent Q-
network (ADRQN) (Zhu et al., 2017). Because these ap-
proaches are completely model-free, they place a heavy
burden on the RNN. Since performing inference implicitly
requires a known or learned model, they are likely to sum-
marise the history either by only remembering features of
the past or by computing simple heuristics instead of actual
belief states. This is often suboptimal in complex tasks.
Generalisation is also often easier over beliefs than over

ar
X

iv
:1

80
6.

02
42

6v
1

 [
cs

.L
G

]
 6

 J
un

 2
01

8

Probabilistic Graphical Models Applications 13 19. prosince 2024 33 / 113 - 245

Recurrent Latent State Update
resample particles

uk
t−1 ∼ Discrete

(
wk

t−1∑K
j=1 wk

t−1

)

model the transition

zk
t ∼ qϕ(zk

t |h
uk

t−1
t−1 , at−1, ot)

RNN latent state update

hk
t = ψRNN

θ (huk
t−1

t−1 , zk
t , at−1, ot)

the weight: probability ot in our model

wk
t =

pθ(zk
t |h

uk
t−1

t−1 , at−1)pθ(ot |h
uk

t−1
t−1 , zk

t , at−1)

qϕ(zk
t |h

uk
t−1

t−1 , at−1, ot)
.

Deep Variational Reinforcement Learning

Figure 2: Overview of DVRL. We do the following K times to compute our new belief b̂t: Sample an ancestor index ukt−1 based on the

previous weights w1:K
t−1 (Eq. 15). Pick the ancestor particle value h

ukt−1
t−1 and use it to sample a new stochastic latent state zkt from the

encoder qφ (Eq. 16). Compute hkt (Eq. 17) and wkt (Eq. 18). Aggregate all K values into the new belief b̂t and summarise them into a
vector representation ĥt using a second RNN. Actor and critic can now condition on ĥt and b̂t is used as input for the next timestep. Red
arrows denote random sampling, green arrows the aggregation of K values. Black solid arrows denote the passing of a value as argument
to a function and black dashed ones the evaluation of a value under a distribution. Boxes indicate neural networks. Distributions are
normal or Bernoulli distributions whose parameters are outputs of the neural network.

Additional encoders are used for at, ot and zt; see Appendix
A for details. Figure 2 summarises the entire update step.

3.4. Loss Function

To encourage learning a model, we include the term

LELBO
t (θ, φ) = − 1

nens

ne∑

envs

ns−1∑

i=0

log

(
1

K

K∑

k=1

wkt+i

)

(19)

in each gradient update every ns steps. This leads to the
overall loss:

LDVRL
t (ρ, η, θ, φ) = LAt (ρ, θ, φ) + λHLHt (ρ, θ, φ)+

λV LVt (η, θ, φ) + λELELBO
t (θ, φ) . (20)

Compared to (9), (10) and (11), the losses now also depend
on the encoder parameters φ and, for DVRL, model parame-
ters θ, since the policy and value function now condition on
the latent states instead of st. By introducing the n-step ap-
proximation LELBO

t , we can learn θ and φ to jointly optimise
the ELBO and the RL loss LAt + λHLHt + λV LVt .

If we assume that observations and actions are drawn from
the stationary state distribution induced by the policy πρ,
then LELBO

t is a stochastic approximation to the action-

conditioned ELBO:

1

T
Ep(τ) ELBOSMC(o≤T |a<T) =

1

T
Ep(τ)E

[
T∑

t=1

log

(
1

K

K∑

k=1

wkt

)∣∣∣∣∣ a≤T
]
, (21)

which is a conditional extension of (6) similar to the exten-
sion of VAEs by Sohn et al. (2015). The expectation over
p(τ) is approximated by sampling trajectories and the sum∑T
t=1 over the entire trajectory is approximated by a sum∑t+ns−1
i=t over only a part of it.

The importance of the resampling step (15) in allowing this
approximation becomes clear if we compare (21) with the
ELBO for the importance weighted autoencoder (IWAE) that
does not include resampling (Doucet & Johansen, 2009;
Burda et al., 2016):

ELBOIWAE(o≤T |a<T) = E

[
log

(
1

K

K∑

k=1

T∏

t=1

wkt

)∣∣∣∣∣ a≤T
]
.

(22)
Because this loss is not additive over time, we cannot ap-
proximate it with shorter parts of the trajectory.

4. Related Work
Most existing POMDP literature focusses on planning algo-
rithms, where the transition and observation functions, as
well as a representation of the latent state space, are known

Probabilistic Graphical Models Applications 13 19. prosince 2024 34 / 113 - 245

Recurrent Latent State Update
resample particles

uk
t−1 ∼ Discrete

(
wk

t−1∑K
j=1 wk

t−1

)

model the transition

zk
t ∼ qϕ(zk

t |h
uk

t−1
t−1 , at−1, ot)

RNN latent state update

hk
t = ψRNN

θ (huk
t−1

t−1 , zk
t , at−1, ot)

the weight: probability ot in our model

wk
t =

pθ(zk
t |h

uk
t−1

t−1 , at−1)pθ(ot |h
uk

t−1
t−1 , zk

t , at−1)

qϕ(zk
t |h

uk
t−1

t−1 , at−1, ot)
.

Deep Variational Reinforcement Learning

Figure 2: Overview of DVRL. We do the following K times to compute our new belief b̂t: Sample an ancestor index ukt−1 based on the

previous weights w1:K
t−1 (Eq. 15). Pick the ancestor particle value h

ukt−1
t−1 and use it to sample a new stochastic latent state zkt from the

encoder qφ (Eq. 16). Compute hkt (Eq. 17) and wkt (Eq. 18). Aggregate all K values into the new belief b̂t and summarise them into a
vector representation ĥt using a second RNN. Actor and critic can now condition on ĥt and b̂t is used as input for the next timestep. Red
arrows denote random sampling, green arrows the aggregation of K values. Black solid arrows denote the passing of a value as argument
to a function and black dashed ones the evaluation of a value under a distribution. Boxes indicate neural networks. Distributions are
normal or Bernoulli distributions whose parameters are outputs of the neural network.

Additional encoders are used for at, ot and zt; see Appendix
A for details. Figure 2 summarises the entire update step.

3.4. Loss Function

To encourage learning a model, we include the term

LELBO
t (θ, φ) = − 1

nens

ne∑

envs

ns−1∑

i=0

log

(
1

K

K∑

k=1

wkt+i

)

(19)

in each gradient update every ns steps. This leads to the
overall loss:

LDVRL
t (ρ, η, θ, φ) = LAt (ρ, θ, φ) + λHLHt (ρ, θ, φ)+

λV LVt (η, θ, φ) + λELELBO
t (θ, φ) . (20)

Compared to (9), (10) and (11), the losses now also depend
on the encoder parameters φ and, for DVRL, model parame-
ters θ, since the policy and value function now condition on
the latent states instead of st. By introducing the n-step ap-
proximation LELBO

t , we can learn θ and φ to jointly optimise
the ELBO and the RL loss LAt + λHLHt + λV LVt .

If we assume that observations and actions are drawn from
the stationary state distribution induced by the policy πρ,
then LELBO

t is a stochastic approximation to the action-

conditioned ELBO:

1

T
Ep(τ) ELBOSMC(o≤T |a<T) =

1

T
Ep(τ)E

[
T∑

t=1

log

(
1

K

K∑

k=1

wkt

)∣∣∣∣∣ a≤T
]
, (21)

which is a conditional extension of (6) similar to the exten-
sion of VAEs by Sohn et al. (2015). The expectation over
p(τ) is approximated by sampling trajectories and the sum∑T
t=1 over the entire trajectory is approximated by a sum∑t+ns−1
i=t over only a part of it.

The importance of the resampling step (15) in allowing this
approximation becomes clear if we compare (21) with the
ELBO for the importance weighted autoencoder (IWAE) that
does not include resampling (Doucet & Johansen, 2009;
Burda et al., 2016):

ELBOIWAE(o≤T |a<T) = E

[
log

(
1

K

K∑

k=1

T∏

t=1

wkt

)∣∣∣∣∣ a≤T
]
.

(22)
Because this loss is not additive over time, we cannot ap-
proximate it with shorter parts of the trajectory.

4. Related Work
Most existing POMDP literature focusses on planning algo-
rithms, where the transition and observation functions, as
well as a representation of the latent state space, are known

Probabilistic Graphical Models Applications 13 19. prosince 2024 34 / 113 - 245

Recurrent Latent State Update
resample particles

uk
t−1 ∼ Discrete

(
wk

t−1∑K
j=1 wk

t−1

)

model the transition

zk
t ∼ qϕ(zk

t |h
uk

t−1
t−1 , at−1, ot)

RNN latent state update

hk
t = ψRNN

θ (huk
t−1

t−1 , zk
t , at−1, ot)

the weight: probability ot in our model

wk
t =

pθ(zk
t |h

uk
t−1

t−1 , at−1)pθ(ot |h
uk

t−1
t−1 , zk

t , at−1)

qϕ(zk
t |h

uk
t−1

t−1 , at−1, ot)
.

Deep Variational Reinforcement Learning

Figure 2: Overview of DVRL. We do the following K times to compute our new belief b̂t: Sample an ancestor index ukt−1 based on the

previous weights w1:K
t−1 (Eq. 15). Pick the ancestor particle value h

ukt−1
t−1 and use it to sample a new stochastic latent state zkt from the

encoder qφ (Eq. 16). Compute hkt (Eq. 17) and wkt (Eq. 18). Aggregate all K values into the new belief b̂t and summarise them into a
vector representation ĥt using a second RNN. Actor and critic can now condition on ĥt and b̂t is used as input for the next timestep. Red
arrows denote random sampling, green arrows the aggregation of K values. Black solid arrows denote the passing of a value as argument
to a function and black dashed ones the evaluation of a value under a distribution. Boxes indicate neural networks. Distributions are
normal or Bernoulli distributions whose parameters are outputs of the neural network.

Additional encoders are used for at, ot and zt; see Appendix
A for details. Figure 2 summarises the entire update step.

3.4. Loss Function

To encourage learning a model, we include the term

LELBO
t (θ, φ) = − 1

nens

ne∑

envs

ns−1∑

i=0

log

(
1

K

K∑

k=1

wkt+i

)

(19)

in each gradient update every ns steps. This leads to the
overall loss:

LDVRL
t (ρ, η, θ, φ) = LAt (ρ, θ, φ) + λHLHt (ρ, θ, φ)+

λV LVt (η, θ, φ) + λELELBO
t (θ, φ) . (20)

Compared to (9), (10) and (11), the losses now also depend
on the encoder parameters φ and, for DVRL, model parame-
ters θ, since the policy and value function now condition on
the latent states instead of st. By introducing the n-step ap-
proximation LELBO

t , we can learn θ and φ to jointly optimise
the ELBO and the RL loss LAt + λHLHt + λV LVt .

If we assume that observations and actions are drawn from
the stationary state distribution induced by the policy πρ,
then LELBO

t is a stochastic approximation to the action-

conditioned ELBO:

1

T
Ep(τ) ELBOSMC(o≤T |a<T) =

1

T
Ep(τ)E

[
T∑

t=1

log

(
1

K

K∑

k=1

wkt

)∣∣∣∣∣ a≤T
]
, (21)

which is a conditional extension of (6) similar to the exten-
sion of VAEs by Sohn et al. (2015). The expectation over
p(τ) is approximated by sampling trajectories and the sum∑T
t=1 over the entire trajectory is approximated by a sum∑t+ns−1
i=t over only a part of it.

The importance of the resampling step (15) in allowing this
approximation becomes clear if we compare (21) with the
ELBO for the importance weighted autoencoder (IWAE) that
does not include resampling (Doucet & Johansen, 2009;
Burda et al., 2016):

ELBOIWAE(o≤T |a<T) = E

[
log

(
1

K

K∑

k=1

T∏

t=1

wkt

)∣∣∣∣∣ a≤T
]
.

(22)
Because this loss is not additive over time, we cannot ap-
proximate it with shorter parts of the trajectory.

4. Related Work
Most existing POMDP literature focusses on planning algo-
rithms, where the transition and observation functions, as
well as a representation of the latent state space, are known

Probabilistic Graphical Models Applications 13 19. prosince 2024 34 / 113 - 245

Recurrent Latent State Update
resample particles

uk
t−1 ∼ Discrete

(
wk

t−1∑K
j=1 wk

t−1

)

model the transition

zk
t ∼ qϕ(zk

t |h
uk

t−1
t−1 , at−1, ot)

RNN latent state update

hk
t = ψRNN

θ (huk
t−1

t−1 , zk
t , at−1, ot)

the weight: probability ot in our model

wk
t =

pθ(zk
t |h

uk
t−1

t−1 , at−1)pθ(ot |h
uk

t−1
t−1 , zk

t , at−1)

qϕ(zk
t |h

uk
t−1

t−1 , at−1, ot)
.

Deep Variational Reinforcement Learning

Figure 2: Overview of DVRL. We do the following K times to compute our new belief b̂t: Sample an ancestor index ukt−1 based on the

previous weights w1:K
t−1 (Eq. 15). Pick the ancestor particle value h

ukt−1
t−1 and use it to sample a new stochastic latent state zkt from the

encoder qφ (Eq. 16). Compute hkt (Eq. 17) and wkt (Eq. 18). Aggregate all K values into the new belief b̂t and summarise them into a
vector representation ĥt using a second RNN. Actor and critic can now condition on ĥt and b̂t is used as input for the next timestep. Red
arrows denote random sampling, green arrows the aggregation of K values. Black solid arrows denote the passing of a value as argument
to a function and black dashed ones the evaluation of a value under a distribution. Boxes indicate neural networks. Distributions are
normal or Bernoulli distributions whose parameters are outputs of the neural network.

Additional encoders are used for at, ot and zt; see Appendix
A for details. Figure 2 summarises the entire update step.

3.4. Loss Function

To encourage learning a model, we include the term

LELBO
t (θ, φ) = − 1

nens

ne∑

envs

ns−1∑

i=0

log

(
1

K

K∑

k=1

wkt+i

)

(19)

in each gradient update every ns steps. This leads to the
overall loss:

LDVRL
t (ρ, η, θ, φ) = LAt (ρ, θ, φ) + λHLHt (ρ, θ, φ)+

λV LVt (η, θ, φ) + λELELBO
t (θ, φ) . (20)

Compared to (9), (10) and (11), the losses now also depend
on the encoder parameters φ and, for DVRL, model parame-
ters θ, since the policy and value function now condition on
the latent states instead of st. By introducing the n-step ap-
proximation LELBO

t , we can learn θ and φ to jointly optimise
the ELBO and the RL loss LAt + λHLHt + λV LVt .

If we assume that observations and actions are drawn from
the stationary state distribution induced by the policy πρ,
then LELBO

t is a stochastic approximation to the action-

conditioned ELBO:

1

T
Ep(τ) ELBOSMC(o≤T |a<T) =

1

T
Ep(τ)E

[
T∑

t=1

log

(
1

K

K∑

k=1

wkt

)∣∣∣∣∣ a≤T
]
, (21)

which is a conditional extension of (6) similar to the exten-
sion of VAEs by Sohn et al. (2015). The expectation over
p(τ) is approximated by sampling trajectories and the sum∑T
t=1 over the entire trajectory is approximated by a sum∑t+ns−1
i=t over only a part of it.

The importance of the resampling step (15) in allowing this
approximation becomes clear if we compare (21) with the
ELBO for the importance weighted autoencoder (IWAE) that
does not include resampling (Doucet & Johansen, 2009;
Burda et al., 2016):

ELBOIWAE(o≤T |a<T) = E

[
log

(
1

K

K∑

k=1

T∏

t=1

wkt

)∣∣∣∣∣ a≤T
]
.

(22)
Because this loss is not additive over time, we cannot ap-
proximate it with shorter parts of the trajectory.

4. Related Work
Most existing POMDP literature focusses on planning algo-
rithms, where the transition and observation functions, as
well as a representation of the latent state space, are known

Probabilistic Graphical Models Applications 13 19. prosince 2024 34 / 113 - 245

Learning DVRL

Advantage function

At,i
η (at+1, st+1) =

(ns −i−1∑
j=0

γj rr+i+j + γns −iV old
η (st+ns)− Vη(st+i)

)

Loss function
policy ρ: LA

t (ρ) = − 1
nens

∑ne
envs

∑ns −1
i=0 logπρ(at+1|st+1)At,i,old

η (at+1, st+1)

value LV
t (η) = 1

nens

∑ne
envs

∑ns −1
i=0 At,i

η (at+1, st+1)2

exploration LH
t (η) = 1

nens

∑ne
envs

∑ns −1
i=0 H(πρ(.|st+1))

p, q, fit - ELBO LELBO
t (θ, ϕ) = − 1

nens

∑ne
envs

∑ns −1
i=0 log

(
1
K
∑K

i=1 wk
t+i

)

Probabilistic Graphical Models Applications 13 19. prosince 2024 35 / 113 - 245

Learning DVRL

Advantage function

At,i
η (at+1, st+1) =

(ns −i−1∑
j=0

γj rr+i+j + γns −iV old
η (st+ns)− Vη(st+i)

)

Loss function
policy ρ: LA

t (ρ) = − 1
nens

∑ne
envs

∑ns −1
i=0 logπρ(at+1|st+1)At,i,old

η (at+1, st+1)

value LV
t (η) = 1

nens

∑ne
envs

∑ns −1
i=0 At,i

η (at+1, st+1)2

exploration LH
t (η) = 1

nens

∑ne
envs

∑ns −1
i=0 H(πρ(.|st+1))

p, q, fit - ELBO LELBO
t (θ, ϕ) = − 1

nens

∑ne
envs

∑ns −1
i=0 log

(
1
K
∑K

i=1 wk
t+i

)

Probabilistic Graphical Models Applications 13 19. prosince 2024 35 / 113 - 245

Learning DVRL

Advantage function

At,i
η (at+1, st+1) =

(ns −i−1∑
j=0

γj rr+i+j + γns −iV old
η (st+ns)− Vη(st+i)

)

Loss function
policy ρ: LA

t (ρ) = − 1
nens

∑ne
envs

∑ns −1
i=0 logπρ(at+1|st+1)At,i,old

η (at+1, st+1)

value LV
t (η) = 1

nens

∑ne
envs

∑ns −1
i=0 At,i

η (at+1, st+1)2

exploration LH
t (η) = 1

nens

∑ne
envs

∑ns −1
i=0 H(πρ(.|st+1))

p, q, fit - ELBO LELBO
t (θ, ϕ) = − 1

nens

∑ne
envs

∑ns −1
i=0 log

(
1
K
∑K

i=1 wk
t+i

)

Probabilistic Graphical Models Applications 13 19. prosince 2024 35 / 113 - 245

Learning DVRL

Advantage function

At,i
η (at+1, st+1) =

(ns −i−1∑
j=0

γj rr+i+j + γns −iV old
η (st+ns)− Vη(st+i)

)

Loss function
policy ρ: LA

t (ρ) = − 1
nens

∑ne
envs

∑ns −1
i=0 logπρ(at+1|st+1)At,i,old

η (at+1, st+1)

value LV
t (η) = 1

nens

∑ne
envs

∑ns −1
i=0 At,i

η (at+1, st+1)2

exploration LH
t (η) = 1

nens

∑ne
envs

∑ns −1
i=0 H(πρ(.|st+1))

p, q, fit - ELBO LELBO
t (θ, ϕ) = − 1

nens

∑ne
envs

∑ns −1
i=0 log

(
1
K
∑K

i=1 wk
t+i

)

Probabilistic Graphical Models Applications 13 19. prosince 2024 35 / 113 - 245

Learning DVRL

Advantage function

At,i
η (at+1, st+1) =

(ns −i−1∑
j=0

γj rr+i+j + γns −iV old
η (st+ns)− Vη(st+i)

)

Loss function
policy ρ: LA

t (ρ) = − 1
nens

∑ne
envs

∑ns −1
i=0 logπρ(at+1|st+1)At,i,old

η (at+1, st+1)

value LV
t (η) = 1

nens

∑ne
envs

∑ns −1
i=0 At,i

η (at+1, st+1)2

exploration LH
t (η) = 1

nens

∑ne
envs

∑ns −1
i=0 H(πρ(.|st+1))

p, q, fit - ELBO LELBO
t (θ, ϕ) = − 1

nens

∑ne
envs

∑ns −1
i=0 log

(
1
K
∑K

i=1 wk
t+i

)

Probabilistic Graphical Models Applications 13 19. prosince 2024 35 / 113 - 245

Experiments

The average return is slightly better for
DVRL
One particle is not enough
Backpropagation is necessary, ELBO
improves the result
memory length improves the result
with minimal memory ng = 5 DVRL
works, RNN does not.

Deep Variational Reinforcement Learning

DVRL used 30 particles and we set ng = 25 for both RNN
and DVRL. The latent state h for the RNN-encoder archi-
tecture was of dimension 256 and 128 for both z and h for
DVRL. Lastly, λE = 1 and ns = 5 were used, together with
RMSProp with a learning rate of 10−4 for both approaches.

The main difficulty in Mountain Hike is to correctly esti-
mate the current position. Consequently, the achieved return
reflects the capability of the network to do so. DVRL out-
performs RNN based policies, especially for higher levels
of observation noise σo (Figure 4). In Figure 3 we compare
the different trajectories for RNN and DVRL encoders for
the same noise, i.e. εRNN

s,t = εDVRL
s,t and εRNN

o,t = εDVRL
o,t for all

t and σo = 3. DVRL is better able to follow the mountain
ridge, indicating that its inference based history aggregation
is superior to a largely memory/heuristics based one.

The example in Figure 3 is representative but selected for
clarity: The shown trajectories have ∆J(σo = 3) = 20.7
compared to an average value of ∆J̄(σo = 3) = 11.43 (see
Figure 4).

0.0 0.5 1.0 1.5 2.0 2.5

Frames ×107

−250

−200

−150

−100

R
et

u
rn
J̄

DVRL

RNN
σo = 0

σo = 1.5

σo = 3
0 1 2 3

σo

5

10

∆
J̄

Figure 4: Returns achieved in Mountain Hike. Solid lines: DVRL.
Dashed lines: RNN. Colour: Noise levels. Inset: Difference in
performance between RNN and DVRL for same level of noise:
∆J̄(σo) = J̄(DVRL, σo)− J̄(RNN, σo). DVRL achieves slighly
higher returns for the fully observable case and, crucially, its perfor-
mance deteriorates more slowly for increasing observation noise,
showing the advantage of DVRL’s inference computations in en-
coding the history in the presence of observation noise.

5.2. Atari

We chose flickering Atari as evaluation benchmark, since it
was previously used to evaluate the performance of ADRQN
(Zhu et al., 2017) and DRQN (Hausknecht & Stone, 2015).
Atari environments (Bellemare et al., 2013) provide a wide
set of challenging tasks with high dimensional observation
spaces. We test our algorithm on the same subset of games
on which DRQN and ADRQN were evaluated.

Partial observability is introduced by flickering, i.e., by a
probability of 0.5 of returning a blank screen instead of

the actual observation. Furthermore, only one frame is
used as the observation. This is in line with previous work
(Hausknecht & Stone, 2015). We use a frameskip of four3

and for the stochastic Atari environments there is a 0.25
chance of repeating the current action for a second time at
each transition.

DVRL used 15 particles and we set ng = 50 for both agents.
The dimension of h was 256 for both architectures, as was
the dimension of z. Larger latent states decreased the perfor-
mance for the RNN encoder. Lastly, λE = 0.1 and ns = 5
was used with a learning rate of 10−4 for RNN and 2 · 10−4

for DVRL, selected out of a set of 6 different rates based on
the results on ChopperCommand.

Table 1 shows the results for the more challenging stochastic,
flickering environments. Results for the deterministic envi-
ronments, including returns reported for DRQN and ADRQN,
can be found in Appendix A. DVRL significantly outper-
forms the RNN-based policy on five out of ten games and
narrowly underperforms significantly on only one. This
shows that DVRL is viable for high dimensional observation
spaces with complex environmental models.

Table 1: Returns on stochastic and flickering Atari environments,
averaged over 5 random seeds. Bold numbers indicate statistical
significance at the 5% level. Out of ten games, DVRL significantly
outperforms the baseline on five games and underperforms nar-
rowly on only one game. Comparisons against DRQN and ADRQN
on deterministic Atari environments are in Appendix A.

Env DVRL(±std) RNN(±std)

Pong 18.17(±2.67) 6.33(±3.03)
Chopper 6602(±449) 5150(±488)
MsPacman 2221(±199) 2312(±358)
Centipede 4240(±116) 4395(±224)
BeamRider 1663(±183) 1801(±65)
Frostbite 297(±7.85) 254(±0.45)
Bowling 29.53(±0.23) 30.04(±0.18)
IceHockey −4.88(±0.17) −7.10(±0.60)
DDunk −5.95(±1.25) −15.88(±0.34)
Asteroids 1539(±73) 1545(±51)

5.3. Ablation Studies

Using more than one particle is important to accurately ap-
proximate the belief distribution over the latent state (z, h).
Consequently, we expect that higher particle numbers pro-
vide better information to the policy, leading to higher re-
turns. Figure 5a shows that this is indeed the case. This is
an important result for our architecture, as it also implies
that the resampling step is necessary, as detailed in Section
3.4. Without resampling, we cannot approximate the ELBO

3A frameskip of one is used for Asteroids due to known ren-
dering issues with this environment

Deep Variational Reinforcement Learning

0 2 4

Frames ×107

2000

4000

6000

R
et

u
rn

1 Particle

3 Particles

10 Particles

30 Particles

(a) Influence of the particle number on per-
formance for DVRL. Only using one particle
is not sufficient to encode enough informa-
tion in the latent state.

0 2 4

Frames ×107

2000

4000

6000

R
et

u
rn

DVRL

No ELBO

No joint optim

(b) Performance of the full DVRL algorithm
compared to setting λE = 0 (”No ELBO”)
or not backpropagating the policy gradients
through the encoder (”No joint optim”).

0 2 4

Frames ×107

2000

4000

6000

8000

R
et

u
rn

DVRL

RNN

ng = 5

ng = 50

ng = 150

(c) Influence of the maximum backpropaga-
tion length ng on performance. Note that
RNN suffers most from very short lengths.
This is consistent with our conjecture that
RNN relies mostly on memory, not inference.

Figure 5: Ablation studies on flickering ChopperCommand (Atari).

on only ns observations.

Secondly, Figure 5b shows that the inclusion of LELBO

to encourage model learning is required for good perfor-
mance. Furthermore, not backpropagating the policy gradi-
ents through the encoder and only learning it based on the
ELBO (“No joint optim”) also deteriorates performance.

Lastly, we investigate the influence of the backpropaga-
tion length ng on both the RNN and DVRL based policies.
While increasing ng universally helps, the key insight here
is that a short length ng = 5 (for an average BPTT-length
of 2 timesteps) has a stronger negative impact on RNN than
on DVRL. This is consistent with our notion that RNN is
mainly performing memory based reasoning, for which
longer backpropagation-through-time is required: The be-
lief update (2) in DVRL is a one-step update from bt to bt+1,
without the need to condition on past actions and observa-
tions. The proposal distribution can benefit from extended
backpropagation lengths, but this is not necessary. Con-
sequently, this result supports our notion that DVRL relies
more on inference computations to update the latent state.

6. Conclusion
In this paper we proposed DVRL, a method for solving
POMDPs given only a stream of observations, without knowl-
edge of the latent state space or the transition and observa-
tion functions operating in that space. Our method leverages
a new ELBO-based auxiliary loss and incorporates an induc-
tive bias into the structure of the policy network, taking
advantage of our prior knowledge that an inference step is
required for an optimal solution.

We compared DVRL to an RNN-based architecture and found
that we consistently outperform it on a diverse set of tasks,

including a number of Atari games modified to have partial
observability and stochastic transitions.

We also performed several ablation studies showing the
necessity of using an ensemble of particles and of joint
optimisation of the ELBO and RL objective. Furthermore,
the results support our claim that the latent state in DVRL
approximates a belief distribution in a learned model.

Access to a belief distribution opens up several interesting
research directions. Investigating the role of better gen-
eralisation capabilities and the more powerful latent state
representation on the policy performance of DVRL can give
rise to further improvements. DVRL is also likely to benefit
from more powerful model architectures and a disentangled
latent state. Furthermore, uncertainty in the belief state and
access to a learned model can be used for curiosity driven
exploration in environments with sparse rewards.

Acknowledgements
We would like to thank Wendelin Boehmer and Greg Far-
quar for useful discussions and feedback. The NVIDIA
DGX-1 used for this research was donated by the NVIDIA
corporation. M. Igl is supported by the UK EPSRC CDT in
Autonomous Intelligent Machines and Systems. L. Zintgraf
is supported by the Microsoft Research PhD Scholarship
Program. T. A. Le is supported by EPSRC DTA and Google
(project code DF6700) studentships. F. Wood is supported
by DARPA PPAML through the U.S. AFRL under Coop-
erative Agreement FA8750-14-2-0006; Intel and DARPA
D3M, under Cooperative Agreement FA8750-17-2-0093.
S. Whiteson is supported by the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 re-
search and innovation programme (grant agreement number
637713).

Probabilistic Graphical Models Applications 13 19. prosince 2024 36 / 113 - 245

Experiments

The average return is slightly better for
DVRL
One particle is not enough
Backpropagation is necessary, ELBO
improves the result
memory length improves the result
with minimal memory ng = 5 DVRL
works, RNN does not.

Deep Variational Reinforcement Learning

DVRL used 30 particles and we set ng = 25 for both RNN
and DVRL. The latent state h for the RNN-encoder archi-
tecture was of dimension 256 and 128 for both z and h for
DVRL. Lastly, λE = 1 and ns = 5 were used, together with
RMSProp with a learning rate of 10−4 for both approaches.

The main difficulty in Mountain Hike is to correctly esti-
mate the current position. Consequently, the achieved return
reflects the capability of the network to do so. DVRL out-
performs RNN based policies, especially for higher levels
of observation noise σo (Figure 4). In Figure 3 we compare
the different trajectories for RNN and DVRL encoders for
the same noise, i.e. εRNN

s,t = εDVRL
s,t and εRNN

o,t = εDVRL
o,t for all

t and σo = 3. DVRL is better able to follow the mountain
ridge, indicating that its inference based history aggregation
is superior to a largely memory/heuristics based one.

The example in Figure 3 is representative but selected for
clarity: The shown trajectories have ∆J(σo = 3) = 20.7
compared to an average value of ∆J̄(σo = 3) = 11.43 (see
Figure 4).

0.0 0.5 1.0 1.5 2.0 2.5

Frames ×107

−250

−200

−150

−100

R
et

u
rn
J̄

DVRL

RNN
σo = 0

σo = 1.5

σo = 3
0 1 2 3

σo

5

10

∆
J̄

Figure 4: Returns achieved in Mountain Hike. Solid lines: DVRL.
Dashed lines: RNN. Colour: Noise levels. Inset: Difference in
performance between RNN and DVRL for same level of noise:
∆J̄(σo) = J̄(DVRL, σo)− J̄(RNN, σo). DVRL achieves slighly
higher returns for the fully observable case and, crucially, its perfor-
mance deteriorates more slowly for increasing observation noise,
showing the advantage of DVRL’s inference computations in en-
coding the history in the presence of observation noise.

5.2. Atari

We chose flickering Atari as evaluation benchmark, since it
was previously used to evaluate the performance of ADRQN
(Zhu et al., 2017) and DRQN (Hausknecht & Stone, 2015).
Atari environments (Bellemare et al., 2013) provide a wide
set of challenging tasks with high dimensional observation
spaces. We test our algorithm on the same subset of games
on which DRQN and ADRQN were evaluated.

Partial observability is introduced by flickering, i.e., by a
probability of 0.5 of returning a blank screen instead of

the actual observation. Furthermore, only one frame is
used as the observation. This is in line with previous work
(Hausknecht & Stone, 2015). We use a frameskip of four3

and for the stochastic Atari environments there is a 0.25
chance of repeating the current action for a second time at
each transition.

DVRL used 15 particles and we set ng = 50 for both agents.
The dimension of h was 256 for both architectures, as was
the dimension of z. Larger latent states decreased the perfor-
mance for the RNN encoder. Lastly, λE = 0.1 and ns = 5
was used with a learning rate of 10−4 for RNN and 2 · 10−4

for DVRL, selected out of a set of 6 different rates based on
the results on ChopperCommand.

Table 1 shows the results for the more challenging stochastic,
flickering environments. Results for the deterministic envi-
ronments, including returns reported for DRQN and ADRQN,
can be found in Appendix A. DVRL significantly outper-
forms the RNN-based policy on five out of ten games and
narrowly underperforms significantly on only one. This
shows that DVRL is viable for high dimensional observation
spaces with complex environmental models.

Table 1: Returns on stochastic and flickering Atari environments,
averaged over 5 random seeds. Bold numbers indicate statistical
significance at the 5% level. Out of ten games, DVRL significantly
outperforms the baseline on five games and underperforms nar-
rowly on only one game. Comparisons against DRQN and ADRQN
on deterministic Atari environments are in Appendix A.

Env DVRL(±std) RNN(±std)

Pong 18.17(±2.67) 6.33(±3.03)
Chopper 6602(±449) 5150(±488)
MsPacman 2221(±199) 2312(±358)
Centipede 4240(±116) 4395(±224)
BeamRider 1663(±183) 1801(±65)
Frostbite 297(±7.85) 254(±0.45)
Bowling 29.53(±0.23) 30.04(±0.18)
IceHockey −4.88(±0.17) −7.10(±0.60)
DDunk −5.95(±1.25) −15.88(±0.34)
Asteroids 1539(±73) 1545(±51)

5.3. Ablation Studies

Using more than one particle is important to accurately ap-
proximate the belief distribution over the latent state (z, h).
Consequently, we expect that higher particle numbers pro-
vide better information to the policy, leading to higher re-
turns. Figure 5a shows that this is indeed the case. This is
an important result for our architecture, as it also implies
that the resampling step is necessary, as detailed in Section
3.4. Without resampling, we cannot approximate the ELBO

3A frameskip of one is used for Asteroids due to known ren-
dering issues with this environment

Deep Variational Reinforcement Learning

0 2 4

Frames ×107

2000

4000

6000

R
et

u
rn

1 Particle

3 Particles

10 Particles

30 Particles

(a) Influence of the particle number on per-
formance for DVRL. Only using one particle
is not sufficient to encode enough informa-
tion in the latent state.

0 2 4

Frames ×107

2000

4000

6000

R
et

u
rn

DVRL

No ELBO

No joint optim

(b) Performance of the full DVRL algorithm
compared to setting λE = 0 (”No ELBO”)
or not backpropagating the policy gradients
through the encoder (”No joint optim”).

0 2 4

Frames ×107

2000

4000

6000

8000

R
et

u
rn

DVRL

RNN

ng = 5

ng = 50

ng = 150

(c) Influence of the maximum backpropaga-
tion length ng on performance. Note that
RNN suffers most from very short lengths.
This is consistent with our conjecture that
RNN relies mostly on memory, not inference.

Figure 5: Ablation studies on flickering ChopperCommand (Atari).

on only ns observations.

Secondly, Figure 5b shows that the inclusion of LELBO

to encourage model learning is required for good perfor-
mance. Furthermore, not backpropagating the policy gradi-
ents through the encoder and only learning it based on the
ELBO (“No joint optim”) also deteriorates performance.

Lastly, we investigate the influence of the backpropaga-
tion length ng on both the RNN and DVRL based policies.
While increasing ng universally helps, the key insight here
is that a short length ng = 5 (for an average BPTT-length
of 2 timesteps) has a stronger negative impact on RNN than
on DVRL. This is consistent with our notion that RNN is
mainly performing memory based reasoning, for which
longer backpropagation-through-time is required: The be-
lief update (2) in DVRL is a one-step update from bt to bt+1,
without the need to condition on past actions and observa-
tions. The proposal distribution can benefit from extended
backpropagation lengths, but this is not necessary. Con-
sequently, this result supports our notion that DVRL relies
more on inference computations to update the latent state.

6. Conclusion
In this paper we proposed DVRL, a method for solving
POMDPs given only a stream of observations, without knowl-
edge of the latent state space or the transition and observa-
tion functions operating in that space. Our method leverages
a new ELBO-based auxiliary loss and incorporates an induc-
tive bias into the structure of the policy network, taking
advantage of our prior knowledge that an inference step is
required for an optimal solution.

We compared DVRL to an RNN-based architecture and found
that we consistently outperform it on a diverse set of tasks,

including a number of Atari games modified to have partial
observability and stochastic transitions.

We also performed several ablation studies showing the
necessity of using an ensemble of particles and of joint
optimisation of the ELBO and RL objective. Furthermore,
the results support our claim that the latent state in DVRL
approximates a belief distribution in a learned model.

Access to a belief distribution opens up several interesting
research directions. Investigating the role of better gen-
eralisation capabilities and the more powerful latent state
representation on the policy performance of DVRL can give
rise to further improvements. DVRL is also likely to benefit
from more powerful model architectures and a disentangled
latent state. Furthermore, uncertainty in the belief state and
access to a learned model can be used for curiosity driven
exploration in environments with sparse rewards.

Acknowledgements
We would like to thank Wendelin Boehmer and Greg Far-
quar for useful discussions and feedback. The NVIDIA
DGX-1 used for this research was donated by the NVIDIA
corporation. M. Igl is supported by the UK EPSRC CDT in
Autonomous Intelligent Machines and Systems. L. Zintgraf
is supported by the Microsoft Research PhD Scholarship
Program. T. A. Le is supported by EPSRC DTA and Google
(project code DF6700) studentships. F. Wood is supported
by DARPA PPAML through the U.S. AFRL under Coop-
erative Agreement FA8750-14-2-0006; Intel and DARPA
D3M, under Cooperative Agreement FA8750-17-2-0093.
S. Whiteson is supported by the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 re-
search and innovation programme (grant agreement number
637713).

Probabilistic Graphical Models Applications 13 19. prosince 2024 36 / 113 - 245

Experiments

The average return is slightly better for
DVRL
One particle is not enough
Backpropagation is necessary, ELBO
improves the result
memory length improves the result
with minimal memory ng = 5 DVRL
works, RNN does not.

Deep Variational Reinforcement Learning

DVRL used 30 particles and we set ng = 25 for both RNN
and DVRL. The latent state h for the RNN-encoder archi-
tecture was of dimension 256 and 128 for both z and h for
DVRL. Lastly, λE = 1 and ns = 5 were used, together with
RMSProp with a learning rate of 10−4 for both approaches.

The main difficulty in Mountain Hike is to correctly esti-
mate the current position. Consequently, the achieved return
reflects the capability of the network to do so. DVRL out-
performs RNN based policies, especially for higher levels
of observation noise σo (Figure 4). In Figure 3 we compare
the different trajectories for RNN and DVRL encoders for
the same noise, i.e. εRNN

s,t = εDVRL
s,t and εRNN

o,t = εDVRL
o,t for all

t and σo = 3. DVRL is better able to follow the mountain
ridge, indicating that its inference based history aggregation
is superior to a largely memory/heuristics based one.

The example in Figure 3 is representative but selected for
clarity: The shown trajectories have ∆J(σo = 3) = 20.7
compared to an average value of ∆J̄(σo = 3) = 11.43 (see
Figure 4).

0.0 0.5 1.0 1.5 2.0 2.5

Frames ×107

−250

−200

−150

−100

R
et

u
rn
J̄

DVRL

RNN
σo = 0

σo = 1.5

σo = 3
0 1 2 3

σo

5

10

∆
J̄

Figure 4: Returns achieved in Mountain Hike. Solid lines: DVRL.
Dashed lines: RNN. Colour: Noise levels. Inset: Difference in
performance between RNN and DVRL for same level of noise:
∆J̄(σo) = J̄(DVRL, σo)− J̄(RNN, σo). DVRL achieves slighly
higher returns for the fully observable case and, crucially, its perfor-
mance deteriorates more slowly for increasing observation noise,
showing the advantage of DVRL’s inference computations in en-
coding the history in the presence of observation noise.

5.2. Atari

We chose flickering Atari as evaluation benchmark, since it
was previously used to evaluate the performance of ADRQN
(Zhu et al., 2017) and DRQN (Hausknecht & Stone, 2015).
Atari environments (Bellemare et al., 2013) provide a wide
set of challenging tasks with high dimensional observation
spaces. We test our algorithm on the same subset of games
on which DRQN and ADRQN were evaluated.

Partial observability is introduced by flickering, i.e., by a
probability of 0.5 of returning a blank screen instead of

the actual observation. Furthermore, only one frame is
used as the observation. This is in line with previous work
(Hausknecht & Stone, 2015). We use a frameskip of four3

and for the stochastic Atari environments there is a 0.25
chance of repeating the current action for a second time at
each transition.

DVRL used 15 particles and we set ng = 50 for both agents.
The dimension of h was 256 for both architectures, as was
the dimension of z. Larger latent states decreased the perfor-
mance for the RNN encoder. Lastly, λE = 0.1 and ns = 5
was used with a learning rate of 10−4 for RNN and 2 · 10−4

for DVRL, selected out of a set of 6 different rates based on
the results on ChopperCommand.

Table 1 shows the results for the more challenging stochastic,
flickering environments. Results for the deterministic envi-
ronments, including returns reported for DRQN and ADRQN,
can be found in Appendix A. DVRL significantly outper-
forms the RNN-based policy on five out of ten games and
narrowly underperforms significantly on only one. This
shows that DVRL is viable for high dimensional observation
spaces with complex environmental models.

Table 1: Returns on stochastic and flickering Atari environments,
averaged over 5 random seeds. Bold numbers indicate statistical
significance at the 5% level. Out of ten games, DVRL significantly
outperforms the baseline on five games and underperforms nar-
rowly on only one game. Comparisons against DRQN and ADRQN
on deterministic Atari environments are in Appendix A.

Env DVRL(±std) RNN(±std)

Pong 18.17(±2.67) 6.33(±3.03)
Chopper 6602(±449) 5150(±488)
MsPacman 2221(±199) 2312(±358)
Centipede 4240(±116) 4395(±224)
BeamRider 1663(±183) 1801(±65)
Frostbite 297(±7.85) 254(±0.45)
Bowling 29.53(±0.23) 30.04(±0.18)
IceHockey −4.88(±0.17) −7.10(±0.60)
DDunk −5.95(±1.25) −15.88(±0.34)
Asteroids 1539(±73) 1545(±51)

5.3. Ablation Studies

Using more than one particle is important to accurately ap-
proximate the belief distribution over the latent state (z, h).
Consequently, we expect that higher particle numbers pro-
vide better information to the policy, leading to higher re-
turns. Figure 5a shows that this is indeed the case. This is
an important result for our architecture, as it also implies
that the resampling step is necessary, as detailed in Section
3.4. Without resampling, we cannot approximate the ELBO

3A frameskip of one is used for Asteroids due to known ren-
dering issues with this environment

Deep Variational Reinforcement Learning

0 2 4

Frames ×107

2000

4000

6000

R
et

u
rn

1 Particle

3 Particles

10 Particles

30 Particles

(a) Influence of the particle number on per-
formance for DVRL. Only using one particle
is not sufficient to encode enough informa-
tion in the latent state.

0 2 4

Frames ×107

2000

4000

6000

R
et

u
rn

DVRL

No ELBO

No joint optim

(b) Performance of the full DVRL algorithm
compared to setting λE = 0 (”No ELBO”)
or not backpropagating the policy gradients
through the encoder (”No joint optim”).

0 2 4

Frames ×107

2000

4000

6000

8000

R
et

u
rn

DVRL

RNN

ng = 5

ng = 50

ng = 150

(c) Influence of the maximum backpropaga-
tion length ng on performance. Note that
RNN suffers most from very short lengths.
This is consistent with our conjecture that
RNN relies mostly on memory, not inference.

Figure 5: Ablation studies on flickering ChopperCommand (Atari).

on only ns observations.

Secondly, Figure 5b shows that the inclusion of LELBO

to encourage model learning is required for good perfor-
mance. Furthermore, not backpropagating the policy gradi-
ents through the encoder and only learning it based on the
ELBO (“No joint optim”) also deteriorates performance.

Lastly, we investigate the influence of the backpropaga-
tion length ng on both the RNN and DVRL based policies.
While increasing ng universally helps, the key insight here
is that a short length ng = 5 (for an average BPTT-length
of 2 timesteps) has a stronger negative impact on RNN than
on DVRL. This is consistent with our notion that RNN is
mainly performing memory based reasoning, for which
longer backpropagation-through-time is required: The be-
lief update (2) in DVRL is a one-step update from bt to bt+1,
without the need to condition on past actions and observa-
tions. The proposal distribution can benefit from extended
backpropagation lengths, but this is not necessary. Con-
sequently, this result supports our notion that DVRL relies
more on inference computations to update the latent state.

6. Conclusion
In this paper we proposed DVRL, a method for solving
POMDPs given only a stream of observations, without knowl-
edge of the latent state space or the transition and observa-
tion functions operating in that space. Our method leverages
a new ELBO-based auxiliary loss and incorporates an induc-
tive bias into the structure of the policy network, taking
advantage of our prior knowledge that an inference step is
required for an optimal solution.

We compared DVRL to an RNN-based architecture and found
that we consistently outperform it on a diverse set of tasks,

including a number of Atari games modified to have partial
observability and stochastic transitions.

We also performed several ablation studies showing the
necessity of using an ensemble of particles and of joint
optimisation of the ELBO and RL objective. Furthermore,
the results support our claim that the latent state in DVRL
approximates a belief distribution in a learned model.

Access to a belief distribution opens up several interesting
research directions. Investigating the role of better gen-
eralisation capabilities and the more powerful latent state
representation on the policy performance of DVRL can give
rise to further improvements. DVRL is also likely to benefit
from more powerful model architectures and a disentangled
latent state. Furthermore, uncertainty in the belief state and
access to a learned model can be used for curiosity driven
exploration in environments with sparse rewards.

Acknowledgements
We would like to thank Wendelin Boehmer and Greg Far-
quar for useful discussions and feedback. The NVIDIA
DGX-1 used for this research was donated by the NVIDIA
corporation. M. Igl is supported by the UK EPSRC CDT in
Autonomous Intelligent Machines and Systems. L. Zintgraf
is supported by the Microsoft Research PhD Scholarship
Program. T. A. Le is supported by EPSRC DTA and Google
(project code DF6700) studentships. F. Wood is supported
by DARPA PPAML through the U.S. AFRL under Coop-
erative Agreement FA8750-14-2-0006; Intel and DARPA
D3M, under Cooperative Agreement FA8750-17-2-0093.
S. Whiteson is supported by the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 re-
search and innovation programme (grant agreement number
637713).

Probabilistic Graphical Models Applications 13 19. prosince 2024 36 / 113 - 245

Experiments

The average return is slightly better for
DVRL
One particle is not enough
Backpropagation is necessary, ELBO
improves the result
memory length improves the result
with minimal memory ng = 5 DVRL
works, RNN does not.

Deep Variational Reinforcement Learning

DVRL used 30 particles and we set ng = 25 for both RNN
and DVRL. The latent state h for the RNN-encoder archi-
tecture was of dimension 256 and 128 for both z and h for
DVRL. Lastly, λE = 1 and ns = 5 were used, together with
RMSProp with a learning rate of 10−4 for both approaches.

The main difficulty in Mountain Hike is to correctly esti-
mate the current position. Consequently, the achieved return
reflects the capability of the network to do so. DVRL out-
performs RNN based policies, especially for higher levels
of observation noise σo (Figure 4). In Figure 3 we compare
the different trajectories for RNN and DVRL encoders for
the same noise, i.e. εRNN

s,t = εDVRL
s,t and εRNN

o,t = εDVRL
o,t for all

t and σo = 3. DVRL is better able to follow the mountain
ridge, indicating that its inference based history aggregation
is superior to a largely memory/heuristics based one.

The example in Figure 3 is representative but selected for
clarity: The shown trajectories have ∆J(σo = 3) = 20.7
compared to an average value of ∆J̄(σo = 3) = 11.43 (see
Figure 4).

0.0 0.5 1.0 1.5 2.0 2.5

Frames ×107

−250

−200

−150

−100

R
et

u
rn
J̄

DVRL

RNN
σo = 0

σo = 1.5

σo = 3
0 1 2 3

σo

5

10

∆
J̄

Figure 4: Returns achieved in Mountain Hike. Solid lines: DVRL.
Dashed lines: RNN. Colour: Noise levels. Inset: Difference in
performance between RNN and DVRL for same level of noise:
∆J̄(σo) = J̄(DVRL, σo)− J̄(RNN, σo). DVRL achieves slighly
higher returns for the fully observable case and, crucially, its perfor-
mance deteriorates more slowly for increasing observation noise,
showing the advantage of DVRL’s inference computations in en-
coding the history in the presence of observation noise.

5.2. Atari

We chose flickering Atari as evaluation benchmark, since it
was previously used to evaluate the performance of ADRQN
(Zhu et al., 2017) and DRQN (Hausknecht & Stone, 2015).
Atari environments (Bellemare et al., 2013) provide a wide
set of challenging tasks with high dimensional observation
spaces. We test our algorithm on the same subset of games
on which DRQN and ADRQN were evaluated.

Partial observability is introduced by flickering, i.e., by a
probability of 0.5 of returning a blank screen instead of

the actual observation. Furthermore, only one frame is
used as the observation. This is in line with previous work
(Hausknecht & Stone, 2015). We use a frameskip of four3

and for the stochastic Atari environments there is a 0.25
chance of repeating the current action for a second time at
each transition.

DVRL used 15 particles and we set ng = 50 for both agents.
The dimension of h was 256 for both architectures, as was
the dimension of z. Larger latent states decreased the perfor-
mance for the RNN encoder. Lastly, λE = 0.1 and ns = 5
was used with a learning rate of 10−4 for RNN and 2 · 10−4

for DVRL, selected out of a set of 6 different rates based on
the results on ChopperCommand.

Table 1 shows the results for the more challenging stochastic,
flickering environments. Results for the deterministic envi-
ronments, including returns reported for DRQN and ADRQN,
can be found in Appendix A. DVRL significantly outper-
forms the RNN-based policy on five out of ten games and
narrowly underperforms significantly on only one. This
shows that DVRL is viable for high dimensional observation
spaces with complex environmental models.

Table 1: Returns on stochastic and flickering Atari environments,
averaged over 5 random seeds. Bold numbers indicate statistical
significance at the 5% level. Out of ten games, DVRL significantly
outperforms the baseline on five games and underperforms nar-
rowly on only one game. Comparisons against DRQN and ADRQN
on deterministic Atari environments are in Appendix A.

Env DVRL(±std) RNN(±std)

Pong 18.17(±2.67) 6.33(±3.03)
Chopper 6602(±449) 5150(±488)
MsPacman 2221(±199) 2312(±358)
Centipede 4240(±116) 4395(±224)
BeamRider 1663(±183) 1801(±65)
Frostbite 297(±7.85) 254(±0.45)
Bowling 29.53(±0.23) 30.04(±0.18)
IceHockey −4.88(±0.17) −7.10(±0.60)
DDunk −5.95(±1.25) −15.88(±0.34)
Asteroids 1539(±73) 1545(±51)

5.3. Ablation Studies

Using more than one particle is important to accurately ap-
proximate the belief distribution over the latent state (z, h).
Consequently, we expect that higher particle numbers pro-
vide better information to the policy, leading to higher re-
turns. Figure 5a shows that this is indeed the case. This is
an important result for our architecture, as it also implies
that the resampling step is necessary, as detailed in Section
3.4. Without resampling, we cannot approximate the ELBO

3A frameskip of one is used for Asteroids due to known ren-
dering issues with this environment

Deep Variational Reinforcement Learning

0 2 4

Frames ×107

2000

4000

6000

R
et

u
rn

1 Particle

3 Particles

10 Particles

30 Particles

(a) Influence of the particle number on per-
formance for DVRL. Only using one particle
is not sufficient to encode enough informa-
tion in the latent state.

0 2 4

Frames ×107

2000

4000

6000

R
et

u
rn

DVRL

No ELBO

No joint optim

(b) Performance of the full DVRL algorithm
compared to setting λE = 0 (”No ELBO”)
or not backpropagating the policy gradients
through the encoder (”No joint optim”).

0 2 4

Frames ×107

2000

4000

6000

8000

R
et

u
rn

DVRL

RNN

ng = 5

ng = 50

ng = 150

(c) Influence of the maximum backpropaga-
tion length ng on performance. Note that
RNN suffers most from very short lengths.
This is consistent with our conjecture that
RNN relies mostly on memory, not inference.

Figure 5: Ablation studies on flickering ChopperCommand (Atari).

on only ns observations.

Secondly, Figure 5b shows that the inclusion of LELBO

to encourage model learning is required for good perfor-
mance. Furthermore, not backpropagating the policy gradi-
ents through the encoder and only learning it based on the
ELBO (“No joint optim”) also deteriorates performance.

Lastly, we investigate the influence of the backpropaga-
tion length ng on both the RNN and DVRL based policies.
While increasing ng universally helps, the key insight here
is that a short length ng = 5 (for an average BPTT-length
of 2 timesteps) has a stronger negative impact on RNN than
on DVRL. This is consistent with our notion that RNN is
mainly performing memory based reasoning, for which
longer backpropagation-through-time is required: The be-
lief update (2) in DVRL is a one-step update from bt to bt+1,
without the need to condition on past actions and observa-
tions. The proposal distribution can benefit from extended
backpropagation lengths, but this is not necessary. Con-
sequently, this result supports our notion that DVRL relies
more on inference computations to update the latent state.

6. Conclusion
In this paper we proposed DVRL, a method for solving
POMDPs given only a stream of observations, without knowl-
edge of the latent state space or the transition and observa-
tion functions operating in that space. Our method leverages
a new ELBO-based auxiliary loss and incorporates an induc-
tive bias into the structure of the policy network, taking
advantage of our prior knowledge that an inference step is
required for an optimal solution.

We compared DVRL to an RNN-based architecture and found
that we consistently outperform it on a diverse set of tasks,

including a number of Atari games modified to have partial
observability and stochastic transitions.

We also performed several ablation studies showing the
necessity of using an ensemble of particles and of joint
optimisation of the ELBO and RL objective. Furthermore,
the results support our claim that the latent state in DVRL
approximates a belief distribution in a learned model.

Access to a belief distribution opens up several interesting
research directions. Investigating the role of better gen-
eralisation capabilities and the more powerful latent state
representation on the policy performance of DVRL can give
rise to further improvements. DVRL is also likely to benefit
from more powerful model architectures and a disentangled
latent state. Furthermore, uncertainty in the belief state and
access to a learned model can be used for curiosity driven
exploration in environments with sparse rewards.

Acknowledgements
We would like to thank Wendelin Boehmer and Greg Far-
quar for useful discussions and feedback. The NVIDIA
DGX-1 used for this research was donated by the NVIDIA
corporation. M. Igl is supported by the UK EPSRC CDT in
Autonomous Intelligent Machines and Systems. L. Zintgraf
is supported by the Microsoft Research PhD Scholarship
Program. T. A. Le is supported by EPSRC DTA and Google
(project code DF6700) studentships. F. Wood is supported
by DARPA PPAML through the U.S. AFRL under Coop-
erative Agreement FA8750-14-2-0006; Intel and DARPA
D3M, under Cooperative Agreement FA8750-17-2-0093.
S. Whiteson is supported by the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 re-
search and innovation programme (grant agreement number
637713).

Probabilistic Graphical Models Applications 13 19. prosince 2024 36 / 113 - 245

Experiments

The average return is slightly better for
DVRL
One particle is not enough
Backpropagation is necessary, ELBO
improves the result
memory length improves the result
with minimal memory ng = 5 DVRL
works, RNN does not.

Deep Variational Reinforcement Learning

DVRL used 30 particles and we set ng = 25 for both RNN
and DVRL. The latent state h for the RNN-encoder archi-
tecture was of dimension 256 and 128 for both z and h for
DVRL. Lastly, λE = 1 and ns = 5 were used, together with
RMSProp with a learning rate of 10−4 for both approaches.

The main difficulty in Mountain Hike is to correctly esti-
mate the current position. Consequently, the achieved return
reflects the capability of the network to do so. DVRL out-
performs RNN based policies, especially for higher levels
of observation noise σo (Figure 4). In Figure 3 we compare
the different trajectories for RNN and DVRL encoders for
the same noise, i.e. εRNN

s,t = εDVRL
s,t and εRNN

o,t = εDVRL
o,t for all

t and σo = 3. DVRL is better able to follow the mountain
ridge, indicating that its inference based history aggregation
is superior to a largely memory/heuristics based one.

The example in Figure 3 is representative but selected for
clarity: The shown trajectories have ∆J(σo = 3) = 20.7
compared to an average value of ∆J̄(σo = 3) = 11.43 (see
Figure 4).

0.0 0.5 1.0 1.5 2.0 2.5

Frames ×107

−250

−200

−150

−100

R
et

u
rn
J̄

DVRL

RNN
σo = 0

σo = 1.5

σo = 3
0 1 2 3

σo

5

10

∆
J̄

Figure 4: Returns achieved in Mountain Hike. Solid lines: DVRL.
Dashed lines: RNN. Colour: Noise levels. Inset: Difference in
performance between RNN and DVRL for same level of noise:
∆J̄(σo) = J̄(DVRL, σo)− J̄(RNN, σo). DVRL achieves slighly
higher returns for the fully observable case and, crucially, its perfor-
mance deteriorates more slowly for increasing observation noise,
showing the advantage of DVRL’s inference computations in en-
coding the history in the presence of observation noise.

5.2. Atari

We chose flickering Atari as evaluation benchmark, since it
was previously used to evaluate the performance of ADRQN
(Zhu et al., 2017) and DRQN (Hausknecht & Stone, 2015).
Atari environments (Bellemare et al., 2013) provide a wide
set of challenging tasks with high dimensional observation
spaces. We test our algorithm on the same subset of games
on which DRQN and ADRQN were evaluated.

Partial observability is introduced by flickering, i.e., by a
probability of 0.5 of returning a blank screen instead of

the actual observation. Furthermore, only one frame is
used as the observation. This is in line with previous work
(Hausknecht & Stone, 2015). We use a frameskip of four3

and for the stochastic Atari environments there is a 0.25
chance of repeating the current action for a second time at
each transition.

DVRL used 15 particles and we set ng = 50 for both agents.
The dimension of h was 256 for both architectures, as was
the dimension of z. Larger latent states decreased the perfor-
mance for the RNN encoder. Lastly, λE = 0.1 and ns = 5
was used with a learning rate of 10−4 for RNN and 2 · 10−4

for DVRL, selected out of a set of 6 different rates based on
the results on ChopperCommand.

Table 1 shows the results for the more challenging stochastic,
flickering environments. Results for the deterministic envi-
ronments, including returns reported for DRQN and ADRQN,
can be found in Appendix A. DVRL significantly outper-
forms the RNN-based policy on five out of ten games and
narrowly underperforms significantly on only one. This
shows that DVRL is viable for high dimensional observation
spaces with complex environmental models.

Table 1: Returns on stochastic and flickering Atari environments,
averaged over 5 random seeds. Bold numbers indicate statistical
significance at the 5% level. Out of ten games, DVRL significantly
outperforms the baseline on five games and underperforms nar-
rowly on only one game. Comparisons against DRQN and ADRQN
on deterministic Atari environments are in Appendix A.

Env DVRL(±std) RNN(±std)

Pong 18.17(±2.67) 6.33(±3.03)
Chopper 6602(±449) 5150(±488)
MsPacman 2221(±199) 2312(±358)
Centipede 4240(±116) 4395(±224)
BeamRider 1663(±183) 1801(±65)
Frostbite 297(±7.85) 254(±0.45)
Bowling 29.53(±0.23) 30.04(±0.18)
IceHockey −4.88(±0.17) −7.10(±0.60)
DDunk −5.95(±1.25) −15.88(±0.34)
Asteroids 1539(±73) 1545(±51)

5.3. Ablation Studies

Using more than one particle is important to accurately ap-
proximate the belief distribution over the latent state (z, h).
Consequently, we expect that higher particle numbers pro-
vide better information to the policy, leading to higher re-
turns. Figure 5a shows that this is indeed the case. This is
an important result for our architecture, as it also implies
that the resampling step is necessary, as detailed in Section
3.4. Without resampling, we cannot approximate the ELBO

3A frameskip of one is used for Asteroids due to known ren-
dering issues with this environment

Deep Variational Reinforcement Learning

0 2 4

Frames ×107

2000

4000

6000

R
et

u
rn

1 Particle

3 Particles

10 Particles

30 Particles

(a) Influence of the particle number on per-
formance for DVRL. Only using one particle
is not sufficient to encode enough informa-
tion in the latent state.

0 2 4

Frames ×107

2000

4000

6000

R
et

u
rn

DVRL

No ELBO

No joint optim

(b) Performance of the full DVRL algorithm
compared to setting λE = 0 (”No ELBO”)
or not backpropagating the policy gradients
through the encoder (”No joint optim”).

0 2 4

Frames ×107

2000

4000

6000

8000

R
et

u
rn

DVRL

RNN

ng = 5

ng = 50

ng = 150

(c) Influence of the maximum backpropaga-
tion length ng on performance. Note that
RNN suffers most from very short lengths.
This is consistent with our conjecture that
RNN relies mostly on memory, not inference.

Figure 5: Ablation studies on flickering ChopperCommand (Atari).

on only ns observations.

Secondly, Figure 5b shows that the inclusion of LELBO

to encourage model learning is required for good perfor-
mance. Furthermore, not backpropagating the policy gradi-
ents through the encoder and only learning it based on the
ELBO (“No joint optim”) also deteriorates performance.

Lastly, we investigate the influence of the backpropaga-
tion length ng on both the RNN and DVRL based policies.
While increasing ng universally helps, the key insight here
is that a short length ng = 5 (for an average BPTT-length
of 2 timesteps) has a stronger negative impact on RNN than
on DVRL. This is consistent with our notion that RNN is
mainly performing memory based reasoning, for which
longer backpropagation-through-time is required: The be-
lief update (2) in DVRL is a one-step update from bt to bt+1,
without the need to condition on past actions and observa-
tions. The proposal distribution can benefit from extended
backpropagation lengths, but this is not necessary. Con-
sequently, this result supports our notion that DVRL relies
more on inference computations to update the latent state.

6. Conclusion
In this paper we proposed DVRL, a method for solving
POMDPs given only a stream of observations, without knowl-
edge of the latent state space or the transition and observa-
tion functions operating in that space. Our method leverages
a new ELBO-based auxiliary loss and incorporates an induc-
tive bias into the structure of the policy network, taking
advantage of our prior knowledge that an inference step is
required for an optimal solution.

We compared DVRL to an RNN-based architecture and found
that we consistently outperform it on a diverse set of tasks,

including a number of Atari games modified to have partial
observability and stochastic transitions.

We also performed several ablation studies showing the
necessity of using an ensemble of particles and of joint
optimisation of the ELBO and RL objective. Furthermore,
the results support our claim that the latent state in DVRL
approximates a belief distribution in a learned model.

Access to a belief distribution opens up several interesting
research directions. Investigating the role of better gen-
eralisation capabilities and the more powerful latent state
representation on the policy performance of DVRL can give
rise to further improvements. DVRL is also likely to benefit
from more powerful model architectures and a disentangled
latent state. Furthermore, uncertainty in the belief state and
access to a learned model can be used for curiosity driven
exploration in environments with sparse rewards.

Acknowledgements
We would like to thank Wendelin Boehmer and Greg Far-
quar for useful discussions and feedback. The NVIDIA
DGX-1 used for this research was donated by the NVIDIA
corporation. M. Igl is supported by the UK EPSRC CDT in
Autonomous Intelligent Machines and Systems. L. Zintgraf
is supported by the Microsoft Research PhD Scholarship
Program. T. A. Le is supported by EPSRC DTA and Google
(project code DF6700) studentships. F. Wood is supported
by DARPA PPAML through the U.S. AFRL under Coop-
erative Agreement FA8750-14-2-0006; Intel and DARPA
D3M, under Cooperative Agreement FA8750-17-2-0093.
S. Whiteson is supported by the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 re-
search and innovation programme (grant agreement number
637713).

Probabilistic Graphical Models Applications 13 19. prosince 2024 36 / 113 - 245

Next time

Bring you computer (if possible)
Check moodle for libraries to install

Python 3
pgmpy, numpy, matplotlib
networkx
(graphviz, sklearn)
may be others.

Have a nice holiday.

Probabilistic Graphical Models Applications 13 19. prosince 2024 37 / 113 - 245

Next time

Bring you computer (if possible)
Check moodle for libraries to install

Python 3
pgmpy, numpy, matplotlib
networkx
(graphviz, sklearn)
may be others.

Have a nice holiday.

Probabilistic Graphical Models Applications 13 19. prosince 2024 37 / 113 - 245

POMDP Applications

Karkus, Hsu, Lee: QMDP-Net: Deep Learning for Planning under Partial
Observability
https://proceedings.neurips.cc/paper/2017/file/e9412ee564384b987d086df32d4ce6b7-
Paper.pdf
Eric Mueller and Mykel J. Kochenderfer :Multi-Rotor Aircraft Collision
Avoidance using Partially Observable Markov Decision Processes,
American Institute of Aeronautics and Astronautics

Probabilistic Graphical Models Applications 13 19. prosince 2024 38 / 113 - 245

POMDP Applications

Karkus, Hsu, Lee: QMDP-Net: Deep Learning for Planning under Partial
Observability
https://proceedings.neurips.cc/paper/2017/file/e9412ee564384b987d086df32d4ce6b7-
Paper.pdf
Eric Mueller and Mykel J. Kochenderfer :Multi-Rotor Aircraft Collision
Avoidance using Partially Observable Markov Decision Processes,
American Institute of Aeronautics and Astronautics

Probabilistic Graphical Models Applications 13 19. prosince 2024 38 / 113 - 245

POMDP Aircraft Collision Avoidance
the algorithms designed for
fixed-wing aircraft analyze

turns
vertical meneuvers

multirotor aircraft (drones) and
helicopters can also

horizontal plane accelerations
state 2D, (3D)

relative range states rx , ry , (rz)
velocities for the ownship vox , voy ,
(voz)
velocities for the intruder vix , viy ,
(viz)
absolute displacement from the
desired trajectory dx , dy , (dz)
the desired trajectory is
normalized to unit velocity in the
xaxis and zero velocity in the y
axis.

algorithm must decide to take action laterally or vertically rather than continue to postpone actions that
would actually resolve the encounter.

The implication of a aircraft’s ability to hover is that, for optimal performance, tracking of the planned
trajectory should be built directly into the collision avoidance maneuver logic. Decomposing the encounter
into a collision resolution phase and an independent return-to-path phase would require not only two different
algorithms for the two phases, the algorithms would need to undergo extensive interoperability verification
checks. On the other hand, incorporating the two phases into a single optimization problem exponentially
increases its size and the time required to find an optimal solution to it. Compounding this exponential
increase is the fact that encounters no longer count down reliably to CPA, which means that solution
approaches like Gauss-Seidel value iteration, employed by the first implementation of ACAS X, can no
longer be used to find the optimal policy in just a single iteration.7 These special considerations in the use
of longitudinal (speed) maneuvers means that simple extensions to algorithms designed to use vertical or
horizontal maneuvers are unlikely to be successful.

C. Dynamics

The collision avoidance problem is formulated in the two horizontal dimensions (2D) in order to assist in
tuning and visualization of results. The eight states that characterize the 2D problem are defined in fig. 1
and are described in table 1: two relative range states (rx and ry), two velocities for the ownship (vox and
voy) and two for the intruder (vix and viy), and two states that indicate the absolute displacement from
the desired trajectory at that time (dx and dy). The desired trajectory is normalized to unit velocity in the
x-axis and zero velocity in the y-axis. This simplification reduces the number of states required to specify
the desired trajectory and avoids loss of generality because the coordinate frame of the ownship may be
rotated and scaled into the POMDP coordinate frame to find the appropriate action. A companion paper
contains a detailed explanation of how the dimensionless distance units are computed in real time so they
are compatible with the algorithm.5 The algorithm may be extended to three dimensions by adding relative
altitude between the ownship and intruder, absolute altitude of the ownship (so that collisions with the
ground may be avoided), and absolute vertical velocities of the ownship and intruder.

dx

dy

rx

ry

vox

voy

vix

viy

Figure 1: States used to formulate the collision avoidance algorithm

The dynamic equations used to model the aircraft trajectories are relatively simple because the prediction
horizon they are used over is very short, with updates done every 0.1 to 1 seconds. Related work has also
not found a benefit to using more complex dynamic equations.7

3 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Ju

ne
 1

5,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
36

73

Probabilistic Graphical Models Applications 13 19. prosince 2024 39 / 113 - 245

POMDP Aircraft Collision Avoidance
the algorithms designed for
fixed-wing aircraft analyze

turns
vertical meneuvers

multirotor aircraft (drones) and
helicopters can also

horizontal plane accelerations
state 2D, (3D)

relative range states rx , ry , (rz)
velocities for the ownship vox , voy ,
(voz)
velocities for the intruder vix , viy ,
(viz)
absolute displacement from the
desired trajectory dx , dy , (dz)
the desired trajectory is
normalized to unit velocity in the
xaxis and zero velocity in the y
axis.

algorithm must decide to take action laterally or vertically rather than continue to postpone actions that
would actually resolve the encounter.

The implication of a aircraft’s ability to hover is that, for optimal performance, tracking of the planned
trajectory should be built directly into the collision avoidance maneuver logic. Decomposing the encounter
into a collision resolution phase and an independent return-to-path phase would require not only two different
algorithms for the two phases, the algorithms would need to undergo extensive interoperability verification
checks. On the other hand, incorporating the two phases into a single optimization problem exponentially
increases its size and the time required to find an optimal solution to it. Compounding this exponential
increase is the fact that encounters no longer count down reliably to CPA, which means that solution
approaches like Gauss-Seidel value iteration, employed by the first implementation of ACAS X, can no
longer be used to find the optimal policy in just a single iteration.7 These special considerations in the use
of longitudinal (speed) maneuvers means that simple extensions to algorithms designed to use vertical or
horizontal maneuvers are unlikely to be successful.

C. Dynamics

The collision avoidance problem is formulated in the two horizontal dimensions (2D) in order to assist in
tuning and visualization of results. The eight states that characterize the 2D problem are defined in fig. 1
and are described in table 1: two relative range states (rx and ry), two velocities for the ownship (vox and
voy) and two for the intruder (vix and viy), and two states that indicate the absolute displacement from
the desired trajectory at that time (dx and dy). The desired trajectory is normalized to unit velocity in the
x-axis and zero velocity in the y-axis. This simplification reduces the number of states required to specify
the desired trajectory and avoids loss of generality because the coordinate frame of the ownship may be
rotated and scaled into the POMDP coordinate frame to find the appropriate action. A companion paper
contains a detailed explanation of how the dimensionless distance units are computed in real time so they
are compatible with the algorithm.5 The algorithm may be extended to three dimensions by adding relative
altitude between the ownship and intruder, absolute altitude of the ownship (so that collisions with the
ground may be avoided), and absolute vertical velocities of the ownship and intruder.

dx

dy

rx

ry

vox

voy

vix

viy

Figure 1: States used to formulate the collision avoidance algorithm

The dynamic equations used to model the aircraft trajectories are relatively simple because the prediction
horizon they are used over is very short, with updates done every 0.1 to 1 seconds. Related work has also
not found a benefit to using more complex dynamic equations.7

3 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Ju

ne
 1

5,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
36

73

Probabilistic Graphical Models Applications 13 19. prosince 2024 39 / 113 - 245

POMDP Aircraft Collision Avoidance
the algorithms designed for
fixed-wing aircraft analyze

turns
vertical meneuvers

multirotor aircraft (drones) and
helicopters can also

horizontal plane accelerations
state 2D, (3D)

relative range states rx , ry , (rz)
velocities for the ownship vox , voy ,
(voz)
velocities for the intruder vix , viy ,
(viz)
absolute displacement from the
desired trajectory dx , dy , (dz)
the desired trajectory is
normalized to unit velocity in the
xaxis and zero velocity in the y
axis.

algorithm must decide to take action laterally or vertically rather than continue to postpone actions that
would actually resolve the encounter.

The implication of a aircraft’s ability to hover is that, for optimal performance, tracking of the planned
trajectory should be built directly into the collision avoidance maneuver logic. Decomposing the encounter
into a collision resolution phase and an independent return-to-path phase would require not only two different
algorithms for the two phases, the algorithms would need to undergo extensive interoperability verification
checks. On the other hand, incorporating the two phases into a single optimization problem exponentially
increases its size and the time required to find an optimal solution to it. Compounding this exponential
increase is the fact that encounters no longer count down reliably to CPA, which means that solution
approaches like Gauss-Seidel value iteration, employed by the first implementation of ACAS X, can no
longer be used to find the optimal policy in just a single iteration.7 These special considerations in the use
of longitudinal (speed) maneuvers means that simple extensions to algorithms designed to use vertical or
horizontal maneuvers are unlikely to be successful.

C. Dynamics

The collision avoidance problem is formulated in the two horizontal dimensions (2D) in order to assist in
tuning and visualization of results. The eight states that characterize the 2D problem are defined in fig. 1
and are described in table 1: two relative range states (rx and ry), two velocities for the ownship (vox and
voy) and two for the intruder (vix and viy), and two states that indicate the absolute displacement from
the desired trajectory at that time (dx and dy). The desired trajectory is normalized to unit velocity in the
x-axis and zero velocity in the y-axis. This simplification reduces the number of states required to specify
the desired trajectory and avoids loss of generality because the coordinate frame of the ownship may be
rotated and scaled into the POMDP coordinate frame to find the appropriate action. A companion paper
contains a detailed explanation of how the dimensionless distance units are computed in real time so they
are compatible with the algorithm.5 The algorithm may be extended to three dimensions by adding relative
altitude between the ownship and intruder, absolute altitude of the ownship (so that collisions with the
ground may be avoided), and absolute vertical velocities of the ownship and intruder.

dx

dy

rx

ry

vox

voy

vix

viy

Figure 1: States used to formulate the collision avoidance algorithm

The dynamic equations used to model the aircraft trajectories are relatively simple because the prediction
horizon they are used over is very short, with updates done every 0.1 to 1 seconds. Related work has also
not found a benefit to using more complex dynamic equations.7

3 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Ju

ne
 1

5,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
36

73

Probabilistic Graphical Models Applications 13 19. prosince 2024 39 / 113 - 245

POMDP Aircraft Collision Avoidance
the algorithms designed for
fixed-wing aircraft analyze

turns
vertical meneuvers

multirotor aircraft (drones) and
helicopters can also

horizontal plane accelerations
state 2D, (3D)

relative range states rx , ry , (rz)
velocities for the ownship vox , voy ,
(voz)
velocities for the intruder vix , viy ,
(viz)
absolute displacement from the
desired trajectory dx , dy , (dz)
the desired trajectory is
normalized to unit velocity in the
xaxis and zero velocity in the y
axis.

algorithm must decide to take action laterally or vertically rather than continue to postpone actions that
would actually resolve the encounter.

The implication of a aircraft’s ability to hover is that, for optimal performance, tracking of the planned
trajectory should be built directly into the collision avoidance maneuver logic. Decomposing the encounter
into a collision resolution phase and an independent return-to-path phase would require not only two different
algorithms for the two phases, the algorithms would need to undergo extensive interoperability verification
checks. On the other hand, incorporating the two phases into a single optimization problem exponentially
increases its size and the time required to find an optimal solution to it. Compounding this exponential
increase is the fact that encounters no longer count down reliably to CPA, which means that solution
approaches like Gauss-Seidel value iteration, employed by the first implementation of ACAS X, can no
longer be used to find the optimal policy in just a single iteration.7 These special considerations in the use
of longitudinal (speed) maneuvers means that simple extensions to algorithms designed to use vertical or
horizontal maneuvers are unlikely to be successful.

C. Dynamics

The collision avoidance problem is formulated in the two horizontal dimensions (2D) in order to assist in
tuning and visualization of results. The eight states that characterize the 2D problem are defined in fig. 1
and are described in table 1: two relative range states (rx and ry), two velocities for the ownship (vox and
voy) and two for the intruder (vix and viy), and two states that indicate the absolute displacement from
the desired trajectory at that time (dx and dy). The desired trajectory is normalized to unit velocity in the
x-axis and zero velocity in the y-axis. This simplification reduces the number of states required to specify
the desired trajectory and avoids loss of generality because the coordinate frame of the ownship may be
rotated and scaled into the POMDP coordinate frame to find the appropriate action. A companion paper
contains a detailed explanation of how the dimensionless distance units are computed in real time so they
are compatible with the algorithm.5 The algorithm may be extended to three dimensions by adding relative
altitude between the ownship and intruder, absolute altitude of the ownship (so that collisions with the
ground may be avoided), and absolute vertical velocities of the ownship and intruder.

dx

dy

rx

ry

vox

voy

vix

viy

Figure 1: States used to formulate the collision avoidance algorithm

The dynamic equations used to model the aircraft trajectories are relatively simple because the prediction
horizon they are used over is very short, with updates done every 0.1 to 1 seconds. Related work has also
not found a benefit to using more complex dynamic equations.7

3 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Ju

ne
 1

5,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
36

73

Probabilistic Graphical Models Applications 13 19. prosince 2024 39 / 113 - 245

POMDP Aircraft Collision Avoidance
the algorithms designed for
fixed-wing aircraft analyze

turns
vertical meneuvers

multirotor aircraft (drones) and
helicopters can also

horizontal plane accelerations
state 2D, (3D)

relative range states rx , ry , (rz)
velocities for the ownship vox , voy ,
(voz)
velocities for the intruder vix , viy ,
(viz)
absolute displacement from the
desired trajectory dx , dy , (dz)
the desired trajectory is
normalized to unit velocity in the
xaxis and zero velocity in the y
axis.

algorithm must decide to take action laterally or vertically rather than continue to postpone actions that
would actually resolve the encounter.

The implication of a aircraft’s ability to hover is that, for optimal performance, tracking of the planned
trajectory should be built directly into the collision avoidance maneuver logic. Decomposing the encounter
into a collision resolution phase and an independent return-to-path phase would require not only two different
algorithms for the two phases, the algorithms would need to undergo extensive interoperability verification
checks. On the other hand, incorporating the two phases into a single optimization problem exponentially
increases its size and the time required to find an optimal solution to it. Compounding this exponential
increase is the fact that encounters no longer count down reliably to CPA, which means that solution
approaches like Gauss-Seidel value iteration, employed by the first implementation of ACAS X, can no
longer be used to find the optimal policy in just a single iteration.7 These special considerations in the use
of longitudinal (speed) maneuvers means that simple extensions to algorithms designed to use vertical or
horizontal maneuvers are unlikely to be successful.

C. Dynamics

The collision avoidance problem is formulated in the two horizontal dimensions (2D) in order to assist in
tuning and visualization of results. The eight states that characterize the 2D problem are defined in fig. 1
and are described in table 1: two relative range states (rx and ry), two velocities for the ownship (vox and
voy) and two for the intruder (vix and viy), and two states that indicate the absolute displacement from
the desired trajectory at that time (dx and dy). The desired trajectory is normalized to unit velocity in the
x-axis and zero velocity in the y-axis. This simplification reduces the number of states required to specify
the desired trajectory and avoids loss of generality because the coordinate frame of the ownship may be
rotated and scaled into the POMDP coordinate frame to find the appropriate action. A companion paper
contains a detailed explanation of how the dimensionless distance units are computed in real time so they
are compatible with the algorithm.5 The algorithm may be extended to three dimensions by adding relative
altitude between the ownship and intruder, absolute altitude of the ownship (so that collisions with the
ground may be avoided), and absolute vertical velocities of the ownship and intruder.

dx

dy

rx

ry

vox

voy

vix

viy

Figure 1: States used to formulate the collision avoidance algorithm

The dynamic equations used to model the aircraft trajectories are relatively simple because the prediction
horizon they are used over is very short, with updates done every 0.1 to 1 seconds. Related work has also
not found a benefit to using more complex dynamic equations.7

3 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Ju

ne
 1

5,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
36

73

Probabilistic Graphical Models Applications 13 19. prosince 2024 39 / 113 - 245

POMDP Aircraft Collision Avoidance
the algorithms designed for
fixed-wing aircraft analyze

turns
vertical meneuvers

multirotor aircraft (drones) and
helicopters can also

horizontal plane accelerations
state 2D, (3D)

relative range states rx , ry , (rz)
velocities for the ownship vox , voy ,
(voz)
velocities for the intruder vix , viy ,
(viz)
absolute displacement from the
desired trajectory dx , dy , (dz)
the desired trajectory is
normalized to unit velocity in the
xaxis and zero velocity in the y
axis.

algorithm must decide to take action laterally or vertically rather than continue to postpone actions that
would actually resolve the encounter.

The implication of a aircraft’s ability to hover is that, for optimal performance, tracking of the planned
trajectory should be built directly into the collision avoidance maneuver logic. Decomposing the encounter
into a collision resolution phase and an independent return-to-path phase would require not only two different
algorithms for the two phases, the algorithms would need to undergo extensive interoperability verification
checks. On the other hand, incorporating the two phases into a single optimization problem exponentially
increases its size and the time required to find an optimal solution to it. Compounding this exponential
increase is the fact that encounters no longer count down reliably to CPA, which means that solution
approaches like Gauss-Seidel value iteration, employed by the first implementation of ACAS X, can no
longer be used to find the optimal policy in just a single iteration.7 These special considerations in the use
of longitudinal (speed) maneuvers means that simple extensions to algorithms designed to use vertical or
horizontal maneuvers are unlikely to be successful.

C. Dynamics

The collision avoidance problem is formulated in the two horizontal dimensions (2D) in order to assist in
tuning and visualization of results. The eight states that characterize the 2D problem are defined in fig. 1
and are described in table 1: two relative range states (rx and ry), two velocities for the ownship (vox and
voy) and two for the intruder (vix and viy), and two states that indicate the absolute displacement from
the desired trajectory at that time (dx and dy). The desired trajectory is normalized to unit velocity in the
x-axis and zero velocity in the y-axis. This simplification reduces the number of states required to specify
the desired trajectory and avoids loss of generality because the coordinate frame of the ownship may be
rotated and scaled into the POMDP coordinate frame to find the appropriate action. A companion paper
contains a detailed explanation of how the dimensionless distance units are computed in real time so they
are compatible with the algorithm.5 The algorithm may be extended to three dimensions by adding relative
altitude between the ownship and intruder, absolute altitude of the ownship (so that collisions with the
ground may be avoided), and absolute vertical velocities of the ownship and intruder.

dx

dy

rx

ry

vox

voy

vix

viy

Figure 1: States used to formulate the collision avoidance algorithm

The dynamic equations used to model the aircraft trajectories are relatively simple because the prediction
horizon they are used over is very short, with updates done every 0.1 to 1 seconds. Related work has also
not found a benefit to using more complex dynamic equations.7

3 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Ju

ne
 1

5,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
36

73

Probabilistic Graphical Models Applications 13 19. prosince 2024 39 / 113 - 245

POMDP Aircraft Collision Avoidance
the algorithms designed for
fixed-wing aircraft analyze

turns
vertical meneuvers

multirotor aircraft (drones) and
helicopters can also

horizontal plane accelerations
state 2D, (3D)

relative range states rx , ry , (rz)
velocities for the ownship vox , voy ,
(voz)
velocities for the intruder vix , viy ,
(viz)
absolute displacement from the
desired trajectory dx , dy , (dz)
the desired trajectory is
normalized to unit velocity in the
xaxis and zero velocity in the y
axis.

algorithm must decide to take action laterally or vertically rather than continue to postpone actions that
would actually resolve the encounter.

The implication of a aircraft’s ability to hover is that, for optimal performance, tracking of the planned
trajectory should be built directly into the collision avoidance maneuver logic. Decomposing the encounter
into a collision resolution phase and an independent return-to-path phase would require not only two different
algorithms for the two phases, the algorithms would need to undergo extensive interoperability verification
checks. On the other hand, incorporating the two phases into a single optimization problem exponentially
increases its size and the time required to find an optimal solution to it. Compounding this exponential
increase is the fact that encounters no longer count down reliably to CPA, which means that solution
approaches like Gauss-Seidel value iteration, employed by the first implementation of ACAS X, can no
longer be used to find the optimal policy in just a single iteration.7 These special considerations in the use
of longitudinal (speed) maneuvers means that simple extensions to algorithms designed to use vertical or
horizontal maneuvers are unlikely to be successful.

C. Dynamics

The collision avoidance problem is formulated in the two horizontal dimensions (2D) in order to assist in
tuning and visualization of results. The eight states that characterize the 2D problem are defined in fig. 1
and are described in table 1: two relative range states (rx and ry), two velocities for the ownship (vox and
voy) and two for the intruder (vix and viy), and two states that indicate the absolute displacement from
the desired trajectory at that time (dx and dy). The desired trajectory is normalized to unit velocity in the
x-axis and zero velocity in the y-axis. This simplification reduces the number of states required to specify
the desired trajectory and avoids loss of generality because the coordinate frame of the ownship may be
rotated and scaled into the POMDP coordinate frame to find the appropriate action. A companion paper
contains a detailed explanation of how the dimensionless distance units are computed in real time so they
are compatible with the algorithm.5 The algorithm may be extended to three dimensions by adding relative
altitude between the ownship and intruder, absolute altitude of the ownship (so that collisions with the
ground may be avoided), and absolute vertical velocities of the ownship and intruder.

dx

dy

rx

ry

vox

voy

vix

viy

Figure 1: States used to formulate the collision avoidance algorithm

The dynamic equations used to model the aircraft trajectories are relatively simple because the prediction
horizon they are used over is very short, with updates done every 0.1 to 1 seconds. Related work has also
not found a benefit to using more complex dynamic equations.7

3 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Ju

ne
 1

5,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
36

73

Probabilistic Graphical Models Applications 13 19. prosince 2024 39 / 113 - 245

POMDP Aircraft Collision Avoidance
the algorithms designed for
fixed-wing aircraft analyze

turns
vertical meneuvers

multirotor aircraft (drones) and
helicopters can also

horizontal plane accelerations
state 2D, (3D)

relative range states rx , ry , (rz)
velocities for the ownship vox , voy ,
(voz)
velocities for the intruder vix , viy ,
(viz)
absolute displacement from the
desired trajectory dx , dy , (dz)
the desired trajectory is
normalized to unit velocity in the
xaxis and zero velocity in the y
axis.

algorithm must decide to take action laterally or vertically rather than continue to postpone actions that
would actually resolve the encounter.

The implication of a aircraft’s ability to hover is that, for optimal performance, tracking of the planned
trajectory should be built directly into the collision avoidance maneuver logic. Decomposing the encounter
into a collision resolution phase and an independent return-to-path phase would require not only two different
algorithms for the two phases, the algorithms would need to undergo extensive interoperability verification
checks. On the other hand, incorporating the two phases into a single optimization problem exponentially
increases its size and the time required to find an optimal solution to it. Compounding this exponential
increase is the fact that encounters no longer count down reliably to CPA, which means that solution
approaches like Gauss-Seidel value iteration, employed by the first implementation of ACAS X, can no
longer be used to find the optimal policy in just a single iteration.7 These special considerations in the use
of longitudinal (speed) maneuvers means that simple extensions to algorithms designed to use vertical or
horizontal maneuvers are unlikely to be successful.

C. Dynamics

The collision avoidance problem is formulated in the two horizontal dimensions (2D) in order to assist in
tuning and visualization of results. The eight states that characterize the 2D problem are defined in fig. 1
and are described in table 1: two relative range states (rx and ry), two velocities for the ownship (vox and
voy) and two for the intruder (vix and viy), and two states that indicate the absolute displacement from
the desired trajectory at that time (dx and dy). The desired trajectory is normalized to unit velocity in the
x-axis and zero velocity in the y-axis. This simplification reduces the number of states required to specify
the desired trajectory and avoids loss of generality because the coordinate frame of the ownship may be
rotated and scaled into the POMDP coordinate frame to find the appropriate action. A companion paper
contains a detailed explanation of how the dimensionless distance units are computed in real time so they
are compatible with the algorithm.5 The algorithm may be extended to three dimensions by adding relative
altitude between the ownship and intruder, absolute altitude of the ownship (so that collisions with the
ground may be avoided), and absolute vertical velocities of the ownship and intruder.

dx

dy

rx

ry

vox

voy

vix

viy

Figure 1: States used to formulate the collision avoidance algorithm

The dynamic equations used to model the aircraft trajectories are relatively simple because the prediction
horizon they are used over is very short, with updates done every 0.1 to 1 seconds. Related work has also
not found a benefit to using more complex dynamic equations.7

3 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Ju

ne
 1

5,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
36

73

Probabilistic Graphical Models Applications 13 19. prosince 2024 39 / 113 - 245

POMDP Aircraft Collision Avoidance
the algorithms designed for
fixed-wing aircraft analyze

turns
vertical meneuvers

multirotor aircraft (drones) and
helicopters can also

horizontal plane accelerations
state 2D, (3D)

relative range states rx , ry , (rz)
velocities for the ownship vox , voy ,
(voz)
velocities for the intruder vix , viy ,
(viz)
absolute displacement from the
desired trajectory dx , dy , (dz)
the desired trajectory is
normalized to unit velocity in the
xaxis and zero velocity in the y
axis.

algorithm must decide to take action laterally or vertically rather than continue to postpone actions that
would actually resolve the encounter.

The implication of a aircraft’s ability to hover is that, for optimal performance, tracking of the planned
trajectory should be built directly into the collision avoidance maneuver logic. Decomposing the encounter
into a collision resolution phase and an independent return-to-path phase would require not only two different
algorithms for the two phases, the algorithms would need to undergo extensive interoperability verification
checks. On the other hand, incorporating the two phases into a single optimization problem exponentially
increases its size and the time required to find an optimal solution to it. Compounding this exponential
increase is the fact that encounters no longer count down reliably to CPA, which means that solution
approaches like Gauss-Seidel value iteration, employed by the first implementation of ACAS X, can no
longer be used to find the optimal policy in just a single iteration.7 These special considerations in the use
of longitudinal (speed) maneuvers means that simple extensions to algorithms designed to use vertical or
horizontal maneuvers are unlikely to be successful.

C. Dynamics

The collision avoidance problem is formulated in the two horizontal dimensions (2D) in order to assist in
tuning and visualization of results. The eight states that characterize the 2D problem are defined in fig. 1
and are described in table 1: two relative range states (rx and ry), two velocities for the ownship (vox and
voy) and two for the intruder (vix and viy), and two states that indicate the absolute displacement from
the desired trajectory at that time (dx and dy). The desired trajectory is normalized to unit velocity in the
x-axis and zero velocity in the y-axis. This simplification reduces the number of states required to specify
the desired trajectory and avoids loss of generality because the coordinate frame of the ownship may be
rotated and scaled into the POMDP coordinate frame to find the appropriate action. A companion paper
contains a detailed explanation of how the dimensionless distance units are computed in real time so they
are compatible with the algorithm.5 The algorithm may be extended to three dimensions by adding relative
altitude between the ownship and intruder, absolute altitude of the ownship (so that collisions with the
ground may be avoided), and absolute vertical velocities of the ownship and intruder.

dx

dy

rx

ry

vox

voy

vix

viy

Figure 1: States used to formulate the collision avoidance algorithm

The dynamic equations used to model the aircraft trajectories are relatively simple because the prediction
horizon they are used over is very short, with updates done every 0.1 to 1 seconds. Related work has also
not found a benefit to using more complex dynamic equations.7

3 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Ju

ne
 1

5,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
36

73

Probabilistic Graphical Models Applications 13 19. prosince 2024 39 / 113 - 245

POMDP Aircraft Collision Avoidance
the algorithms designed for
fixed-wing aircraft analyze

turns
vertical meneuvers

multirotor aircraft (drones) and
helicopters can also

horizontal plane accelerations
state 2D, (3D)

relative range states rx , ry , (rz)
velocities for the ownship vox , voy ,
(voz)
velocities for the intruder vix , viy ,
(viz)
absolute displacement from the
desired trajectory dx , dy , (dz)
the desired trajectory is
normalized to unit velocity in the
xaxis and zero velocity in the y
axis.

algorithm must decide to take action laterally or vertically rather than continue to postpone actions that
would actually resolve the encounter.

The implication of a aircraft’s ability to hover is that, for optimal performance, tracking of the planned
trajectory should be built directly into the collision avoidance maneuver logic. Decomposing the encounter
into a collision resolution phase and an independent return-to-path phase would require not only two different
algorithms for the two phases, the algorithms would need to undergo extensive interoperability verification
checks. On the other hand, incorporating the two phases into a single optimization problem exponentially
increases its size and the time required to find an optimal solution to it. Compounding this exponential
increase is the fact that encounters no longer count down reliably to CPA, which means that solution
approaches like Gauss-Seidel value iteration, employed by the first implementation of ACAS X, can no
longer be used to find the optimal policy in just a single iteration.7 These special considerations in the use
of longitudinal (speed) maneuvers means that simple extensions to algorithms designed to use vertical or
horizontal maneuvers are unlikely to be successful.

C. Dynamics

The collision avoidance problem is formulated in the two horizontal dimensions (2D) in order to assist in
tuning and visualization of results. The eight states that characterize the 2D problem are defined in fig. 1
and are described in table 1: two relative range states (rx and ry), two velocities for the ownship (vox and
voy) and two for the intruder (vix and viy), and two states that indicate the absolute displacement from
the desired trajectory at that time (dx and dy). The desired trajectory is normalized to unit velocity in the
x-axis and zero velocity in the y-axis. This simplification reduces the number of states required to specify
the desired trajectory and avoids loss of generality because the coordinate frame of the ownship may be
rotated and scaled into the POMDP coordinate frame to find the appropriate action. A companion paper
contains a detailed explanation of how the dimensionless distance units are computed in real time so they
are compatible with the algorithm.5 The algorithm may be extended to three dimensions by adding relative
altitude between the ownship and intruder, absolute altitude of the ownship (so that collisions with the
ground may be avoided), and absolute vertical velocities of the ownship and intruder.

dx

dy

rx

ry

vox

voy

vix

viy

Figure 1: States used to formulate the collision avoidance algorithm

The dynamic equations used to model the aircraft trajectories are relatively simple because the prediction
horizon they are used over is very short, with updates done every 0.1 to 1 seconds. Related work has also
not found a benefit to using more complex dynamic equations.7

3 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Ju

ne
 1

5,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
36

73

Probabilistic Graphical Models Applications 13 19. prosince 2024 39 / 113 - 245

POMDP Aircraft Collision Avoidance
the algorithms designed for
fixed-wing aircraft analyze

turns
vertical meneuvers

multirotor aircraft (drones) and
helicopters can also

horizontal plane accelerations
state 2D, (3D)

relative range states rx , ry , (rz)
velocities for the ownship vox , voy ,
(voz)
velocities for the intruder vix , viy ,
(viz)
absolute displacement from the
desired trajectory dx , dy , (dz)
the desired trajectory is
normalized to unit velocity in the
xaxis and zero velocity in the y
axis.

algorithm must decide to take action laterally or vertically rather than continue to postpone actions that
would actually resolve the encounter.

The implication of a aircraft’s ability to hover is that, for optimal performance, tracking of the planned
trajectory should be built directly into the collision avoidance maneuver logic. Decomposing the encounter
into a collision resolution phase and an independent return-to-path phase would require not only two different
algorithms for the two phases, the algorithms would need to undergo extensive interoperability verification
checks. On the other hand, incorporating the two phases into a single optimization problem exponentially
increases its size and the time required to find an optimal solution to it. Compounding this exponential
increase is the fact that encounters no longer count down reliably to CPA, which means that solution
approaches like Gauss-Seidel value iteration, employed by the first implementation of ACAS X, can no
longer be used to find the optimal policy in just a single iteration.7 These special considerations in the use
of longitudinal (speed) maneuvers means that simple extensions to algorithms designed to use vertical or
horizontal maneuvers are unlikely to be successful.

C. Dynamics

The collision avoidance problem is formulated in the two horizontal dimensions (2D) in order to assist in
tuning and visualization of results. The eight states that characterize the 2D problem are defined in fig. 1
and are described in table 1: two relative range states (rx and ry), two velocities for the ownship (vox and
voy) and two for the intruder (vix and viy), and two states that indicate the absolute displacement from
the desired trajectory at that time (dx and dy). The desired trajectory is normalized to unit velocity in the
x-axis and zero velocity in the y-axis. This simplification reduces the number of states required to specify
the desired trajectory and avoids loss of generality because the coordinate frame of the ownship may be
rotated and scaled into the POMDP coordinate frame to find the appropriate action. A companion paper
contains a detailed explanation of how the dimensionless distance units are computed in real time so they
are compatible with the algorithm.5 The algorithm may be extended to three dimensions by adding relative
altitude between the ownship and intruder, absolute altitude of the ownship (so that collisions with the
ground may be avoided), and absolute vertical velocities of the ownship and intruder.

dx

dy

rx

ry

vox

voy

vix

viy

Figure 1: States used to formulate the collision avoidance algorithm

The dynamic equations used to model the aircraft trajectories are relatively simple because the prediction
horizon they are used over is very short, with updates done every 0.1 to 1 seconds. Related work has also
not found a benefit to using more complex dynamic equations.7

3 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Ju

ne
 1

5,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
36

73

Probabilistic Graphical Models Applications 13 19. prosince 2024 39 / 113 - 245

MDP Transitions

the prediction horizon is very short
updates done every 0.1 to 1 seconds
simple update equation are sufficient
not a benefit to using more complex dynamic
equations.
ax , ay acceleration by the ownship
N∗ noise to the ownship, intruder, x and y axis

No(µ = 0, 0.30s−2), Ni (µ = 0, 0.45s−2),
Bellman update
transition from s with acceleration a to s |

Q[s, a]← R(s, a)+γ
∑

s|

T (s ||s, a)maxa|Q[s |, a|].

ṙx = vix − vox

ṙy = viy − voy

v̇ox = ax + Nox

v̇oy = ay + Noy

v̇ix = Nix

v̇iy = Niy

ḋx = vtx − vox

ḋy = vty − voy

Probabilistic Graphical Models Applications 13 19. prosince 2024 40 / 113 - 245

MDP Transitions

the prediction horizon is very short
updates done every 0.1 to 1 seconds
simple update equation are sufficient
not a benefit to using more complex dynamic
equations.
ax , ay acceleration by the ownship
N∗ noise to the ownship, intruder, x and y axis

No(µ = 0, 0.30s−2), Ni (µ = 0, 0.45s−2),
Bellman update
transition from s with acceleration a to s |

Q[s, a]← R(s, a)+γ
∑

s|

T (s ||s, a)maxa|Q[s |, a|].

ṙx = vix − vox

ṙy = viy − voy

v̇ox = ax + Nox

v̇oy = ay + Noy

v̇ix = Nix

v̇iy = Niy

ḋx = vtx − vox

ḋy = vty − voy

Probabilistic Graphical Models Applications 13 19. prosince 2024 40 / 113 - 245

MDP Transitions

the prediction horizon is very short
updates done every 0.1 to 1 seconds
simple update equation are sufficient
not a benefit to using more complex dynamic
equations.
ax , ay acceleration by the ownship
N∗ noise to the ownship, intruder, x and y axis

No(µ = 0, 0.30s−2), Ni (µ = 0, 0.45s−2),
Bellman update
transition from s with acceleration a to s |

Q[s, a]← R(s, a)+γ
∑

s|

T (s ||s, a)maxa|Q[s |, a|].

ṙx = vix − vox

ṙy = viy − voy

v̇ox = ax + Nox

v̇oy = ay + Noy

v̇ix = Nix

v̇iy = Niy

ḋx = vtx − vox

ḋy = vty − voy

Probabilistic Graphical Models Applications 13 19. prosince 2024 40 / 113 - 245

MDP Transitions

the prediction horizon is very short
updates done every 0.1 to 1 seconds
simple update equation are sufficient
not a benefit to using more complex dynamic
equations.
ax , ay acceleration by the ownship
N∗ noise to the ownship, intruder, x and y axis

No(µ = 0, 0.30s−2), Ni (µ = 0, 0.45s−2),
Bellman update
transition from s with acceleration a to s |

Q[s, a]← R(s, a)+γ
∑

s|

T (s ||s, a)maxa|Q[s |, a|].

ṙx = vix − vox

ṙy = viy − voy

v̇ox = ax + Nox

v̇oy = ay + Noy

v̇ix = Nix

v̇iy = Niy

ḋx = vtx − vox

ḋy = vty − voy

Probabilistic Graphical Models Applications 13 19. prosince 2024 40 / 113 - 245

MDP Transitions

the prediction horizon is very short
updates done every 0.1 to 1 seconds
simple update equation are sufficient
not a benefit to using more complex dynamic
equations.
ax , ay acceleration by the ownship
N∗ noise to the ownship, intruder, x and y axis

No(µ = 0, 0.30s−2), Ni (µ = 0, 0.45s−2),
Bellman update
transition from s with acceleration a to s |

Q[s, a]← R(s, a)+γ
∑

s|

T (s ||s, a)maxa|Q[s |, a|].

ṙx = vix − vox

ṙy = viy − voy

v̇ox = ax + Nox

v̇oy = ay + Noy

v̇ix = Nix

v̇iy = Niy

ḋx = vtx − vox

ḋy = vty − voy

Probabilistic Graphical Models Applications 13 19. prosince 2024 40 / 113 - 245

MDP Transitions

the prediction horizon is very short
updates done every 0.1 to 1 seconds
simple update equation are sufficient
not a benefit to using more complex dynamic
equations.
ax , ay acceleration by the ownship
N∗ noise to the ownship, intruder, x and y axis

No(µ = 0, 0.30s−2), Ni (µ = 0, 0.45s−2),
Bellman update
transition from s with acceleration a to s |

Q[s, a]← R(s, a)+γ
∑

s|

T (s ||s, a)maxa|Q[s |, a|].

ṙx = vix − vox

ṙy = viy − voy

v̇ox = ax + Nox

v̇oy = ay + Noy

v̇ix = Nix

v̇iy = Niy

ḋx = vtx − vox

ḋy = vty − voy

Probabilistic Graphical Models Applications 13 19. prosince 2024 40 / 113 - 245

MDP Transitions

the prediction horizon is very short
updates done every 0.1 to 1 seconds
simple update equation are sufficient
not a benefit to using more complex dynamic
equations.
ax , ay acceleration by the ownship
N∗ noise to the ownship, intruder, x and y axis

No(µ = 0, 0.30s−2), Ni (µ = 0, 0.45s−2),
Bellman update
transition from s with acceleration a to s |

Q[s, a]← R(s, a)+γ
∑

s|

T (s ||s, a)maxa|Q[s |, a|].

ṙx = vix − vox

ṙy = viy − voy

v̇ox = ax + Nox

v̇oy = ay + Noy

v̇ix = Nix

v̇iy = Niy

ḋx = vtx − vox

ḋy = vty − voy

Probabilistic Graphical Models Applications 13 19. prosince 2024 40 / 113 - 245

MDP Transitions

the prediction horizon is very short
updates done every 0.1 to 1 seconds
simple update equation are sufficient
not a benefit to using more complex dynamic
equations.
ax , ay acceleration by the ownship
N∗ noise to the ownship, intruder, x and y axis

No(µ = 0, 0.30s−2), Ni (µ = 0, 0.45s−2),
Bellman update
transition from s with acceleration a to s |

Q[s, a]← R(s, a)+γ
∑

s|

T (s ||s, a)maxa|Q[s |, a|].

ṙx = vix − vox

ṙy = viy − voy

v̇ox = ax + Nox

v̇oy = ay + Noy

v̇ix = Nix

v̇iy = Niy

ḋx = vtx − vox

ḋy = vty − voy

Probabilistic Graphical Models Applications 13 19. prosince 2024 40 / 113 - 245

MDP Transitions

the prediction horizon is very short
updates done every 0.1 to 1 seconds
simple update equation are sufficient
not a benefit to using more complex dynamic
equations.
ax , ay acceleration by the ownship
N∗ noise to the ownship, intruder, x and y axis

No(µ = 0, 0.30s−2), Ni (µ = 0, 0.45s−2),
Bellman update
transition from s with acceleration a to s |

Q[s, a]← R(s, a)+γ
∑

s|

T (s ||s, a)maxa|Q[s |, a|].

ṙx = vix − vox

ṙy = viy − voy

v̇ox = ax + Nox

v̇oy = ay + Noy

v̇ix = Nix

v̇iy = Niy

ḋx = vtx − vox

ḋy = vty − voy

Probabilistic Graphical Models Applications 13 19. prosince 2024 40 / 113 - 245

Reward

Minimum reward Rmin
collision
physically impossible states
keeps the sum finite

we prefer no acceleration
we prefer long distance to the intruder
we prefer short distance to the desired trajectory
Ks ,KT , Rmin weights was learned, k weights was = 1.

R(s, a) = max
[
Rmin,−(kax |ax |+ kay |ay |)− Ks

1
krx r2

x + kry r2
y
− KT (kdx d2

x + kdy d2
y)
]

Probabilistic Graphical Models Applications 13 19. prosince 2024 41 / 113 - 245

Reward

Minimum reward Rmin
collision
physically impossible states
keeps the sum finite

we prefer no acceleration
we prefer long distance to the intruder
we prefer short distance to the desired trajectory
Ks ,KT , Rmin weights was learned, k weights was = 1.

R(s, a) = max
[
Rmin,−(kax |ax |+ kay |ay |)− Ks

1
krx r2

x + kry r2
y
− KT (kdx d2

x + kdy d2
y)
]

Probabilistic Graphical Models Applications 13 19. prosince 2024 41 / 113 - 245

Reward

Minimum reward Rmin
collision
physically impossible states
keeps the sum finite

we prefer no acceleration
we prefer long distance to the intruder
we prefer short distance to the desired trajectory
Ks ,KT , Rmin weights was learned, k weights was = 1.

R(s, a) = max
[
Rmin,−(kax |ax |+ kay |ay |)− Ks

1
krx r2

x + kry r2
y
− KT (kdx d2

x + kdy d2
y)
]

Probabilistic Graphical Models Applications 13 19. prosince 2024 41 / 113 - 245

Reward

Minimum reward Rmin
collision
physically impossible states
keeps the sum finite

we prefer no acceleration
we prefer long distance to the intruder
we prefer short distance to the desired trajectory
Ks ,KT , Rmin weights was learned, k weights was = 1.

R(s, a) = max
[
Rmin,−(kax |ax |+ kay |ay |)− Ks

1
krx r2

x + kry r2
y
− KT (kdx d2

x + kdy d2
y)
]

Probabilistic Graphical Models Applications 13 19. prosince 2024 41 / 113 - 245

Reward

Minimum reward Rmin
collision
physically impossible states
keeps the sum finite

we prefer no acceleration
we prefer long distance to the intruder
we prefer short distance to the desired trajectory
Ks ,KT , Rmin weights was learned, k weights was = 1.

R(s, a) = max
[
Rmin,−(kax |ax |+ kay |ay |)− Ks

1
krx r2

x + kry r2
y
− KT (kdx d2

x + kdy d2
y)
]

Probabilistic Graphical Models Applications 13 19. prosince 2024 41 / 113 - 245

Reward

Minimum reward Rmin
collision
physically impossible states
keeps the sum finite

we prefer no acceleration
we prefer long distance to the intruder
we prefer short distance to the desired trajectory
Ks ,KT , Rmin weights was learned, k weights was = 1.

R(s, a) = max
[
Rmin,−(kax |ax |+ kay |ay |)− Ks

1
krx r2

x + kry r2
y
− KT (kdx d2

x + kdy d2
y)
]

Probabilistic Graphical Models Applications 13 19. prosince 2024 41 / 113 - 245

Reward

Minimum reward Rmin
collision
physically impossible states
keeps the sum finite

we prefer no acceleration
we prefer long distance to the intruder
we prefer short distance to the desired trajectory
Ks ,KT , Rmin weights was learned, k weights was = 1.

R(s, a) = max
[
Rmin,−(kax |ax |+ kay |ay |)− Ks

1
krx r2

x + kry r2
y
− KT (kdx d2

x + kdy d2
y)
]

Probabilistic Graphical Models Applications 13 19. prosince 2024 41 / 113 - 245

Reward

Minimum reward Rmin
collision
physically impossible states
keeps the sum finite

we prefer no acceleration
we prefer long distance to the intruder
we prefer short distance to the desired trajectory
Ks ,KT , Rmin weights was learned, k weights was = 1.

R(s, a) = max
[
Rmin,−(kax |ax |+ kay |ay |)− Ks

1
krx r2

x + kry r2
y
− KT (kdx d2

x + kdy d2
y)
]

Probabilistic Graphical Models Applications 13 19. prosince 2024 41 / 113 - 245

QMDP Approximation

offline optimization
a few hours for coarse discretization, 1 PC
initially stationary intruders
intruders moving at uniform velocity with a variety of relative headings angles
intruders state and dynamic uncertainty were added to the encounters.

all values normalized
the coarse set contained a total of 765,625 discrete states
the finely discretized version contained 9,529,569 states.

approach, value iteration (described in section C), can be parallelized and so this computation time could
be reduced significantly using multiple cores.

Table 1: State variable descriptions and coarse and fine discretization points

State variable State Description Discretization

rx, ry Intruder range components −15, [−7,−3],−1, 0, 1, [3, 7], 15
vox, voy ownship velocity components −5,−3,−1, 0, 1, 3, 5 s−1

vix, viy intruder velocity components −5, [−3],−1, 0, 1, [3], 5 s−1

dx, dy desired trajectory distance −10, [−3],−1, 0, 1, [3], 10

The coarse set of grid discretizations provided adequate separation and trajectory deviation performance
with a reasonable computational burden, but improved performance was possible by more finely discretizing
each of the states. This finer discretization included the state values shown in table 1 that are surrounded
by brackets. While the coarse set contained a total of 765,625 discrete states, the finely discretized version
was more than twelve times larger with 9,529,569. The coarse set was used to select an optimal set of reward
parameters, as will be discussed in section IVB, because offline convergence time was reasonable, but the
results presented in section VI were generated with the finer set once the optimal reward parameters had
been selected. Convergence of this finer scheme took more than 11 days, even with the coarsely discretized
Q(s, a) matrix as a starting point, but performance improved significantly in several important ways that
will be discussed in section VIE, and so that policy was implemented for the batch simulations.

C. Value Iteration

The optimal policy can be obtained to arbitrary precision by following a basic dynamic programming ap-
proach known as value iteration.7 The Bellman update (eq. (1)) is applied to each of the discretized state-
action combinations in turn, calculating the state-action value function at every point using the sigma-point
sampling approach described previously. When every point has been evaluated the process is repeated,
iterating until a stopping criterion is met that indicates the current policy will not change substantially
with further iterations. For this problem, the stopping criteria were a combination of the maximum error in
Q(s, a) from one iteration to the next and a maximum number of optimal action changes from one iteration
to the next.

Considerable improvement in convergence speed can be obtained by initializing the estimate of the value
function to a previously evaluated policy with the same state-action discretization and a similar value of
the maximum negative reward parameter. This latter parameter was found to have the largest impact
on convergence speed of the reward parameters. The discount factor, γ, also had an important effect
on convergence speed, with larger values around 0.99 taking hundreds of iterations to converge. This large
discount factor was necessary to ensure the optimal policy would return to the desired trajectory after passing
the intruder instead of taking a “greedy” strategy of maximizing short-term reward by simply accelerating
away from the intruder.

Several examples of the optimal policies that resulted from the value iteration solution to the POMDP
are shown in fig. 2. In those policy plots, the ownship is shown as a quadrotor aircraft at the origin, and
the colors surrounding it represent the optimal actions to take based on the location of the intruder. The
entire eight-dimensional space cannot be represented here, so a “slice” through that state space showing the
effect of intruder range is shown. In the left diagram, both the intruder and ownship velocities are zero and
the ownship has no error from the desired trajectory. In the right diagram, the ownship is moving in the
positive y-axis direction at 1 s−1 with zero trajectory error and the nominal trajectory matches this velocity.
The intruder is stationary. For the stationary case on the left, the colors indicate, for example, that when
the intruder position lies in the black region centered around a relative range of (0,−10) the optimal action
is to move in the positive y-axis direction. The examples shown here are consistent with intuition, but to
show that the algorithm is working properly it is impossible to manually examine all relevant “slices” of the
state space. Instead, metrics that represent desired algorithm behavior must be formulated and evaluated
for a large number of realistic encounter trajectories.

6 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Ju

ne
 1

5,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
36

73

Probabilistic Graphical Models Applications 13 19. prosince 2024 42 / 113 - 245

QMDP Approximation

offline optimization
a few hours for coarse discretization, 1 PC
initially stationary intruders
intruders moving at uniform velocity with a variety of relative headings angles
intruders state and dynamic uncertainty were added to the encounters.

all values normalized
the coarse set contained a total of 765,625 discrete states
the finely discretized version contained 9,529,569 states.

approach, value iteration (described in section C), can be parallelized and so this computation time could
be reduced significantly using multiple cores.

Table 1: State variable descriptions and coarse and fine discretization points

State variable State Description Discretization

rx, ry Intruder range components −15, [−7,−3],−1, 0, 1, [3, 7], 15
vox, voy ownship velocity components −5,−3,−1, 0, 1, 3, 5 s−1

vix, viy intruder velocity components −5, [−3],−1, 0, 1, [3], 5 s−1

dx, dy desired trajectory distance −10, [−3],−1, 0, 1, [3], 10

The coarse set of grid discretizations provided adequate separation and trajectory deviation performance
with a reasonable computational burden, but improved performance was possible by more finely discretizing
each of the states. This finer discretization included the state values shown in table 1 that are surrounded
by brackets. While the coarse set contained a total of 765,625 discrete states, the finely discretized version
was more than twelve times larger with 9,529,569. The coarse set was used to select an optimal set of reward
parameters, as will be discussed in section IVB, because offline convergence time was reasonable, but the
results presented in section VI were generated with the finer set once the optimal reward parameters had
been selected. Convergence of this finer scheme took more than 11 days, even with the coarsely discretized
Q(s, a) matrix as a starting point, but performance improved significantly in several important ways that
will be discussed in section VIE, and so that policy was implemented for the batch simulations.

C. Value Iteration

The optimal policy can be obtained to arbitrary precision by following a basic dynamic programming ap-
proach known as value iteration.7 The Bellman update (eq. (1)) is applied to each of the discretized state-
action combinations in turn, calculating the state-action value function at every point using the sigma-point
sampling approach described previously. When every point has been evaluated the process is repeated,
iterating until a stopping criterion is met that indicates the current policy will not change substantially
with further iterations. For this problem, the stopping criteria were a combination of the maximum error in
Q(s, a) from one iteration to the next and a maximum number of optimal action changes from one iteration
to the next.

Considerable improvement in convergence speed can be obtained by initializing the estimate of the value
function to a previously evaluated policy with the same state-action discretization and a similar value of
the maximum negative reward parameter. This latter parameter was found to have the largest impact
on convergence speed of the reward parameters. The discount factor, γ, also had an important effect
on convergence speed, with larger values around 0.99 taking hundreds of iterations to converge. This large
discount factor was necessary to ensure the optimal policy would return to the desired trajectory after passing
the intruder instead of taking a “greedy” strategy of maximizing short-term reward by simply accelerating
away from the intruder.

Several examples of the optimal policies that resulted from the value iteration solution to the POMDP
are shown in fig. 2. In those policy plots, the ownship is shown as a quadrotor aircraft at the origin, and
the colors surrounding it represent the optimal actions to take based on the location of the intruder. The
entire eight-dimensional space cannot be represented here, so a “slice” through that state space showing the
effect of intruder range is shown. In the left diagram, both the intruder and ownship velocities are zero and
the ownship has no error from the desired trajectory. In the right diagram, the ownship is moving in the
positive y-axis direction at 1 s−1 with zero trajectory error and the nominal trajectory matches this velocity.
The intruder is stationary. For the stationary case on the left, the colors indicate, for example, that when
the intruder position lies in the black region centered around a relative range of (0,−10) the optimal action
is to move in the positive y-axis direction. The examples shown here are consistent with intuition, but to
show that the algorithm is working properly it is impossible to manually examine all relevant “slices” of the
state space. Instead, metrics that represent desired algorithm behavior must be formulated and evaluated
for a large number of realistic encounter trajectories.

6 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Ju

ne
 1

5,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
36

73

Probabilistic Graphical Models Applications 13 19. prosince 2024 42 / 113 - 245

QMDP Approximation

offline optimization
a few hours for coarse discretization, 1 PC
initially stationary intruders
intruders moving at uniform velocity with a variety of relative headings angles
intruders state and dynamic uncertainty were added to the encounters.

all values normalized
the coarse set contained a total of 765,625 discrete states
the finely discretized version contained 9,529,569 states.

approach, value iteration (described in section C), can be parallelized and so this computation time could
be reduced significantly using multiple cores.

Table 1: State variable descriptions and coarse and fine discretization points

State variable State Description Discretization

rx, ry Intruder range components −15, [−7,−3],−1, 0, 1, [3, 7], 15
vox, voy ownship velocity components −5,−3,−1, 0, 1, 3, 5 s−1

vix, viy intruder velocity components −5, [−3],−1, 0, 1, [3], 5 s−1

dx, dy desired trajectory distance −10, [−3],−1, 0, 1, [3], 10

The coarse set of grid discretizations provided adequate separation and trajectory deviation performance
with a reasonable computational burden, but improved performance was possible by more finely discretizing
each of the states. This finer discretization included the state values shown in table 1 that are surrounded
by brackets. While the coarse set contained a total of 765,625 discrete states, the finely discretized version
was more than twelve times larger with 9,529,569. The coarse set was used to select an optimal set of reward
parameters, as will be discussed in section IVB, because offline convergence time was reasonable, but the
results presented in section VI were generated with the finer set once the optimal reward parameters had
been selected. Convergence of this finer scheme took more than 11 days, even with the coarsely discretized
Q(s, a) matrix as a starting point, but performance improved significantly in several important ways that
will be discussed in section VIE, and so that policy was implemented for the batch simulations.

C. Value Iteration

The optimal policy can be obtained to arbitrary precision by following a basic dynamic programming ap-
proach known as value iteration.7 The Bellman update (eq. (1)) is applied to each of the discretized state-
action combinations in turn, calculating the state-action value function at every point using the sigma-point
sampling approach described previously. When every point has been evaluated the process is repeated,
iterating until a stopping criterion is met that indicates the current policy will not change substantially
with further iterations. For this problem, the stopping criteria were a combination of the maximum error in
Q(s, a) from one iteration to the next and a maximum number of optimal action changes from one iteration
to the next.

Considerable improvement in convergence speed can be obtained by initializing the estimate of the value
function to a previously evaluated policy with the same state-action discretization and a similar value of
the maximum negative reward parameter. This latter parameter was found to have the largest impact
on convergence speed of the reward parameters. The discount factor, γ, also had an important effect
on convergence speed, with larger values around 0.99 taking hundreds of iterations to converge. This large
discount factor was necessary to ensure the optimal policy would return to the desired trajectory after passing
the intruder instead of taking a “greedy” strategy of maximizing short-term reward by simply accelerating
away from the intruder.

Several examples of the optimal policies that resulted from the value iteration solution to the POMDP
are shown in fig. 2. In those policy plots, the ownship is shown as a quadrotor aircraft at the origin, and
the colors surrounding it represent the optimal actions to take based on the location of the intruder. The
entire eight-dimensional space cannot be represented here, so a “slice” through that state space showing the
effect of intruder range is shown. In the left diagram, both the intruder and ownship velocities are zero and
the ownship has no error from the desired trajectory. In the right diagram, the ownship is moving in the
positive y-axis direction at 1 s−1 with zero trajectory error and the nominal trajectory matches this velocity.
The intruder is stationary. For the stationary case on the left, the colors indicate, for example, that when
the intruder position lies in the black region centered around a relative range of (0,−10) the optimal action
is to move in the positive y-axis direction. The examples shown here are consistent with intuition, but to
show that the algorithm is working properly it is impossible to manually examine all relevant “slices” of the
state space. Instead, metrics that represent desired algorithm behavior must be formulated and evaluated
for a large number of realistic encounter trajectories.

6 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Ju

ne
 1

5,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
36

73

Probabilistic Graphical Models Applications 13 19. prosince 2024 42 / 113 - 245

QMDP Approximation

offline optimization
a few hours for coarse discretization, 1 PC
initially stationary intruders
intruders moving at uniform velocity with a variety of relative headings angles
intruders state and dynamic uncertainty were added to the encounters.

all values normalized
the coarse set contained a total of 765,625 discrete states
the finely discretized version contained 9,529,569 states.

approach, value iteration (described in section C), can be parallelized and so this computation time could
be reduced significantly using multiple cores.

Table 1: State variable descriptions and coarse and fine discretization points

State variable State Description Discretization

rx, ry Intruder range components −15, [−7,−3],−1, 0, 1, [3, 7], 15
vox, voy ownship velocity components −5,−3,−1, 0, 1, 3, 5 s−1

vix, viy intruder velocity components −5, [−3],−1, 0, 1, [3], 5 s−1

dx, dy desired trajectory distance −10, [−3],−1, 0, 1, [3], 10

The coarse set of grid discretizations provided adequate separation and trajectory deviation performance
with a reasonable computational burden, but improved performance was possible by more finely discretizing
each of the states. This finer discretization included the state values shown in table 1 that are surrounded
by brackets. While the coarse set contained a total of 765,625 discrete states, the finely discretized version
was more than twelve times larger with 9,529,569. The coarse set was used to select an optimal set of reward
parameters, as will be discussed in section IVB, because offline convergence time was reasonable, but the
results presented in section VI were generated with the finer set once the optimal reward parameters had
been selected. Convergence of this finer scheme took more than 11 days, even with the coarsely discretized
Q(s, a) matrix as a starting point, but performance improved significantly in several important ways that
will be discussed in section VIE, and so that policy was implemented for the batch simulations.

C. Value Iteration

The optimal policy can be obtained to arbitrary precision by following a basic dynamic programming ap-
proach known as value iteration.7 The Bellman update (eq. (1)) is applied to each of the discretized state-
action combinations in turn, calculating the state-action value function at every point using the sigma-point
sampling approach described previously. When every point has been evaluated the process is repeated,
iterating until a stopping criterion is met that indicates the current policy will not change substantially
with further iterations. For this problem, the stopping criteria were a combination of the maximum error in
Q(s, a) from one iteration to the next and a maximum number of optimal action changes from one iteration
to the next.

Considerable improvement in convergence speed can be obtained by initializing the estimate of the value
function to a previously evaluated policy with the same state-action discretization and a similar value of
the maximum negative reward parameter. This latter parameter was found to have the largest impact
on convergence speed of the reward parameters. The discount factor, γ, also had an important effect
on convergence speed, with larger values around 0.99 taking hundreds of iterations to converge. This large
discount factor was necessary to ensure the optimal policy would return to the desired trajectory after passing
the intruder instead of taking a “greedy” strategy of maximizing short-term reward by simply accelerating
away from the intruder.

Several examples of the optimal policies that resulted from the value iteration solution to the POMDP
are shown in fig. 2. In those policy plots, the ownship is shown as a quadrotor aircraft at the origin, and
the colors surrounding it represent the optimal actions to take based on the location of the intruder. The
entire eight-dimensional space cannot be represented here, so a “slice” through that state space showing the
effect of intruder range is shown. In the left diagram, both the intruder and ownship velocities are zero and
the ownship has no error from the desired trajectory. In the right diagram, the ownship is moving in the
positive y-axis direction at 1 s−1 with zero trajectory error and the nominal trajectory matches this velocity.
The intruder is stationary. For the stationary case on the left, the colors indicate, for example, that when
the intruder position lies in the black region centered around a relative range of (0,−10) the optimal action
is to move in the positive y-axis direction. The examples shown here are consistent with intuition, but to
show that the algorithm is working properly it is impossible to manually examine all relevant “slices” of the
state space. Instead, metrics that represent desired algorithm behavior must be formulated and evaluated
for a large number of realistic encounter trajectories.

6 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Ju

ne
 1

5,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
36

73

Probabilistic Graphical Models Applications 13 19. prosince 2024 42 / 113 - 245

QMDP Approximation

offline optimization
a few hours for coarse discretization, 1 PC
initially stationary intruders
intruders moving at uniform velocity with a variety of relative headings angles
intruders state and dynamic uncertainty were added to the encounters.

all values normalized
the coarse set contained a total of 765,625 discrete states
the finely discretized version contained 9,529,569 states.

approach, value iteration (described in section C), can be parallelized and so this computation time could
be reduced significantly using multiple cores.

Table 1: State variable descriptions and coarse and fine discretization points

State variable State Description Discretization

rx, ry Intruder range components −15, [−7,−3],−1, 0, 1, [3, 7], 15
vox, voy ownship velocity components −5,−3,−1, 0, 1, 3, 5 s−1

vix, viy intruder velocity components −5, [−3],−1, 0, 1, [3], 5 s−1

dx, dy desired trajectory distance −10, [−3],−1, 0, 1, [3], 10

The coarse set of grid discretizations provided adequate separation and trajectory deviation performance
with a reasonable computational burden, but improved performance was possible by more finely discretizing
each of the states. This finer discretization included the state values shown in table 1 that are surrounded
by brackets. While the coarse set contained a total of 765,625 discrete states, the finely discretized version
was more than twelve times larger with 9,529,569. The coarse set was used to select an optimal set of reward
parameters, as will be discussed in section IVB, because offline convergence time was reasonable, but the
results presented in section VI were generated with the finer set once the optimal reward parameters had
been selected. Convergence of this finer scheme took more than 11 days, even with the coarsely discretized
Q(s, a) matrix as a starting point, but performance improved significantly in several important ways that
will be discussed in section VIE, and so that policy was implemented for the batch simulations.

C. Value Iteration

The optimal policy can be obtained to arbitrary precision by following a basic dynamic programming ap-
proach known as value iteration.7 The Bellman update (eq. (1)) is applied to each of the discretized state-
action combinations in turn, calculating the state-action value function at every point using the sigma-point
sampling approach described previously. When every point has been evaluated the process is repeated,
iterating until a stopping criterion is met that indicates the current policy will not change substantially
with further iterations. For this problem, the stopping criteria were a combination of the maximum error in
Q(s, a) from one iteration to the next and a maximum number of optimal action changes from one iteration
to the next.

Considerable improvement in convergence speed can be obtained by initializing the estimate of the value
function to a previously evaluated policy with the same state-action discretization and a similar value of
the maximum negative reward parameter. This latter parameter was found to have the largest impact
on convergence speed of the reward parameters. The discount factor, γ, also had an important effect
on convergence speed, with larger values around 0.99 taking hundreds of iterations to converge. This large
discount factor was necessary to ensure the optimal policy would return to the desired trajectory after passing
the intruder instead of taking a “greedy” strategy of maximizing short-term reward by simply accelerating
away from the intruder.

Several examples of the optimal policies that resulted from the value iteration solution to the POMDP
are shown in fig. 2. In those policy plots, the ownship is shown as a quadrotor aircraft at the origin, and
the colors surrounding it represent the optimal actions to take based on the location of the intruder. The
entire eight-dimensional space cannot be represented here, so a “slice” through that state space showing the
effect of intruder range is shown. In the left diagram, both the intruder and ownship velocities are zero and
the ownship has no error from the desired trajectory. In the right diagram, the ownship is moving in the
positive y-axis direction at 1 s−1 with zero trajectory error and the nominal trajectory matches this velocity.
The intruder is stationary. For the stationary case on the left, the colors indicate, for example, that when
the intruder position lies in the black region centered around a relative range of (0,−10) the optimal action
is to move in the positive y-axis direction. The examples shown here are consistent with intuition, but to
show that the algorithm is working properly it is impossible to manually examine all relevant “slices” of the
state space. Instead, metrics that represent desired algorithm behavior must be formulated and evaluated
for a large number of realistic encounter trajectories.

6 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Ju

ne
 1

5,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
36

73

Probabilistic Graphical Models Applications 13 19. prosince 2024 42 / 113 - 245

QMDP Approximation

offline optimization
a few hours for coarse discretization, 1 PC
initially stationary intruders
intruders moving at uniform velocity with a variety of relative headings angles
intruders state and dynamic uncertainty were added to the encounters.

all values normalized
the coarse set contained a total of 765,625 discrete states
the finely discretized version contained 9,529,569 states.

approach, value iteration (described in section C), can be parallelized and so this computation time could
be reduced significantly using multiple cores.

Table 1: State variable descriptions and coarse and fine discretization points

State variable State Description Discretization

rx, ry Intruder range components −15, [−7,−3],−1, 0, 1, [3, 7], 15
vox, voy ownship velocity components −5,−3,−1, 0, 1, 3, 5 s−1

vix, viy intruder velocity components −5, [−3],−1, 0, 1, [3], 5 s−1

dx, dy desired trajectory distance −10, [−3],−1, 0, 1, [3], 10

The coarse set of grid discretizations provided adequate separation and trajectory deviation performance
with a reasonable computational burden, but improved performance was possible by more finely discretizing
each of the states. This finer discretization included the state values shown in table 1 that are surrounded
by brackets. While the coarse set contained a total of 765,625 discrete states, the finely discretized version
was more than twelve times larger with 9,529,569. The coarse set was used to select an optimal set of reward
parameters, as will be discussed in section IVB, because offline convergence time was reasonable, but the
results presented in section VI were generated with the finer set once the optimal reward parameters had
been selected. Convergence of this finer scheme took more than 11 days, even with the coarsely discretized
Q(s, a) matrix as a starting point, but performance improved significantly in several important ways that
will be discussed in section VIE, and so that policy was implemented for the batch simulations.

C. Value Iteration

The optimal policy can be obtained to arbitrary precision by following a basic dynamic programming ap-
proach known as value iteration.7 The Bellman update (eq. (1)) is applied to each of the discretized state-
action combinations in turn, calculating the state-action value function at every point using the sigma-point
sampling approach described previously. When every point has been evaluated the process is repeated,
iterating until a stopping criterion is met that indicates the current policy will not change substantially
with further iterations. For this problem, the stopping criteria were a combination of the maximum error in
Q(s, a) from one iteration to the next and a maximum number of optimal action changes from one iteration
to the next.

Considerable improvement in convergence speed can be obtained by initializing the estimate of the value
function to a previously evaluated policy with the same state-action discretization and a similar value of
the maximum negative reward parameter. This latter parameter was found to have the largest impact
on convergence speed of the reward parameters. The discount factor, γ, also had an important effect
on convergence speed, with larger values around 0.99 taking hundreds of iterations to converge. This large
discount factor was necessary to ensure the optimal policy would return to the desired trajectory after passing
the intruder instead of taking a “greedy” strategy of maximizing short-term reward by simply accelerating
away from the intruder.

Several examples of the optimal policies that resulted from the value iteration solution to the POMDP
are shown in fig. 2. In those policy plots, the ownship is shown as a quadrotor aircraft at the origin, and
the colors surrounding it represent the optimal actions to take based on the location of the intruder. The
entire eight-dimensional space cannot be represented here, so a “slice” through that state space showing the
effect of intruder range is shown. In the left diagram, both the intruder and ownship velocities are zero and
the ownship has no error from the desired trajectory. In the right diagram, the ownship is moving in the
positive y-axis direction at 1 s−1 with zero trajectory error and the nominal trajectory matches this velocity.
The intruder is stationary. For the stationary case on the left, the colors indicate, for example, that when
the intruder position lies in the black region centered around a relative range of (0,−10) the optimal action
is to move in the positive y-axis direction. The examples shown here are consistent with intuition, but to
show that the algorithm is working properly it is impossible to manually examine all relevant “slices” of the
state space. Instead, metrics that represent desired algorithm behavior must be formulated and evaluated
for a large number of realistic encounter trajectories.

6 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Ju

ne
 1

5,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
36

73

Probabilistic Graphical Models Applications 13 19. prosince 2024 42 / 113 - 245

QMDP Approximation

offline optimization
a few hours for coarse discretization, 1 PC
initially stationary intruders
intruders moving at uniform velocity with a variety of relative headings angles
intruders state and dynamic uncertainty were added to the encounters.

all values normalized
the coarse set contained a total of 765,625 discrete states
the finely discretized version contained 9,529,569 states.

approach, value iteration (described in section C), can be parallelized and so this computation time could
be reduced significantly using multiple cores.

Table 1: State variable descriptions and coarse and fine discretization points

State variable State Description Discretization

rx, ry Intruder range components −15, [−7,−3],−1, 0, 1, [3, 7], 15
vox, voy ownship velocity components −5,−3,−1, 0, 1, 3, 5 s−1

vix, viy intruder velocity components −5, [−3],−1, 0, 1, [3], 5 s−1

dx, dy desired trajectory distance −10, [−3],−1, 0, 1, [3], 10

The coarse set of grid discretizations provided adequate separation and trajectory deviation performance
with a reasonable computational burden, but improved performance was possible by more finely discretizing
each of the states. This finer discretization included the state values shown in table 1 that are surrounded
by brackets. While the coarse set contained a total of 765,625 discrete states, the finely discretized version
was more than twelve times larger with 9,529,569. The coarse set was used to select an optimal set of reward
parameters, as will be discussed in section IVB, because offline convergence time was reasonable, but the
results presented in section VI were generated with the finer set once the optimal reward parameters had
been selected. Convergence of this finer scheme took more than 11 days, even with the coarsely discretized
Q(s, a) matrix as a starting point, but performance improved significantly in several important ways that
will be discussed in section VIE, and so that policy was implemented for the batch simulations.

C. Value Iteration

The optimal policy can be obtained to arbitrary precision by following a basic dynamic programming ap-
proach known as value iteration.7 The Bellman update (eq. (1)) is applied to each of the discretized state-
action combinations in turn, calculating the state-action value function at every point using the sigma-point
sampling approach described previously. When every point has been evaluated the process is repeated,
iterating until a stopping criterion is met that indicates the current policy will not change substantially
with further iterations. For this problem, the stopping criteria were a combination of the maximum error in
Q(s, a) from one iteration to the next and a maximum number of optimal action changes from one iteration
to the next.

Considerable improvement in convergence speed can be obtained by initializing the estimate of the value
function to a previously evaluated policy with the same state-action discretization and a similar value of
the maximum negative reward parameter. This latter parameter was found to have the largest impact
on convergence speed of the reward parameters. The discount factor, γ, also had an important effect
on convergence speed, with larger values around 0.99 taking hundreds of iterations to converge. This large
discount factor was necessary to ensure the optimal policy would return to the desired trajectory after passing
the intruder instead of taking a “greedy” strategy of maximizing short-term reward by simply accelerating
away from the intruder.

Several examples of the optimal policies that resulted from the value iteration solution to the POMDP
are shown in fig. 2. In those policy plots, the ownship is shown as a quadrotor aircraft at the origin, and
the colors surrounding it represent the optimal actions to take based on the location of the intruder. The
entire eight-dimensional space cannot be represented here, so a “slice” through that state space showing the
effect of intruder range is shown. In the left diagram, both the intruder and ownship velocities are zero and
the ownship has no error from the desired trajectory. In the right diagram, the ownship is moving in the
positive y-axis direction at 1 s−1 with zero trajectory error and the nominal trajectory matches this velocity.
The intruder is stationary. For the stationary case on the left, the colors indicate, for example, that when
the intruder position lies in the black region centered around a relative range of (0,−10) the optimal action
is to move in the positive y-axis direction. The examples shown here are consistent with intuition, but to
show that the algorithm is working properly it is impossible to manually examine all relevant “slices” of the
state space. Instead, metrics that represent desired algorithm behavior must be formulated and evaluated
for a large number of realistic encounter trajectories.

6 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Ju

ne
 1

5,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
36

73

Probabilistic Graphical Models Applications 13 19. prosince 2024 42 / 113 - 245

QMDP Approximation

offline optimization
a few hours for coarse discretization, 1 PC
initially stationary intruders
intruders moving at uniform velocity with a variety of relative headings angles
intruders state and dynamic uncertainty were added to the encounters.

all values normalized
the coarse set contained a total of 765,625 discrete states
the finely discretized version contained 9,529,569 states.

approach, value iteration (described in section C), can be parallelized and so this computation time could
be reduced significantly using multiple cores.

Table 1: State variable descriptions and coarse and fine discretization points

State variable State Description Discretization

rx, ry Intruder range components −15, [−7,−3],−1, 0, 1, [3, 7], 15
vox, voy ownship velocity components −5,−3,−1, 0, 1, 3, 5 s−1

vix, viy intruder velocity components −5, [−3],−1, 0, 1, [3], 5 s−1

dx, dy desired trajectory distance −10, [−3],−1, 0, 1, [3], 10

The coarse set of grid discretizations provided adequate separation and trajectory deviation performance
with a reasonable computational burden, but improved performance was possible by more finely discretizing
each of the states. This finer discretization included the state values shown in table 1 that are surrounded
by brackets. While the coarse set contained a total of 765,625 discrete states, the finely discretized version
was more than twelve times larger with 9,529,569. The coarse set was used to select an optimal set of reward
parameters, as will be discussed in section IVB, because offline convergence time was reasonable, but the
results presented in section VI were generated with the finer set once the optimal reward parameters had
been selected. Convergence of this finer scheme took more than 11 days, even with the coarsely discretized
Q(s, a) matrix as a starting point, but performance improved significantly in several important ways that
will be discussed in section VIE, and so that policy was implemented for the batch simulations.

C. Value Iteration

The optimal policy can be obtained to arbitrary precision by following a basic dynamic programming ap-
proach known as value iteration.7 The Bellman update (eq. (1)) is applied to each of the discretized state-
action combinations in turn, calculating the state-action value function at every point using the sigma-point
sampling approach described previously. When every point has been evaluated the process is repeated,
iterating until a stopping criterion is met that indicates the current policy will not change substantially
with further iterations. For this problem, the stopping criteria were a combination of the maximum error in
Q(s, a) from one iteration to the next and a maximum number of optimal action changes from one iteration
to the next.

Considerable improvement in convergence speed can be obtained by initializing the estimate of the value
function to a previously evaluated policy with the same state-action discretization and a similar value of
the maximum negative reward parameter. This latter parameter was found to have the largest impact
on convergence speed of the reward parameters. The discount factor, γ, also had an important effect
on convergence speed, with larger values around 0.99 taking hundreds of iterations to converge. This large
discount factor was necessary to ensure the optimal policy would return to the desired trajectory after passing
the intruder instead of taking a “greedy” strategy of maximizing short-term reward by simply accelerating
away from the intruder.

Several examples of the optimal policies that resulted from the value iteration solution to the POMDP
are shown in fig. 2. In those policy plots, the ownship is shown as a quadrotor aircraft at the origin, and
the colors surrounding it represent the optimal actions to take based on the location of the intruder. The
entire eight-dimensional space cannot be represented here, so a “slice” through that state space showing the
effect of intruder range is shown. In the left diagram, both the intruder and ownship velocities are zero and
the ownship has no error from the desired trajectory. In the right diagram, the ownship is moving in the
positive y-axis direction at 1 s−1 with zero trajectory error and the nominal trajectory matches this velocity.
The intruder is stationary. For the stationary case on the left, the colors indicate, for example, that when
the intruder position lies in the black region centered around a relative range of (0,−10) the optimal action
is to move in the positive y-axis direction. The examples shown here are consistent with intuition, but to
show that the algorithm is working properly it is impossible to manually examine all relevant “slices” of the
state space. Instead, metrics that represent desired algorithm behavior must be formulated and evaluated
for a large number of realistic encounter trajectories.

6 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Ju

ne
 1

5,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
36

73

Probabilistic Graphical Models Applications 13 19. prosince 2024 42 / 113 - 245

Evaluation Function
The primary goal is to remain safely
separated from the intruder aircraft.

r5%CPA ’the closest point of
approach’, we allow 5%
trajectories a little bit closer.

Figure: required 1.5 units, never
closer than 1.1 units.
Mean deviation distance from
the desired trajectory µdev .

A. Reward Parameter Tuning Metrics

The primary goal of a collision avoidance algorithm is to remain safely separated from intruder aircraft.
The first metric used to evaluate the QMDP algorithm, r5%CPA, therefore, is the separation achieved in
most, but not all, encounters. The cumulative distribution of separations for 500 simulated encounters with
stationary intruders shown in fig. 3 illustrates the desired behavior: for a required separation of 1.5 units,
approximately 5% have a CPA within this range and none are closer than 1.1 units. The red line shows the
distribution of original predicted minimum separations before any avoidance actions are taken; nearly all
encounters are predicted to violate required separation. Specifying the separation metric as the horizontal
distance at CPA achieved by 95% of encounters improves the robustness of the algorithm to noise by allowing
a small number of minor violations of the separation standard without requiring large trajectory deviations.

The second optimization metric, µdev, accounts for the desire to avoid course deviation. It is defined
simply as the average deviation distance over time, averaged over all the simulated encounters. An example
cumulative distribution of mean and maximum trajectory deviations for 500 simulated encounters is shown
in fig. 4. Cumulative distributions on the left side of the chart are desirable, they indicate smaller deviations
from the desired trajectory. The maximum single-point deviation distribution for each encounter, which is
another relevant algorithm evaluation metric, is also shown in fig. 4. Each simulation is concluded shortly
after the ownship has passed the intruder and had sufficient time to return to the desired trajectory.

Figure 3: Separation metric used to evaluate the collision avoidance algorithm

Figure 4: Deviation metric used to evaluate the collision avoidance algorithm

B. Multi-Objective Optimization

The overall optimization approach for this algorithm consists of two loops as shown in fig. 5. In the first loop,
a given set of reward parameters is selected and the collision avoidance algorithm is posed as a POMDP. This

8 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Ju

ne
 1

5,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
36

73

Probabilistic Graphical Models Applications 13 19. prosince 2024 43 / 113 - 245

Evaluation Function
The primary goal is to remain safely
separated from the intruder aircraft.

r5%CPA ’the closest point of
approach’, we allow 5%
trajectories a little bit closer.

Figure: required 1.5 units, never
closer than 1.1 units.
Mean deviation distance from
the desired trajectory µdev .

A. Reward Parameter Tuning Metrics

The primary goal of a collision avoidance algorithm is to remain safely separated from intruder aircraft.
The first metric used to evaluate the QMDP algorithm, r5%CPA, therefore, is the separation achieved in
most, but not all, encounters. The cumulative distribution of separations for 500 simulated encounters with
stationary intruders shown in fig. 3 illustrates the desired behavior: for a required separation of 1.5 units,
approximately 5% have a CPA within this range and none are closer than 1.1 units. The red line shows the
distribution of original predicted minimum separations before any avoidance actions are taken; nearly all
encounters are predicted to violate required separation. Specifying the separation metric as the horizontal
distance at CPA achieved by 95% of encounters improves the robustness of the algorithm to noise by allowing
a small number of minor violations of the separation standard without requiring large trajectory deviations.

The second optimization metric, µdev, accounts for the desire to avoid course deviation. It is defined
simply as the average deviation distance over time, averaged over all the simulated encounters. An example
cumulative distribution of mean and maximum trajectory deviations for 500 simulated encounters is shown
in fig. 4. Cumulative distributions on the left side of the chart are desirable, they indicate smaller deviations
from the desired trajectory. The maximum single-point deviation distribution for each encounter, which is
another relevant algorithm evaluation metric, is also shown in fig. 4. Each simulation is concluded shortly
after the ownship has passed the intruder and had sufficient time to return to the desired trajectory.

Figure 3: Separation metric used to evaluate the collision avoidance algorithm

Figure 4: Deviation metric used to evaluate the collision avoidance algorithm

B. Multi-Objective Optimization

The overall optimization approach for this algorithm consists of two loops as shown in fig. 5. In the first loop,
a given set of reward parameters is selected and the collision avoidance algorithm is posed as a POMDP. This

8 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Ju

ne
 1

5,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
36

73

Probabilistic Graphical Models Applications 13 19. prosince 2024 43 / 113 - 245

Evaluation Function
The primary goal is to remain safely
separated from the intruder aircraft.

r5%CPA ’the closest point of
approach’, we allow 5%
trajectories a little bit closer.

Figure: required 1.5 units, never
closer than 1.1 units.
Mean deviation distance from
the desired trajectory µdev .

A. Reward Parameter Tuning Metrics

The primary goal of a collision avoidance algorithm is to remain safely separated from intruder aircraft.
The first metric used to evaluate the QMDP algorithm, r5%CPA, therefore, is the separation achieved in
most, but not all, encounters. The cumulative distribution of separations for 500 simulated encounters with
stationary intruders shown in fig. 3 illustrates the desired behavior: for a required separation of 1.5 units,
approximately 5% have a CPA within this range and none are closer than 1.1 units. The red line shows the
distribution of original predicted minimum separations before any avoidance actions are taken; nearly all
encounters are predicted to violate required separation. Specifying the separation metric as the horizontal
distance at CPA achieved by 95% of encounters improves the robustness of the algorithm to noise by allowing
a small number of minor violations of the separation standard without requiring large trajectory deviations.

The second optimization metric, µdev, accounts for the desire to avoid course deviation. It is defined
simply as the average deviation distance over time, averaged over all the simulated encounters. An example
cumulative distribution of mean and maximum trajectory deviations for 500 simulated encounters is shown
in fig. 4. Cumulative distributions on the left side of the chart are desirable, they indicate smaller deviations
from the desired trajectory. The maximum single-point deviation distribution for each encounter, which is
another relevant algorithm evaluation metric, is also shown in fig. 4. Each simulation is concluded shortly
after the ownship has passed the intruder and had sufficient time to return to the desired trajectory.

Figure 3: Separation metric used to evaluate the collision avoidance algorithm

Figure 4: Deviation metric used to evaluate the collision avoidance algorithm

B. Multi-Objective Optimization

The overall optimization approach for this algorithm consists of two loops as shown in fig. 5. In the first loop,
a given set of reward parameters is selected and the collision avoidance algorithm is posed as a POMDP. This

8 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Ju

ne
 1

5,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
36

73

Probabilistic Graphical Models Applications 13 19. prosince 2024 43 / 113 - 245

Evaluation Function
The primary goal is to remain safely
separated from the intruder aircraft.

r5%CPA ’the closest point of
approach’, we allow 5%
trajectories a little bit closer.

Figure: required 1.5 units, never
closer than 1.1 units.
Mean deviation distance from
the desired trajectory µdev .

A. Reward Parameter Tuning Metrics

The primary goal of a collision avoidance algorithm is to remain safely separated from intruder aircraft.
The first metric used to evaluate the QMDP algorithm, r5%CPA, therefore, is the separation achieved in
most, but not all, encounters. The cumulative distribution of separations for 500 simulated encounters with
stationary intruders shown in fig. 3 illustrates the desired behavior: for a required separation of 1.5 units,
approximately 5% have a CPA within this range and none are closer than 1.1 units. The red line shows the
distribution of original predicted minimum separations before any avoidance actions are taken; nearly all
encounters are predicted to violate required separation. Specifying the separation metric as the horizontal
distance at CPA achieved by 95% of encounters improves the robustness of the algorithm to noise by allowing
a small number of minor violations of the separation standard without requiring large trajectory deviations.

The second optimization metric, µdev, accounts for the desire to avoid course deviation. It is defined
simply as the average deviation distance over time, averaged over all the simulated encounters. An example
cumulative distribution of mean and maximum trajectory deviations for 500 simulated encounters is shown
in fig. 4. Cumulative distributions on the left side of the chart are desirable, they indicate smaller deviations
from the desired trajectory. The maximum single-point deviation distribution for each encounter, which is
another relevant algorithm evaluation metric, is also shown in fig. 4. Each simulation is concluded shortly
after the ownship has passed the intruder and had sufficient time to return to the desired trajectory.

Figure 3: Separation metric used to evaluate the collision avoidance algorithm

Figure 4: Deviation metric used to evaluate the collision avoidance algorithm

B. Multi-Objective Optimization

The overall optimization approach for this algorithm consists of two loops as shown in fig. 5. In the first loop,
a given set of reward parameters is selected and the collision avoidance algorithm is posed as a POMDP. This

8 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Ju

ne
 1

5,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
36

73

Probabilistic Graphical Models Applications 13 19. prosince 2024 43 / 113 - 245

Reward Tuning – Bayesian Optimization

We tune RP = (KT ,Ks ,Rmin)
β weights the two objective
functions

F (RP) = (β×(r5%CPA)−1+(1−β)×µdev).

Gaussian process models F (RP).
We determine the point at
which the objective function is
expected to have the largest
improvement, E [I(F (RP))] over
that of the current minimum.
This set of RP is passed to
QMDP to evaluate.
until convergence.

POMDP is solved via value iteration to find the optimal set of state-action combinations across a discretized
state space as described in the previous section. The reward parameters that are varied in the inner part of
the optimization loop include

RP = (KT ,KS , Rmin). (5)

The state-action pairs are next used in a batch simulation to determine the trajectories followed by the
ownship for a set of stochastic initial conditions with ownship and intruder dynamic uncertainty (see section
VB). These trajectories are used to calculate the separation and deviation metrics, and are combined into a
single objective function through the use of a relative weighting factor, β, as shown in eq. (6). The objective
is to be minimized over the reward parameters used to generate the QMDP policy,

min
KS ,KT ,Rmin

F (RP) =
(
β × (r5%CPA)

−1 + (1− β)× µdev
)
. (6)

In order to combine metrics in which one is to be maximized (separation) and the other minimized
(deviation), the inverse of the CPA metric is used instead of its actual value. The relationship between the
metrics and objective function evaluations is modeled by a GP, which is then sampled to determine the point
at which the objective function is expected to have the largest improvement, E [I (F (RP))], over that of the
current minimum. This set of reward parameters, RP , is then passed back into the MDP optimization and
the process repeats until the convergence criteria are met.

Reward
Parameters

Dynamic
Programming

Policy Simulation

Metrics
Objective
Function

Gaussian
Process

β Range

Rp Q(s, a) π(b)

trajectories

r5%CPA, µdevF (RP)

E [I (F (RP))]

β

Figure 5: Process for tuning POMDP reward parameters

C. Gaussian Process Surrogate Model

A GP approach16 to determining the set of parameters, RP , that provided the minimum objective function
(see eq. (6)) was selected because it required far fewer evaluations of the objective function compared with
traditional gradient-based optimization techniques (e.g., quasi-Newton methods17) or even direct methods
(e.g., Nelder-Meade18). This characteristic is important because each optimization and batch simulation
loop may take up to three hours, so sparse sampling of the objective function is critical.

The GP surrogate model was created by first selecting a grid of reward parameters, RP , based on
previous experience with the algorithm. Sampling of the grid was done using several Latin hypercubes
to ensure adequate coverage across the parameter search space. These “seeds” condition the probability
distribution of the GP, giving it essentially a first guess at the topography of the objective function. A
squared exponential kernel function was selected for the covariance, with an initial length scale based on
observations of the features of the objective function during the grid evaluation step. That length scale
could be varied automatically based on a mean-square error metric.19 The parameter set with the maximum
expected improvement upon the current minimum of the objective function, E [I (F (RP))], was used to select
the next set of reward parameters, RP , for the subsequent optimization iteration. The uncertainty in the
two metrics was estimated through repeated evaluations of the same POMDP-optimized algorithm in batch

9 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Ju

ne
 1

5,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
36

73

Probabilistic Graphical Models Applications 13 19. prosince 2024 44 / 113 - 245

Reward Tuning – Bayesian Optimization

We tune RP = (KT ,Ks ,Rmin)
β weights the two objective
functions

F (RP) = (β×(r5%CPA)−1+(1−β)×µdev).

Gaussian process models F (RP).
We determine the point at
which the objective function is
expected to have the largest
improvement, E [I(F (RP))] over
that of the current minimum.
This set of RP is passed to
QMDP to evaluate.
until convergence.

POMDP is solved via value iteration to find the optimal set of state-action combinations across a discretized
state space as described in the previous section. The reward parameters that are varied in the inner part of
the optimization loop include

RP = (KT ,KS , Rmin). (5)

The state-action pairs are next used in a batch simulation to determine the trajectories followed by the
ownship for a set of stochastic initial conditions with ownship and intruder dynamic uncertainty (see section
VB). These trajectories are used to calculate the separation and deviation metrics, and are combined into a
single objective function through the use of a relative weighting factor, β, as shown in eq. (6). The objective
is to be minimized over the reward parameters used to generate the QMDP policy,

min
KS ,KT ,Rmin

F (RP) =
(
β × (r5%CPA)

−1 + (1− β)× µdev
)
. (6)

In order to combine metrics in which one is to be maximized (separation) and the other minimized
(deviation), the inverse of the CPA metric is used instead of its actual value. The relationship between the
metrics and objective function evaluations is modeled by a GP, which is then sampled to determine the point
at which the objective function is expected to have the largest improvement, E [I (F (RP))], over that of the
current minimum. This set of reward parameters, RP , is then passed back into the MDP optimization and
the process repeats until the convergence criteria are met.

Reward
Parameters

Dynamic
Programming

Policy Simulation

Metrics
Objective
Function

Gaussian
Process

β Range

Rp Q(s, a) π(b)

trajectories

r5%CPA, µdevF (RP)

E [I (F (RP))]

β

Figure 5: Process for tuning POMDP reward parameters

C. Gaussian Process Surrogate Model

A GP approach16 to determining the set of parameters, RP , that provided the minimum objective function
(see eq. (6)) was selected because it required far fewer evaluations of the objective function compared with
traditional gradient-based optimization techniques (e.g., quasi-Newton methods17) or even direct methods
(e.g., Nelder-Meade18). This characteristic is important because each optimization and batch simulation
loop may take up to three hours, so sparse sampling of the objective function is critical.

The GP surrogate model was created by first selecting a grid of reward parameters, RP , based on
previous experience with the algorithm. Sampling of the grid was done using several Latin hypercubes
to ensure adequate coverage across the parameter search space. These “seeds” condition the probability
distribution of the GP, giving it essentially a first guess at the topography of the objective function. A
squared exponential kernel function was selected for the covariance, with an initial length scale based on
observations of the features of the objective function during the grid evaluation step. That length scale
could be varied automatically based on a mean-square error metric.19 The parameter set with the maximum
expected improvement upon the current minimum of the objective function, E [I (F (RP))], was used to select
the next set of reward parameters, RP , for the subsequent optimization iteration. The uncertainty in the
two metrics was estimated through repeated evaluations of the same POMDP-optimized algorithm in batch

9 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Ju

ne
 1

5,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
36

73

Probabilistic Graphical Models Applications 13 19. prosince 2024 44 / 113 - 245

Reward Tuning – Bayesian Optimization

We tune RP = (KT ,Ks ,Rmin)
β weights the two objective
functions

F (RP) = (β×(r5%CPA)−1+(1−β)×µdev).

Gaussian process models F (RP).
We determine the point at
which the objective function is
expected to have the largest
improvement, E [I(F (RP))] over
that of the current minimum.
This set of RP is passed to
QMDP to evaluate.
until convergence.

POMDP is solved via value iteration to find the optimal set of state-action combinations across a discretized
state space as described in the previous section. The reward parameters that are varied in the inner part of
the optimization loop include

RP = (KT ,KS , Rmin). (5)

The state-action pairs are next used in a batch simulation to determine the trajectories followed by the
ownship for a set of stochastic initial conditions with ownship and intruder dynamic uncertainty (see section
VB). These trajectories are used to calculate the separation and deviation metrics, and are combined into a
single objective function through the use of a relative weighting factor, β, as shown in eq. (6). The objective
is to be minimized over the reward parameters used to generate the QMDP policy,

min
KS ,KT ,Rmin

F (RP) =
(
β × (r5%CPA)

−1 + (1− β)× µdev
)
. (6)

In order to combine metrics in which one is to be maximized (separation) and the other minimized
(deviation), the inverse of the CPA metric is used instead of its actual value. The relationship between the
metrics and objective function evaluations is modeled by a GP, which is then sampled to determine the point
at which the objective function is expected to have the largest improvement, E [I (F (RP))], over that of the
current minimum. This set of reward parameters, RP , is then passed back into the MDP optimization and
the process repeats until the convergence criteria are met.

Reward
Parameters

Dynamic
Programming

Policy Simulation

Metrics
Objective
Function

Gaussian
Process

β Range

Rp Q(s, a) π(b)

trajectories

r5%CPA, µdevF (RP)

E [I (F (RP))]

β

Figure 5: Process for tuning POMDP reward parameters

C. Gaussian Process Surrogate Model

A GP approach16 to determining the set of parameters, RP , that provided the minimum objective function
(see eq. (6)) was selected because it required far fewer evaluations of the objective function compared with
traditional gradient-based optimization techniques (e.g., quasi-Newton methods17) or even direct methods
(e.g., Nelder-Meade18). This characteristic is important because each optimization and batch simulation
loop may take up to three hours, so sparse sampling of the objective function is critical.

The GP surrogate model was created by first selecting a grid of reward parameters, RP , based on
previous experience with the algorithm. Sampling of the grid was done using several Latin hypercubes
to ensure adequate coverage across the parameter search space. These “seeds” condition the probability
distribution of the GP, giving it essentially a first guess at the topography of the objective function. A
squared exponential kernel function was selected for the covariance, with an initial length scale based on
observations of the features of the objective function during the grid evaluation step. That length scale
could be varied automatically based on a mean-square error metric.19 The parameter set with the maximum
expected improvement upon the current minimum of the objective function, E [I (F (RP))], was used to select
the next set of reward parameters, RP , for the subsequent optimization iteration. The uncertainty in the
two metrics was estimated through repeated evaluations of the same POMDP-optimized algorithm in batch

9 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Ju

ne
 1

5,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
36

73

Probabilistic Graphical Models Applications 13 19. prosince 2024 44 / 113 - 245

Reward Tuning – Bayesian Optimization

We tune RP = (KT ,Ks ,Rmin)
β weights the two objective
functions

F (RP) = (β×(r5%CPA)−1+(1−β)×µdev).

Gaussian process models F (RP).
We determine the point at
which the objective function is
expected to have the largest
improvement, E [I(F (RP))] over
that of the current minimum.
This set of RP is passed to
QMDP to evaluate.
until convergence.

POMDP is solved via value iteration to find the optimal set of state-action combinations across a discretized
state space as described in the previous section. The reward parameters that are varied in the inner part of
the optimization loop include

RP = (KT ,KS , Rmin). (5)

The state-action pairs are next used in a batch simulation to determine the trajectories followed by the
ownship for a set of stochastic initial conditions with ownship and intruder dynamic uncertainty (see section
VB). These trajectories are used to calculate the separation and deviation metrics, and are combined into a
single objective function through the use of a relative weighting factor, β, as shown in eq. (6). The objective
is to be minimized over the reward parameters used to generate the QMDP policy,

min
KS ,KT ,Rmin

F (RP) =
(
β × (r5%CPA)

−1 + (1− β)× µdev
)
. (6)

In order to combine metrics in which one is to be maximized (separation) and the other minimized
(deviation), the inverse of the CPA metric is used instead of its actual value. The relationship between the
metrics and objective function evaluations is modeled by a GP, which is then sampled to determine the point
at which the objective function is expected to have the largest improvement, E [I (F (RP))], over that of the
current minimum. This set of reward parameters, RP , is then passed back into the MDP optimization and
the process repeats until the convergence criteria are met.

Reward
Parameters

Dynamic
Programming

Policy Simulation

Metrics
Objective
Function

Gaussian
Process

β Range

Rp Q(s, a) π(b)

trajectories

r5%CPA, µdevF (RP)

E [I (F (RP))]

β

Figure 5: Process for tuning POMDP reward parameters

C. Gaussian Process Surrogate Model

A GP approach16 to determining the set of parameters, RP , that provided the minimum objective function
(see eq. (6)) was selected because it required far fewer evaluations of the objective function compared with
traditional gradient-based optimization techniques (e.g., quasi-Newton methods17) or even direct methods
(e.g., Nelder-Meade18). This characteristic is important because each optimization and batch simulation
loop may take up to three hours, so sparse sampling of the objective function is critical.

The GP surrogate model was created by first selecting a grid of reward parameters, RP , based on
previous experience with the algorithm. Sampling of the grid was done using several Latin hypercubes
to ensure adequate coverage across the parameter search space. These “seeds” condition the probability
distribution of the GP, giving it essentially a first guess at the topography of the objective function. A
squared exponential kernel function was selected for the covariance, with an initial length scale based on
observations of the features of the objective function during the grid evaluation step. That length scale
could be varied automatically based on a mean-square error metric.19 The parameter set with the maximum
expected improvement upon the current minimum of the objective function, E [I (F (RP))], was used to select
the next set of reward parameters, RP , for the subsequent optimization iteration. The uncertainty in the
two metrics was estimated through repeated evaluations of the same POMDP-optimized algorithm in batch

9 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Ju

ne
 1

5,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
36

73

Probabilistic Graphical Models Applications 13 19. prosince 2024 44 / 113 - 245

Reward Tuning – Bayesian Optimization

We tune RP = (KT ,Ks ,Rmin)
β weights the two objective
functions

F (RP) = (β×(r5%CPA)−1+(1−β)×µdev).

Gaussian process models F (RP).
We determine the point at
which the objective function is
expected to have the largest
improvement, E [I(F (RP))] over
that of the current minimum.
This set of RP is passed to
QMDP to evaluate.
until convergence.

POMDP is solved via value iteration to find the optimal set of state-action combinations across a discretized
state space as described in the previous section. The reward parameters that are varied in the inner part of
the optimization loop include

RP = (KT ,KS , Rmin). (5)

The state-action pairs are next used in a batch simulation to determine the trajectories followed by the
ownship for a set of stochastic initial conditions with ownship and intruder dynamic uncertainty (see section
VB). These trajectories are used to calculate the separation and deviation metrics, and are combined into a
single objective function through the use of a relative weighting factor, β, as shown in eq. (6). The objective
is to be minimized over the reward parameters used to generate the QMDP policy,

min
KS ,KT ,Rmin

F (RP) =
(
β × (r5%CPA)

−1 + (1− β)× µdev
)
. (6)

In order to combine metrics in which one is to be maximized (separation) and the other minimized
(deviation), the inverse of the CPA metric is used instead of its actual value. The relationship between the
metrics and objective function evaluations is modeled by a GP, which is then sampled to determine the point
at which the objective function is expected to have the largest improvement, E [I (F (RP))], over that of the
current minimum. This set of reward parameters, RP , is then passed back into the MDP optimization and
the process repeats until the convergence criteria are met.

Reward
Parameters

Dynamic
Programming

Policy Simulation

Metrics
Objective
Function

Gaussian
Process

β Range

Rp Q(s, a) π(b)

trajectories

r5%CPA, µdevF (RP)

E [I (F (RP))]

β

Figure 5: Process for tuning POMDP reward parameters

C. Gaussian Process Surrogate Model

A GP approach16 to determining the set of parameters, RP , that provided the minimum objective function
(see eq. (6)) was selected because it required far fewer evaluations of the objective function compared with
traditional gradient-based optimization techniques (e.g., quasi-Newton methods17) or even direct methods
(e.g., Nelder-Meade18). This characteristic is important because each optimization and batch simulation
loop may take up to three hours, so sparse sampling of the objective function is critical.

The GP surrogate model was created by first selecting a grid of reward parameters, RP , based on
previous experience with the algorithm. Sampling of the grid was done using several Latin hypercubes
to ensure adequate coverage across the parameter search space. These “seeds” condition the probability
distribution of the GP, giving it essentially a first guess at the topography of the objective function. A
squared exponential kernel function was selected for the covariance, with an initial length scale based on
observations of the features of the objective function during the grid evaluation step. That length scale
could be varied automatically based on a mean-square error metric.19 The parameter set with the maximum
expected improvement upon the current minimum of the objective function, E [I (F (RP))], was used to select
the next set of reward parameters, RP , for the subsequent optimization iteration. The uncertainty in the
two metrics was estimated through repeated evaluations of the same POMDP-optimized algorithm in batch

9 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Ju

ne
 1

5,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
36

73

Probabilistic Graphical Models Applications 13 19. prosince 2024 44 / 113 - 245

Reward Tuning – Bayesian Optimization

We tune RP = (KT ,Ks ,Rmin)
β weights the two objective
functions

F (RP) = (β×(r5%CPA)−1+(1−β)×µdev).

Gaussian process models F (RP).
We determine the point at
which the objective function is
expected to have the largest
improvement, E [I(F (RP))] over
that of the current minimum.
This set of RP is passed to
QMDP to evaluate.
until convergence.

POMDP is solved via value iteration to find the optimal set of state-action combinations across a discretized
state space as described in the previous section. The reward parameters that are varied in the inner part of
the optimization loop include

RP = (KT ,KS , Rmin). (5)

The state-action pairs are next used in a batch simulation to determine the trajectories followed by the
ownship for a set of stochastic initial conditions with ownship and intruder dynamic uncertainty (see section
VB). These trajectories are used to calculate the separation and deviation metrics, and are combined into a
single objective function through the use of a relative weighting factor, β, as shown in eq. (6). The objective
is to be minimized over the reward parameters used to generate the QMDP policy,

min
KS ,KT ,Rmin

F (RP) =
(
β × (r5%CPA)

−1 + (1− β)× µdev
)
. (6)

In order to combine metrics in which one is to be maximized (separation) and the other minimized
(deviation), the inverse of the CPA metric is used instead of its actual value. The relationship between the
metrics and objective function evaluations is modeled by a GP, which is then sampled to determine the point
at which the objective function is expected to have the largest improvement, E [I (F (RP))], over that of the
current minimum. This set of reward parameters, RP , is then passed back into the MDP optimization and
the process repeats until the convergence criteria are met.

Reward
Parameters

Dynamic
Programming

Policy Simulation

Metrics
Objective
Function

Gaussian
Process

β Range

Rp Q(s, a) π(b)

trajectories

r5%CPA, µdevF (RP)

E [I (F (RP))]

β

Figure 5: Process for tuning POMDP reward parameters

C. Gaussian Process Surrogate Model

A GP approach16 to determining the set of parameters, RP , that provided the minimum objective function
(see eq. (6)) was selected because it required far fewer evaluations of the objective function compared with
traditional gradient-based optimization techniques (e.g., quasi-Newton methods17) or even direct methods
(e.g., Nelder-Meade18). This characteristic is important because each optimization and batch simulation
loop may take up to three hours, so sparse sampling of the objective function is critical.

The GP surrogate model was created by first selecting a grid of reward parameters, RP , based on
previous experience with the algorithm. Sampling of the grid was done using several Latin hypercubes
to ensure adequate coverage across the parameter search space. These “seeds” condition the probability
distribution of the GP, giving it essentially a first guess at the topography of the objective function. A
squared exponential kernel function was selected for the covariance, with an initial length scale based on
observations of the features of the objective function during the grid evaluation step. That length scale
could be varied automatically based on a mean-square error metric.19 The parameter set with the maximum
expected improvement upon the current minimum of the objective function, E [I (F (RP))], was used to select
the next set of reward parameters, RP , for the subsequent optimization iteration. The uncertainty in the
two metrics was estimated through repeated evaluations of the same POMDP-optimized algorithm in batch

9 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Ju

ne
 1

5,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
36

73

Probabilistic Graphical Models Applications 13 19. prosince 2024 44 / 113 - 245

Bayesian Optimization

we know QMDP and F values for
one or more x = RP points
we search the point x = R∗

P to
observe
we minimize y = F (R∗

P) and search
the maximal probability of
improvement
’the chance to improve’ is
expressed by the Expected
improvement (EI)

Figure 1: Illustration of BayesOpt, maximizing an objective function f with a 1-dimensional continuous
input. The top panel shows: noise-free observations of the objective function f at 3 points, in blue; an
estimate of f(x) (solid red line); and Bayesian credible intervals (similar to confidence intervals) for f(x)
(dashed red line). These estimates and credible intervals are obtained using GP regression. The bottom panel
shows the acquisition function. Bayesian optimization chooses to sample next at the point that maximizes
the acquisition function, indicated here with an “x.”

We construct the mean vector by evaluating a mean function µ0 at each xi. We construct the
covariance matrix by evaluating a covariance function or kernel Σ0 at each pair of points xi, xj . The
kernel is chosen so that points xi, xj that are closer in the input space have a large positive correlation,
encoding the belief that they should have more similar function values than points that are far apart.
The kernel should also have the property that the resulting covariance matrix is positive semi-definite,
regardless of the collection of points chosen. Example mean functions and kernels are discussed below in
Section 3.1.

The resulting prior distribution on [f(x1), . . . , f(xk)] is,

f(x1:k) ∼ Normal (µ0(x1:k),Σ0(x1:k, x1:k)) , (2)

where we use compact notation for functions applied to collections of input points: x1:k indicates the
sequence x1, . . . , xk, f(x1:k) = [f(x1), . . . , f(xk)], µ0(x1:k) = [µ0(x1), . . . , µ0(xk)], and Σ0(x1:k, x1:k) =
[Σ0(x1, x1), . . . ,Σ0(x1, xk); . . . ; Σ0(xk, x1), . . . ,Σ0(xk, xk)].

Suppose we observe f(x1:n) without noise for some n and we wish to infer the value of f(x) at some
new point x. To do so, we let k = n + 1 and xk = x, so that the prior over [f(x1:n), f(x)] is given by
(2). We may then compute the conditional distribution of f(x) given these observations using Bayes’
rule (see details in Chapter 2.1 of Rasmussen and Williams (2006)),

f(x)|f(x1:n) ∼ Normal(µn(x), σ2
n(x))

µn(x) = Σ0(x, x1:n)Σ0(x1:n, x1:n)−1 (f(x1:n)− µ0(x1:n)) + µ0(x)

σ2
n(x) = Σ0(x, x)− Σ0(x, x1:n)Σ0(x1:n, x1:n)−1Σ0(x1:n, x).

(3)

This conditional distribution is called the posterior probability distribution in the nomenclature of

4

Peter I. Frazier: A Tutorial on Bayesian Opti-
mization, rXiv:1807.02811v1 [stat.ML] 8 Jul
2018

Probabilistic Graphical Models Applications 13 19. prosince 2024 45 / 113 - 245

Pareto Optimal frontier

194 parameter sets evaluated
β between 0.01 and 0.99 .
resulting in nine non-dominated, Pareto–optimal designs.

0 1 2 3 4 5
0

1

2

3

Mean Deviation

In
ve
rs
e
5
%

C
P
A

R
an

ge
,
r 5

%
C
P
A QMDP optimal front

QMDP designs

Figure 6: Pareto-optimal front of reward parameter design options

Intruder aircraft moving with uniform velocity are a typical encounter case and one which allows evalua-
tion of overall avoidance performance as a function of a range of relative headings and speeds. The relative
heading is the difference between the ownship and intruder heading at CPA, so a value of 180° is a head-on
encounter. Each combination of velocity and heading is replayed ten times under different sequences of state
and dynamic uncertainty in order to ensure a range of reasonable behavior is obtained for each encounter
type. The parameters that were systematically varied for this class of intruders and their values are shown
in table 3. A total of 1320 uniform velocity encounters were simulated for each experimental condition (i.e.,
level of state and dynamic uncertainty).

Table 3: Encounter parameters for uniform velocity intruders

Encounter Parameter Minimum Value Step Size Maximum Value

Relative heading (deg) 30 30 330

Relative velocity(s−1) 0.25 0.25 3.0

Number of uncertainty histories 10

The intruder trajectories generated by the encounter model are meant to simulate realistic flights by
hobbyist unmanned aircraft and represent the most difficult encounter conditions: maneuvering (or, equiva-
lently, accelerating) intruders. In some cases it may be impossible for the ownship to avoid a close encounter
when an intruder maneuvers at close range to the ownship with high relative velocity. Details of the charac-
teristics of these intruder trajectories and how they were shown to be realistic are provided in a companion
paper.6 A total of 7000 encounter model intruders were simulated for each experimental condition.

VI. Results

This section presents the results of simulations using several types of initial conditions and levels of
surveillance uncertainty. The available design tradeoffs for different sets of reward parameters are shown,
each of which delivers a different combination of separation and deviation distances. Example collision
avoidance resolution trajectories are discussed next. The sections following this discussion describe the
algorithm’s performance in terms of separation and deviation for a single set of reward parameters, and
the last section compares the performance of the coarsely and finely discretized state variables specified in
table 1.

12 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Ju

ne
 1

5,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
36

73

Probabilistic Graphical Models Applications 13 19. prosince 2024 46 / 113 - 245

Pareto Optimal frontier

194 parameter sets evaluated
β between 0.01 and 0.99 .
resulting in nine non-dominated, Pareto–optimal designs.

0 1 2 3 4 5
0

1

2

3

Mean Deviation

In
ve
rs
e
5
%

C
P
A

R
an

ge
,
r 5

%
C
P
A QMDP optimal front

QMDP designs

Figure 6: Pareto-optimal front of reward parameter design options

Intruder aircraft moving with uniform velocity are a typical encounter case and one which allows evalua-
tion of overall avoidance performance as a function of a range of relative headings and speeds. The relative
heading is the difference between the ownship and intruder heading at CPA, so a value of 180° is a head-on
encounter. Each combination of velocity and heading is replayed ten times under different sequences of state
and dynamic uncertainty in order to ensure a range of reasonable behavior is obtained for each encounter
type. The parameters that were systematically varied for this class of intruders and their values are shown
in table 3. A total of 1320 uniform velocity encounters were simulated for each experimental condition (i.e.,
level of state and dynamic uncertainty).

Table 3: Encounter parameters for uniform velocity intruders

Encounter Parameter Minimum Value Step Size Maximum Value

Relative heading (deg) 30 30 330

Relative velocity(s−1) 0.25 0.25 3.0

Number of uncertainty histories 10

The intruder trajectories generated by the encounter model are meant to simulate realistic flights by
hobbyist unmanned aircraft and represent the most difficult encounter conditions: maneuvering (or, equiva-
lently, accelerating) intruders. In some cases it may be impossible for the ownship to avoid a close encounter
when an intruder maneuvers at close range to the ownship with high relative velocity. Details of the charac-
teristics of these intruder trajectories and how they were shown to be realistic are provided in a companion
paper.6 A total of 7000 encounter model intruders were simulated for each experimental condition.

VI. Results

This section presents the results of simulations using several types of initial conditions and levels of
surveillance uncertainty. The available design tradeoffs for different sets of reward parameters are shown,
each of which delivers a different combination of separation and deviation distances. Example collision
avoidance resolution trajectories are discussed next. The sections following this discussion describe the
algorithm’s performance in terms of separation and deviation for a single set of reward parameters, and
the last section compares the performance of the coarsely and finely discretized state variables specified in
table 1.

12 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Ju

ne
 1

5,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
36

73

Probabilistic Graphical Models Applications 13 19. prosince 2024 46 / 113 - 245

Pareto Optimal frontier

194 parameter sets evaluated
β between 0.01 and 0.99 .
resulting in nine non-dominated, Pareto–optimal designs.

0 1 2 3 4 5
0

1

2

3

Mean Deviation

In
ve
rs
e
5
%

C
P
A

R
an

ge
,
r 5

%
C
P
A QMDP optimal front

QMDP designs

Figure 6: Pareto-optimal front of reward parameter design options

Intruder aircraft moving with uniform velocity are a typical encounter case and one which allows evalua-
tion of overall avoidance performance as a function of a range of relative headings and speeds. The relative
heading is the difference between the ownship and intruder heading at CPA, so a value of 180° is a head-on
encounter. Each combination of velocity and heading is replayed ten times under different sequences of state
and dynamic uncertainty in order to ensure a range of reasonable behavior is obtained for each encounter
type. The parameters that were systematically varied for this class of intruders and their values are shown
in table 3. A total of 1320 uniform velocity encounters were simulated for each experimental condition (i.e.,
level of state and dynamic uncertainty).

Table 3: Encounter parameters for uniform velocity intruders

Encounter Parameter Minimum Value Step Size Maximum Value

Relative heading (deg) 30 30 330

Relative velocity(s−1) 0.25 0.25 3.0

Number of uncertainty histories 10

The intruder trajectories generated by the encounter model are meant to simulate realistic flights by
hobbyist unmanned aircraft and represent the most difficult encounter conditions: maneuvering (or, equiva-
lently, accelerating) intruders. In some cases it may be impossible for the ownship to avoid a close encounter
when an intruder maneuvers at close range to the ownship with high relative velocity. Details of the charac-
teristics of these intruder trajectories and how they were shown to be realistic are provided in a companion
paper.6 A total of 7000 encounter model intruders were simulated for each experimental condition.

VI. Results

This section presents the results of simulations using several types of initial conditions and levels of
surveillance uncertainty. The available design tradeoffs for different sets of reward parameters are shown,
each of which delivers a different combination of separation and deviation distances. Example collision
avoidance resolution trajectories are discussed next. The sections following this discussion describe the
algorithm’s performance in terms of separation and deviation for a single set of reward parameters, and
the last section compares the performance of the coarsely and finely discretized state variables specified in
table 1.

12 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Ju

ne
 1

5,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
36

73

Probabilistic Graphical Models Applications 13 19. prosince 2024 46 / 113 - 245

Human Expert Check

Left: intruder starts at (0, 0),
random heading, fixed velocity of
the intruder
the ownship starts at the blue cross

Right: The goal is hovering
the intruder comes from the
right with the unknown
behaviour.

Figure 7: QMDP collision avoidance maneuver examples

solution to handle both types of ownship initial conditions with only a small change to the desired trajectory
parameters is an important test of its flexibility and robustness. In each encounter the ownship initially
moves perpendicular to the intruder’s velocity and slightly away from it, which has the effects of immediately
increasing the predicted separation at CPA and lengthening the time to CPA. When the intruder reaches
5.0 units longitudinally and 3.0 units laterally, the ownship begins accelerating in the positive longitudinal
direction, which hastens the time at which the aircraft begin to diverge. Shortly after CPA, the ownship
accelerates back towards its starting point and holds position there. The behavior of the collision avoidance-
equipped aircraft in both of these cases confirms the algorithm is working in a reasonable manner and is
ready for aggregate evaluation.

C. Separation Metrics

The cumulative distribution of separations for the QMDP algorithm are shown in fig. 8. Examining the pool
of 1320 uniform velocity intruders first, uncertainty has the primary effect of spreading out the proportion of
separations at the largest values while leaving the minimum separation distances below 3.0 nearly identical.
This spread is largely due to the algorithm increasing separation only when the CPA metric is predicted
to be low, which compresses the distributions together at the bottom end of the CPA chart. As dynamic
uncertainty increases the intruders have the potential to be driven farther from a direct collision, which
spreads out the CPA distance at the higher separation end of the distribution. In general, the rate of serious
separation violations (i.e., CPA distance is less than 3.0) is low for all these levels of uncertainty.

The 7,000 encounter model trajectories on the right side of fig. 8 have a smaller spread of CPA distances
than were seen in the uniform velocity encounters. Part of the explanation for this difference is the fact
that stochastic dynamic uncertainty is not present for these intruders; their acceleration uncertainties come
from the encounter model itself. The second reason state and dynamic uncertainty have less of an effect on
minimum separations is that intent uncertainty is dominating the encounter. The unexpected accelerations
that comprise such uncertainties govern the CPA separations, and those accelerations are not affected by
the level of uncertainty. The failure of the algorithm to prevent the 19% of encounters that have CPA
separations under 3.0 is an outcome of the intent uncertainty as well. It is only at the 30% of encounters
with the highest CPA separations, greater than about 5.0, that the metric’s distributions spread out and the
uncertainty levels can be distinguished.

D. Trajectory Deviation Metrics

The maximum deviation values for the QMDP algorithm as a function of uncertainty are shown in fig. 9. The
deviations are a weak function of uncertainty for all of the uniform velocity intruders, with the maximum
deviation decreasing as uncertainty increases. This effect is largely due to dynamic uncertainty moving the
intruder away from a direct collision and making the required amount of deviation lower. In approximately

14 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Ju

ne
 1

5,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
36

73

Probabilistic Graphical Models Applications 13 19. prosince 2024 47 / 113 - 245

Human Expert Check

Left: intruder starts at (0, 0),
random heading, fixed velocity of
the intruder
the ownship starts at the blue cross

Right: The goal is hovering
the intruder comes from the
right with the unknown
behaviour.

Figure 7: QMDP collision avoidance maneuver examples

solution to handle both types of ownship initial conditions with only a small change to the desired trajectory
parameters is an important test of its flexibility and robustness. In each encounter the ownship initially
moves perpendicular to the intruder’s velocity and slightly away from it, which has the effects of immediately
increasing the predicted separation at CPA and lengthening the time to CPA. When the intruder reaches
5.0 units longitudinally and 3.0 units laterally, the ownship begins accelerating in the positive longitudinal
direction, which hastens the time at which the aircraft begin to diverge. Shortly after CPA, the ownship
accelerates back towards its starting point and holds position there. The behavior of the collision avoidance-
equipped aircraft in both of these cases confirms the algorithm is working in a reasonable manner and is
ready for aggregate evaluation.

C. Separation Metrics

The cumulative distribution of separations for the QMDP algorithm are shown in fig. 8. Examining the pool
of 1320 uniform velocity intruders first, uncertainty has the primary effect of spreading out the proportion of
separations at the largest values while leaving the minimum separation distances below 3.0 nearly identical.
This spread is largely due to the algorithm increasing separation only when the CPA metric is predicted
to be low, which compresses the distributions together at the bottom end of the CPA chart. As dynamic
uncertainty increases the intruders have the potential to be driven farther from a direct collision, which
spreads out the CPA distance at the higher separation end of the distribution. In general, the rate of serious
separation violations (i.e., CPA distance is less than 3.0) is low for all these levels of uncertainty.

The 7,000 encounter model trajectories on the right side of fig. 8 have a smaller spread of CPA distances
than were seen in the uniform velocity encounters. Part of the explanation for this difference is the fact
that stochastic dynamic uncertainty is not present for these intruders; their acceleration uncertainties come
from the encounter model itself. The second reason state and dynamic uncertainty have less of an effect on
minimum separations is that intent uncertainty is dominating the encounter. The unexpected accelerations
that comprise such uncertainties govern the CPA separations, and those accelerations are not affected by
the level of uncertainty. The failure of the algorithm to prevent the 19% of encounters that have CPA
separations under 3.0 is an outcome of the intent uncertainty as well. It is only at the 30% of encounters
with the highest CPA separations, greater than about 5.0, that the metric’s distributions spread out and the
uncertainty levels can be distinguished.

D. Trajectory Deviation Metrics

The maximum deviation values for the QMDP algorithm as a function of uncertainty are shown in fig. 9. The
deviations are a weak function of uncertainty for all of the uniform velocity intruders, with the maximum
deviation decreasing as uncertainty increases. This effect is largely due to dynamic uncertainty moving the
intruder away from a direct collision and making the required amount of deviation lower. In approximately

14 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Ju

ne
 1

5,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
36

73

Probabilistic Graphical Models Applications 13 19. prosince 2024 47 / 113 - 245

Human Expert Check

Left: intruder starts at (0, 0),
random heading, fixed velocity of
the intruder
the ownship starts at the blue cross

Right: The goal is hovering
the intruder comes from the
right with the unknown
behaviour.

Figure 7: QMDP collision avoidance maneuver examples

solution to handle both types of ownship initial conditions with only a small change to the desired trajectory
parameters is an important test of its flexibility and robustness. In each encounter the ownship initially
moves perpendicular to the intruder’s velocity and slightly away from it, which has the effects of immediately
increasing the predicted separation at CPA and lengthening the time to CPA. When the intruder reaches
5.0 units longitudinally and 3.0 units laterally, the ownship begins accelerating in the positive longitudinal
direction, which hastens the time at which the aircraft begin to diverge. Shortly after CPA, the ownship
accelerates back towards its starting point and holds position there. The behavior of the collision avoidance-
equipped aircraft in both of these cases confirms the algorithm is working in a reasonable manner and is
ready for aggregate evaluation.

C. Separation Metrics

The cumulative distribution of separations for the QMDP algorithm are shown in fig. 8. Examining the pool
of 1320 uniform velocity intruders first, uncertainty has the primary effect of spreading out the proportion of
separations at the largest values while leaving the minimum separation distances below 3.0 nearly identical.
This spread is largely due to the algorithm increasing separation only when the CPA metric is predicted
to be low, which compresses the distributions together at the bottom end of the CPA chart. As dynamic
uncertainty increases the intruders have the potential to be driven farther from a direct collision, which
spreads out the CPA distance at the higher separation end of the distribution. In general, the rate of serious
separation violations (i.e., CPA distance is less than 3.0) is low for all these levels of uncertainty.

The 7,000 encounter model trajectories on the right side of fig. 8 have a smaller spread of CPA distances
than were seen in the uniform velocity encounters. Part of the explanation for this difference is the fact
that stochastic dynamic uncertainty is not present for these intruders; their acceleration uncertainties come
from the encounter model itself. The second reason state and dynamic uncertainty have less of an effect on
minimum separations is that intent uncertainty is dominating the encounter. The unexpected accelerations
that comprise such uncertainties govern the CPA separations, and those accelerations are not affected by
the level of uncertainty. The failure of the algorithm to prevent the 19% of encounters that have CPA
separations under 3.0 is an outcome of the intent uncertainty as well. It is only at the 30% of encounters
with the highest CPA separations, greater than about 5.0, that the metric’s distributions spread out and the
uncertainty levels can be distinguished.

D. Trajectory Deviation Metrics

The maximum deviation values for the QMDP algorithm as a function of uncertainty are shown in fig. 9. The
deviations are a weak function of uncertainty for all of the uniform velocity intruders, with the maximum
deviation decreasing as uncertainty increases. This effect is largely due to dynamic uncertainty moving the
intruder away from a direct collision and making the required amount of deviation lower. In approximately

14 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Ju

ne
 1

5,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
36

73

Probabilistic Graphical Models Applications 13 19. prosince 2024 47 / 113 - 245

Human Expert Check

Left: intruder starts at (0, 0),
random heading, fixed velocity of
the intruder
the ownship starts at the blue cross

Right: The goal is hovering
the intruder comes from the
right with the unknown
behaviour.

Figure 7: QMDP collision avoidance maneuver examples

solution to handle both types of ownship initial conditions with only a small change to the desired trajectory
parameters is an important test of its flexibility and robustness. In each encounter the ownship initially
moves perpendicular to the intruder’s velocity and slightly away from it, which has the effects of immediately
increasing the predicted separation at CPA and lengthening the time to CPA. When the intruder reaches
5.0 units longitudinally and 3.0 units laterally, the ownship begins accelerating in the positive longitudinal
direction, which hastens the time at which the aircraft begin to diverge. Shortly after CPA, the ownship
accelerates back towards its starting point and holds position there. The behavior of the collision avoidance-
equipped aircraft in both of these cases confirms the algorithm is working in a reasonable manner and is
ready for aggregate evaluation.

C. Separation Metrics

The cumulative distribution of separations for the QMDP algorithm are shown in fig. 8. Examining the pool
of 1320 uniform velocity intruders first, uncertainty has the primary effect of spreading out the proportion of
separations at the largest values while leaving the minimum separation distances below 3.0 nearly identical.
This spread is largely due to the algorithm increasing separation only when the CPA metric is predicted
to be low, which compresses the distributions together at the bottom end of the CPA chart. As dynamic
uncertainty increases the intruders have the potential to be driven farther from a direct collision, which
spreads out the CPA distance at the higher separation end of the distribution. In general, the rate of serious
separation violations (i.e., CPA distance is less than 3.0) is low for all these levels of uncertainty.

The 7,000 encounter model trajectories on the right side of fig. 8 have a smaller spread of CPA distances
than were seen in the uniform velocity encounters. Part of the explanation for this difference is the fact
that stochastic dynamic uncertainty is not present for these intruders; their acceleration uncertainties come
from the encounter model itself. The second reason state and dynamic uncertainty have less of an effect on
minimum separations is that intent uncertainty is dominating the encounter. The unexpected accelerations
that comprise such uncertainties govern the CPA separations, and those accelerations are not affected by
the level of uncertainty. The failure of the algorithm to prevent the 19% of encounters that have CPA
separations under 3.0 is an outcome of the intent uncertainty as well. It is only at the 30% of encounters
with the highest CPA separations, greater than about 5.0, that the metric’s distributions spread out and the
uncertainty levels can be distinguished.

D. Trajectory Deviation Metrics

The maximum deviation values for the QMDP algorithm as a function of uncertainty are shown in fig. 9. The
deviations are a weak function of uncertainty for all of the uniform velocity intruders, with the maximum
deviation decreasing as uncertainty increases. This effect is largely due to dynamic uncertainty moving the
intruder away from a direct collision and making the required amount of deviation lower. In approximately

14 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Ju

ne
 1

5,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
36

73

Probabilistic Graphical Models Applications 13 19. prosince 2024 47 / 113 - 245

Human Expert Check

Left: intruder starts at (0, 0),
random heading, fixed velocity of
the intruder
the ownship starts at the blue cross

Right: The goal is hovering
the intruder comes from the
right with the unknown
behaviour.

Figure 7: QMDP collision avoidance maneuver examples

solution to handle both types of ownship initial conditions with only a small change to the desired trajectory
parameters is an important test of its flexibility and robustness. In each encounter the ownship initially
moves perpendicular to the intruder’s velocity and slightly away from it, which has the effects of immediately
increasing the predicted separation at CPA and lengthening the time to CPA. When the intruder reaches
5.0 units longitudinally and 3.0 units laterally, the ownship begins accelerating in the positive longitudinal
direction, which hastens the time at which the aircraft begin to diverge. Shortly after CPA, the ownship
accelerates back towards its starting point and holds position there. The behavior of the collision avoidance-
equipped aircraft in both of these cases confirms the algorithm is working in a reasonable manner and is
ready for aggregate evaluation.

C. Separation Metrics

The cumulative distribution of separations for the QMDP algorithm are shown in fig. 8. Examining the pool
of 1320 uniform velocity intruders first, uncertainty has the primary effect of spreading out the proportion of
separations at the largest values while leaving the minimum separation distances below 3.0 nearly identical.
This spread is largely due to the algorithm increasing separation only when the CPA metric is predicted
to be low, which compresses the distributions together at the bottom end of the CPA chart. As dynamic
uncertainty increases the intruders have the potential to be driven farther from a direct collision, which
spreads out the CPA distance at the higher separation end of the distribution. In general, the rate of serious
separation violations (i.e., CPA distance is less than 3.0) is low for all these levels of uncertainty.

The 7,000 encounter model trajectories on the right side of fig. 8 have a smaller spread of CPA distances
than were seen in the uniform velocity encounters. Part of the explanation for this difference is the fact
that stochastic dynamic uncertainty is not present for these intruders; their acceleration uncertainties come
from the encounter model itself. The second reason state and dynamic uncertainty have less of an effect on
minimum separations is that intent uncertainty is dominating the encounter. The unexpected accelerations
that comprise such uncertainties govern the CPA separations, and those accelerations are not affected by
the level of uncertainty. The failure of the algorithm to prevent the 19% of encounters that have CPA
separations under 3.0 is an outcome of the intent uncertainty as well. It is only at the 30% of encounters
with the highest CPA separations, greater than about 5.0, that the metric’s distributions spread out and the
uncertainty levels can be distinguished.

D. Trajectory Deviation Metrics

The maximum deviation values for the QMDP algorithm as a function of uncertainty are shown in fig. 9. The
deviations are a weak function of uncertainty for all of the uniform velocity intruders, with the maximum
deviation decreasing as uncertainty increases. This effect is largely due to dynamic uncertainty moving the
intruder away from a direct collision and making the required amount of deviation lower. In approximately

14 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Ju

ne
 1

5,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
36

73

Probabilistic Graphical Models Applications 13 19. prosince 2024 47 / 113 - 245

State Discretization

The fine discretization improves the results.

other for these close encounters. However, the coarse discretization does not possess grid points at ranges
between 1.0 and 15.0, so it provides more than the required separation for a majority of the encounters. The
implication of this excessive separation is that the maximum trajectory deviations are also much larger than
required. The selection of an appropriate discretization scheme has a major effect on the performance of the
QMDP algorithm, so it is important that care is taken to balance the additional computational costs of a
finely discretized scheme against that increased performance.

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

CPA Separation

P
ro
p
or
ti
o
n
of

tr
a
je
ct
or
ie
s

Fine
Coarse

(a) CPA separations

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Maximum Trajectory Deviation

Fine
Coarse

(b) Maximum trajectory deviations

Figure 10: Cumulative distributions of encounter model metrics as a function of state discretization

VII. Conclusions

This paper presented a formulation of the collision avoidance problem for multi-rotor aircraft as a par-
tially observable Markov decision process (POMDP). The approach extends the ACAS X methodology to
incorporate speed, in the form of horizontal plane accelerations, as a significant degree of freedom. The
parameters for a horizontal, two-dimensional version of this algorithm were presented, and a set of metrics
proposed that would be directly applicable to defining aircraft performance by the user of such an algorithm.
These metrics, which relate to the minimum separation from an intruder and the deviation from the desired
trajectory, are used to judge the performance of the algorithm for a given parameter set. An optimization
loop was created to automatically select reward parameters that balance separation requirements with devi-
ation. That optimization loop includes the POMDP formulation, an approximately optimal QMDP method
for selecting actions, a simulation capability to evaluate the metrics, and a Gaussian process surrogate model
to select reward parameters for subsequent iterations. The optimization was run for a range of values of
relative importance between the two metrics in the inner loop.

The Gaussian process-based optimization scheme generated a large set of collision avoidance algorithms,
each with a different set of reward parameters, that provided different tradeoffs between separation and
trajectory deviation. One of those algorithms was used to show the individual trajectories flown by a sim-
ulated vehicle in the presence of state and dynamic uncertainty for a variety of initial conditions, including
a stationary ownship and a moving intruder and ownship with three different relative headings. The result-
ing trajectories match the expectations for typical collision avoidance behavior and take advantage of the
speed degree of freedom in normally difficult-to-resolve encounters. This use of speed, enabled by the novel
formulation of the collision avoidance problem presented in this paper, could provide significant benefit over
algorithms that only allow turns or vertical maneuvers. Aggregate statistics measuring the performance of
this algorithm over thousands of encounters were also presented, illustrating the robustness of the algorithm
to different initial conditions and degrees of uncertainty.

16 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Ju

ne
 1

5,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
36

73

Probabilistic Graphical Models Applications 13 19. prosince 2024 48 / 113 - 245

Value Iteration, QMDP Policies
considerable improvement in
convergence speed by
initializing by the value of
previously evaluated policy
the value of maximum negative
reward influenced the
convergence speed
γ ← 0.99 taking hundred
iterations to converge.
smaller γ did not ensure the
return to the desired path.

Figures: Owhship at the origin
different intruder positions
policies indicated by color: black=up,
red=right
left: both own and intruder velocities
are zero, d = 0
right: owhship is moving in the positive
y–axis direction at 1 s−1 with zero
trajectory error and nominal trajectory
matches the velocity.
The intruder is stationary.

Figure 2: Policies resulting from value iteration solution of POMDP formulation. Arrows indicate actions.

D. Beliefs

A POMDP is an extension of the MDP formulation in which the current state is not precisely known.
Instead, observations are received at each step and those are used to update one’s “belief” about the true
state of the system. This “belief state” may be a continuous probability distribution over the states, or, as
is done in this approach to solving the POMDP, a discrete set of possible states, each with an associated
probability. In this QMDP approach, the MDP is solved using the Bellman update defined in eq. (1) without
any consideration of state uncertainty (the dynamic equations do contain acceleration uncertainties). State
uncertainty is incorporated only when actions are selected during algorithm execution: a set of potential
states is calculated from the observations received at each step using a sigma point sampling technique.15

These potential states become the beliefs used to select an action:

π(b) = max
a

[∑

k

Q
(
s(k), a

)
b(k)

]
(4)

The states, s(k), are unlikely to lie exactly on one of the discretized grid points given in table 1. The value
of Q

(
s(k), a

)
is therefore calculated for each action by interpolating between the 2n nearest neighbor states

using rectangular interpolation, or between the n+1 neighbor states using simplex interpolation. Although
the eight state variables require 256 interpolants under the rectangular method, the much more complex
determination of the 9 interpolants in the simplex method means that rectangular interpolation is actually
faster. The sum of Q

(
s(k), a

)
, weighted by b(k), is computed for each action, and the action with the highest

value is executed. This method of extending MDPs to partial observability is one of the simplest ways to
incorporate state uncertainty, and it was employed here because prior work has found little benefit to using
more sophisticated approaches.15

IV. Collision Avoidance Algorithm Optimization

The collision avoidance policy obtained by value iteration is guaranteed to be optimal for the specific
reward parameters, discount factor, state-action discretization, and assumed model of the POMDP for-
mulation. However, if the parameters are not selected carefully then the algorithm may not provide the
appropriate avoidance behavior. Surrogate modeling has been shown to be effective in improving collision
avoidance problems posed as POMDPs.4 This section describes an approach to automatically tune the
reward parameters to balance the separation with an intruder and the deviation from the desired trajectory.

7 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Ju

ne
 1

5,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
36

73

Probabilistic Graphical Models Applications 13 19. prosince 2024 49 / 113 - 245

Value Iteration, QMDP Policies
considerable improvement in
convergence speed by
initializing by the value of
previously evaluated policy
the value of maximum negative
reward influenced the
convergence speed
γ ← 0.99 taking hundred
iterations to converge.
smaller γ did not ensure the
return to the desired path.

Figures: Owhship at the origin
different intruder positions
policies indicated by color: black=up,
red=right
left: both own and intruder velocities
are zero, d = 0
right: owhship is moving in the positive
y–axis direction at 1 s−1 with zero
trajectory error and nominal trajectory
matches the velocity.
The intruder is stationary.

Figure 2: Policies resulting from value iteration solution of POMDP formulation. Arrows indicate actions.

D. Beliefs

A POMDP is an extension of the MDP formulation in which the current state is not precisely known.
Instead, observations are received at each step and those are used to update one’s “belief” about the true
state of the system. This “belief state” may be a continuous probability distribution over the states, or, as
is done in this approach to solving the POMDP, a discrete set of possible states, each with an associated
probability. In this QMDP approach, the MDP is solved using the Bellman update defined in eq. (1) without
any consideration of state uncertainty (the dynamic equations do contain acceleration uncertainties). State
uncertainty is incorporated only when actions are selected during algorithm execution: a set of potential
states is calculated from the observations received at each step using a sigma point sampling technique.15

These potential states become the beliefs used to select an action:

π(b) = max
a

[∑

k

Q
(
s(k), a

)
b(k)

]
(4)

The states, s(k), are unlikely to lie exactly on one of the discretized grid points given in table 1. The value
of Q

(
s(k), a

)
is therefore calculated for each action by interpolating between the 2n nearest neighbor states

using rectangular interpolation, or between the n+1 neighbor states using simplex interpolation. Although
the eight state variables require 256 interpolants under the rectangular method, the much more complex
determination of the 9 interpolants in the simplex method means that rectangular interpolation is actually
faster. The sum of Q

(
s(k), a

)
, weighted by b(k), is computed for each action, and the action with the highest

value is executed. This method of extending MDPs to partial observability is one of the simplest ways to
incorporate state uncertainty, and it was employed here because prior work has found little benefit to using
more sophisticated approaches.15

IV. Collision Avoidance Algorithm Optimization

The collision avoidance policy obtained by value iteration is guaranteed to be optimal for the specific
reward parameters, discount factor, state-action discretization, and assumed model of the POMDP for-
mulation. However, if the parameters are not selected carefully then the algorithm may not provide the
appropriate avoidance behavior. Surrogate modeling has been shown to be effective in improving collision
avoidance problems posed as POMDPs.4 This section describes an approach to automatically tune the
reward parameters to balance the separation with an intruder and the deviation from the desired trajectory.

7 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Ju

ne
 1

5,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
36

73

Probabilistic Graphical Models Applications 13 19. prosince 2024 49 / 113 - 245

Value Iteration, QMDP Policies
considerable improvement in
convergence speed by
initializing by the value of
previously evaluated policy
the value of maximum negative
reward influenced the
convergence speed
γ ← 0.99 taking hundred
iterations to converge.
smaller γ did not ensure the
return to the desired path.

Figures: Owhship at the origin
different intruder positions
policies indicated by color: black=up,
red=right
left: both own and intruder velocities
are zero, d = 0
right: owhship is moving in the positive
y–axis direction at 1 s−1 with zero
trajectory error and nominal trajectory
matches the velocity.
The intruder is stationary.

Figure 2: Policies resulting from value iteration solution of POMDP formulation. Arrows indicate actions.

D. Beliefs

A POMDP is an extension of the MDP formulation in which the current state is not precisely known.
Instead, observations are received at each step and those are used to update one’s “belief” about the true
state of the system. This “belief state” may be a continuous probability distribution over the states, or, as
is done in this approach to solving the POMDP, a discrete set of possible states, each with an associated
probability. In this QMDP approach, the MDP is solved using the Bellman update defined in eq. (1) without
any consideration of state uncertainty (the dynamic equations do contain acceleration uncertainties). State
uncertainty is incorporated only when actions are selected during algorithm execution: a set of potential
states is calculated from the observations received at each step using a sigma point sampling technique.15

These potential states become the beliefs used to select an action:

π(b) = max
a

[∑

k

Q
(
s(k), a

)
b(k)

]
(4)

The states, s(k), are unlikely to lie exactly on one of the discretized grid points given in table 1. The value
of Q

(
s(k), a

)
is therefore calculated for each action by interpolating between the 2n nearest neighbor states

using rectangular interpolation, or between the n+1 neighbor states using simplex interpolation. Although
the eight state variables require 256 interpolants under the rectangular method, the much more complex
determination of the 9 interpolants in the simplex method means that rectangular interpolation is actually
faster. The sum of Q

(
s(k), a

)
, weighted by b(k), is computed for each action, and the action with the highest

value is executed. This method of extending MDPs to partial observability is one of the simplest ways to
incorporate state uncertainty, and it was employed here because prior work has found little benefit to using
more sophisticated approaches.15

IV. Collision Avoidance Algorithm Optimization

The collision avoidance policy obtained by value iteration is guaranteed to be optimal for the specific
reward parameters, discount factor, state-action discretization, and assumed model of the POMDP for-
mulation. However, if the parameters are not selected carefully then the algorithm may not provide the
appropriate avoidance behavior. Surrogate modeling has been shown to be effective in improving collision
avoidance problems posed as POMDPs.4 This section describes an approach to automatically tune the
reward parameters to balance the separation with an intruder and the deviation from the desired trajectory.

7 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Ju

ne
 1

5,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
36

73

Probabilistic Graphical Models Applications 13 19. prosince 2024 49 / 113 - 245

Value Iteration, QMDP Policies
considerable improvement in
convergence speed by
initializing by the value of
previously evaluated policy
the value of maximum negative
reward influenced the
convergence speed
γ ← 0.99 taking hundred
iterations to converge.
smaller γ did not ensure the
return to the desired path.

Figures: Owhship at the origin
different intruder positions
policies indicated by color: black=up,
red=right
left: both own and intruder velocities
are zero, d = 0
right: owhship is moving in the positive
y–axis direction at 1 s−1 with zero
trajectory error and nominal trajectory
matches the velocity.
The intruder is stationary.

Figure 2: Policies resulting from value iteration solution of POMDP formulation. Arrows indicate actions.

D. Beliefs

A POMDP is an extension of the MDP formulation in which the current state is not precisely known.
Instead, observations are received at each step and those are used to update one’s “belief” about the true
state of the system. This “belief state” may be a continuous probability distribution over the states, or, as
is done in this approach to solving the POMDP, a discrete set of possible states, each with an associated
probability. In this QMDP approach, the MDP is solved using the Bellman update defined in eq. (1) without
any consideration of state uncertainty (the dynamic equations do contain acceleration uncertainties). State
uncertainty is incorporated only when actions are selected during algorithm execution: a set of potential
states is calculated from the observations received at each step using a sigma point sampling technique.15

These potential states become the beliefs used to select an action:

π(b) = max
a

[∑

k

Q
(
s(k), a

)
b(k)

]
(4)

The states, s(k), are unlikely to lie exactly on one of the discretized grid points given in table 1. The value
of Q

(
s(k), a

)
is therefore calculated for each action by interpolating between the 2n nearest neighbor states

using rectangular interpolation, or between the n+1 neighbor states using simplex interpolation. Although
the eight state variables require 256 interpolants under the rectangular method, the much more complex
determination of the 9 interpolants in the simplex method means that rectangular interpolation is actually
faster. The sum of Q

(
s(k), a

)
, weighted by b(k), is computed for each action, and the action with the highest

value is executed. This method of extending MDPs to partial observability is one of the simplest ways to
incorporate state uncertainty, and it was employed here because prior work has found little benefit to using
more sophisticated approaches.15

IV. Collision Avoidance Algorithm Optimization

The collision avoidance policy obtained by value iteration is guaranteed to be optimal for the specific
reward parameters, discount factor, state-action discretization, and assumed model of the POMDP for-
mulation. However, if the parameters are not selected carefully then the algorithm may not provide the
appropriate avoidance behavior. Surrogate modeling has been shown to be effective in improving collision
avoidance problems posed as POMDPs.4 This section describes an approach to automatically tune the
reward parameters to balance the separation with an intruder and the deviation from the desired trajectory.

7 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Ju

ne
 1

5,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
36

73

Probabilistic Graphical Models Applications 13 19. prosince 2024 49 / 113 - 245

Value Iteration, QMDP Policies
considerable improvement in
convergence speed by
initializing by the value of
previously evaluated policy
the value of maximum negative
reward influenced the
convergence speed
γ ← 0.99 taking hundred
iterations to converge.
smaller γ did not ensure the
return to the desired path.

Figures: Owhship at the origin
different intruder positions
policies indicated by color: black=up,
red=right
left: both own and intruder velocities
are zero, d = 0
right: owhship is moving in the positive
y–axis direction at 1 s−1 with zero
trajectory error and nominal trajectory
matches the velocity.
The intruder is stationary.

Figure 2: Policies resulting from value iteration solution of POMDP formulation. Arrows indicate actions.

D. Beliefs

A POMDP is an extension of the MDP formulation in which the current state is not precisely known.
Instead, observations are received at each step and those are used to update one’s “belief” about the true
state of the system. This “belief state” may be a continuous probability distribution over the states, or, as
is done in this approach to solving the POMDP, a discrete set of possible states, each with an associated
probability. In this QMDP approach, the MDP is solved using the Bellman update defined in eq. (1) without
any consideration of state uncertainty (the dynamic equations do contain acceleration uncertainties). State
uncertainty is incorporated only when actions are selected during algorithm execution: a set of potential
states is calculated from the observations received at each step using a sigma point sampling technique.15

These potential states become the beliefs used to select an action:

π(b) = max
a

[∑

k

Q
(
s(k), a

)
b(k)

]
(4)

The states, s(k), are unlikely to lie exactly on one of the discretized grid points given in table 1. The value
of Q

(
s(k), a

)
is therefore calculated for each action by interpolating between the 2n nearest neighbor states

using rectangular interpolation, or between the n+1 neighbor states using simplex interpolation. Although
the eight state variables require 256 interpolants under the rectangular method, the much more complex
determination of the 9 interpolants in the simplex method means that rectangular interpolation is actually
faster. The sum of Q

(
s(k), a

)
, weighted by b(k), is computed for each action, and the action with the highest

value is executed. This method of extending MDPs to partial observability is one of the simplest ways to
incorporate state uncertainty, and it was employed here because prior work has found little benefit to using
more sophisticated approaches.15

IV. Collision Avoidance Algorithm Optimization

The collision avoidance policy obtained by value iteration is guaranteed to be optimal for the specific
reward parameters, discount factor, state-action discretization, and assumed model of the POMDP for-
mulation. However, if the parameters are not selected carefully then the algorithm may not provide the
appropriate avoidance behavior. Surrogate modeling has been shown to be effective in improving collision
avoidance problems posed as POMDPs.4 This section describes an approach to automatically tune the
reward parameters to balance the separation with an intruder and the deviation from the desired trajectory.

7 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Ju

ne
 1

5,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
36

73

Probabilistic Graphical Models Applications 13 19. prosince 2024 49 / 113 - 245

Value Iteration, QMDP Policies
considerable improvement in
convergence speed by
initializing by the value of
previously evaluated policy
the value of maximum negative
reward influenced the
convergence speed
γ ← 0.99 taking hundred
iterations to converge.
smaller γ did not ensure the
return to the desired path.

Figures: Owhship at the origin
different intruder positions
policies indicated by color: black=up,
red=right
left: both own and intruder velocities
are zero, d = 0
right: owhship is moving in the positive
y–axis direction at 1 s−1 with zero
trajectory error and nominal trajectory
matches the velocity.
The intruder is stationary.

Figure 2: Policies resulting from value iteration solution of POMDP formulation. Arrows indicate actions.

D. Beliefs

A POMDP is an extension of the MDP formulation in which the current state is not precisely known.
Instead, observations are received at each step and those are used to update one’s “belief” about the true
state of the system. This “belief state” may be a continuous probability distribution over the states, or, as
is done in this approach to solving the POMDP, a discrete set of possible states, each with an associated
probability. In this QMDP approach, the MDP is solved using the Bellman update defined in eq. (1) without
any consideration of state uncertainty (the dynamic equations do contain acceleration uncertainties). State
uncertainty is incorporated only when actions are selected during algorithm execution: a set of potential
states is calculated from the observations received at each step using a sigma point sampling technique.15

These potential states become the beliefs used to select an action:

π(b) = max
a

[∑

k

Q
(
s(k), a

)
b(k)

]
(4)

The states, s(k), are unlikely to lie exactly on one of the discretized grid points given in table 1. The value
of Q

(
s(k), a

)
is therefore calculated for each action by interpolating between the 2n nearest neighbor states

using rectangular interpolation, or between the n+1 neighbor states using simplex interpolation. Although
the eight state variables require 256 interpolants under the rectangular method, the much more complex
determination of the 9 interpolants in the simplex method means that rectangular interpolation is actually
faster. The sum of Q

(
s(k), a

)
, weighted by b(k), is computed for each action, and the action with the highest

value is executed. This method of extending MDPs to partial observability is one of the simplest ways to
incorporate state uncertainty, and it was employed here because prior work has found little benefit to using
more sophisticated approaches.15

IV. Collision Avoidance Algorithm Optimization

The collision avoidance policy obtained by value iteration is guaranteed to be optimal for the specific
reward parameters, discount factor, state-action discretization, and assumed model of the POMDP for-
mulation. However, if the parameters are not selected carefully then the algorithm may not provide the
appropriate avoidance behavior. Surrogate modeling has been shown to be effective in improving collision
avoidance problems posed as POMDPs.4 This section describes an approach to automatically tune the
reward parameters to balance the separation with an intruder and the deviation from the desired trajectory.

7 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Ju

ne
 1

5,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
36

73

Probabilistic Graphical Models Applications 13 19. prosince 2024 49 / 113 - 245

Value Iteration, QMDP Policies
considerable improvement in
convergence speed by
initializing by the value of
previously evaluated policy
the value of maximum negative
reward influenced the
convergence speed
γ ← 0.99 taking hundred
iterations to converge.
smaller γ did not ensure the
return to the desired path.

Figures: Owhship at the origin
different intruder positions
policies indicated by color: black=up,
red=right
left: both own and intruder velocities
are zero, d = 0
right: owhship is moving in the positive
y–axis direction at 1 s−1 with zero
trajectory error and nominal trajectory
matches the velocity.
The intruder is stationary.

Figure 2: Policies resulting from value iteration solution of POMDP formulation. Arrows indicate actions.

D. Beliefs

A POMDP is an extension of the MDP formulation in which the current state is not precisely known.
Instead, observations are received at each step and those are used to update one’s “belief” about the true
state of the system. This “belief state” may be a continuous probability distribution over the states, or, as
is done in this approach to solving the POMDP, a discrete set of possible states, each with an associated
probability. In this QMDP approach, the MDP is solved using the Bellman update defined in eq. (1) without
any consideration of state uncertainty (the dynamic equations do contain acceleration uncertainties). State
uncertainty is incorporated only when actions are selected during algorithm execution: a set of potential
states is calculated from the observations received at each step using a sigma point sampling technique.15

These potential states become the beliefs used to select an action:

π(b) = max
a

[∑

k

Q
(
s(k), a

)
b(k)

]
(4)

The states, s(k), are unlikely to lie exactly on one of the discretized grid points given in table 1. The value
of Q

(
s(k), a

)
is therefore calculated for each action by interpolating between the 2n nearest neighbor states

using rectangular interpolation, or between the n+1 neighbor states using simplex interpolation. Although
the eight state variables require 256 interpolants under the rectangular method, the much more complex
determination of the 9 interpolants in the simplex method means that rectangular interpolation is actually
faster. The sum of Q

(
s(k), a

)
, weighted by b(k), is computed for each action, and the action with the highest

value is executed. This method of extending MDPs to partial observability is one of the simplest ways to
incorporate state uncertainty, and it was employed here because prior work has found little benefit to using
more sophisticated approaches.15

IV. Collision Avoidance Algorithm Optimization

The collision avoidance policy obtained by value iteration is guaranteed to be optimal for the specific
reward parameters, discount factor, state-action discretization, and assumed model of the POMDP for-
mulation. However, if the parameters are not selected carefully then the algorithm may not provide the
appropriate avoidance behavior. Surrogate modeling has been shown to be effective in improving collision
avoidance problems posed as POMDPs.4 This section describes an approach to automatically tune the
reward parameters to balance the separation with an intruder and the deviation from the desired trajectory.

7 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Ju

ne
 1

5,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
36

73

Probabilistic Graphical Models Applications 13 19. prosince 2024 49 / 113 - 245

Value Iteration, QMDP Policies
considerable improvement in
convergence speed by
initializing by the value of
previously evaluated policy
the value of maximum negative
reward influenced the
convergence speed
γ ← 0.99 taking hundred
iterations to converge.
smaller γ did not ensure the
return to the desired path.

Figures: Owhship at the origin
different intruder positions
policies indicated by color: black=up,
red=right
left: both own and intruder velocities
are zero, d = 0
right: owhship is moving in the positive
y–axis direction at 1 s−1 with zero
trajectory error and nominal trajectory
matches the velocity.
The intruder is stationary.

Figure 2: Policies resulting from value iteration solution of POMDP formulation. Arrows indicate actions.

D. Beliefs

A POMDP is an extension of the MDP formulation in which the current state is not precisely known.
Instead, observations are received at each step and those are used to update one’s “belief” about the true
state of the system. This “belief state” may be a continuous probability distribution over the states, or, as
is done in this approach to solving the POMDP, a discrete set of possible states, each with an associated
probability. In this QMDP approach, the MDP is solved using the Bellman update defined in eq. (1) without
any consideration of state uncertainty (the dynamic equations do contain acceleration uncertainties). State
uncertainty is incorporated only when actions are selected during algorithm execution: a set of potential
states is calculated from the observations received at each step using a sigma point sampling technique.15

These potential states become the beliefs used to select an action:

π(b) = max
a

[∑

k

Q
(
s(k), a

)
b(k)

]
(4)

The states, s(k), are unlikely to lie exactly on one of the discretized grid points given in table 1. The value
of Q

(
s(k), a

)
is therefore calculated for each action by interpolating between the 2n nearest neighbor states

using rectangular interpolation, or between the n+1 neighbor states using simplex interpolation. Although
the eight state variables require 256 interpolants under the rectangular method, the much more complex
determination of the 9 interpolants in the simplex method means that rectangular interpolation is actually
faster. The sum of Q

(
s(k), a

)
, weighted by b(k), is computed for each action, and the action with the highest

value is executed. This method of extending MDPs to partial observability is one of the simplest ways to
incorporate state uncertainty, and it was employed here because prior work has found little benefit to using
more sophisticated approaches.15

IV. Collision Avoidance Algorithm Optimization

The collision avoidance policy obtained by value iteration is guaranteed to be optimal for the specific
reward parameters, discount factor, state-action discretization, and assumed model of the POMDP for-
mulation. However, if the parameters are not selected carefully then the algorithm may not provide the
appropriate avoidance behavior. Surrogate modeling has been shown to be effective in improving collision
avoidance problems posed as POMDPs.4 This section describes an approach to automatically tune the
reward parameters to balance the separation with an intruder and the deviation from the desired trajectory.

7 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Ju

ne
 1

5,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
36

73

Probabilistic Graphical Models Applications 13 19. prosince 2024 49 / 113 - 245

Value Iteration, QMDP Policies
considerable improvement in
convergence speed by
initializing by the value of
previously evaluated policy
the value of maximum negative
reward influenced the
convergence speed
γ ← 0.99 taking hundred
iterations to converge.
smaller γ did not ensure the
return to the desired path.

Figures: Owhship at the origin
different intruder positions
policies indicated by color: black=up,
red=right
left: both own and intruder velocities
are zero, d = 0
right: owhship is moving in the positive
y–axis direction at 1 s−1 with zero
trajectory error and nominal trajectory
matches the velocity.
The intruder is stationary.

Figure 2: Policies resulting from value iteration solution of POMDP formulation. Arrows indicate actions.

D. Beliefs

A POMDP is an extension of the MDP formulation in which the current state is not precisely known.
Instead, observations are received at each step and those are used to update one’s “belief” about the true
state of the system. This “belief state” may be a continuous probability distribution over the states, or, as
is done in this approach to solving the POMDP, a discrete set of possible states, each with an associated
probability. In this QMDP approach, the MDP is solved using the Bellman update defined in eq. (1) without
any consideration of state uncertainty (the dynamic equations do contain acceleration uncertainties). State
uncertainty is incorporated only when actions are selected during algorithm execution: a set of potential
states is calculated from the observations received at each step using a sigma point sampling technique.15

These potential states become the beliefs used to select an action:

π(b) = max
a

[∑

k

Q
(
s(k), a

)
b(k)

]
(4)

The states, s(k), are unlikely to lie exactly on one of the discretized grid points given in table 1. The value
of Q

(
s(k), a

)
is therefore calculated for each action by interpolating between the 2n nearest neighbor states

using rectangular interpolation, or between the n+1 neighbor states using simplex interpolation. Although
the eight state variables require 256 interpolants under the rectangular method, the much more complex
determination of the 9 interpolants in the simplex method means that rectangular interpolation is actually
faster. The sum of Q

(
s(k), a

)
, weighted by b(k), is computed for each action, and the action with the highest

value is executed. This method of extending MDPs to partial observability is one of the simplest ways to
incorporate state uncertainty, and it was employed here because prior work has found little benefit to using
more sophisticated approaches.15

IV. Collision Avoidance Algorithm Optimization

The collision avoidance policy obtained by value iteration is guaranteed to be optimal for the specific
reward parameters, discount factor, state-action discretization, and assumed model of the POMDP for-
mulation. However, if the parameters are not selected carefully then the algorithm may not provide the
appropriate avoidance behavior. Surrogate modeling has been shown to be effective in improving collision
avoidance problems posed as POMDPs.4 This section describes an approach to automatically tune the
reward parameters to balance the separation with an intruder and the deviation from the desired trajectory.

7 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Ju

ne
 1

5,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
36

73

Probabilistic Graphical Models Applications 13 19. prosince 2024 49 / 113 - 245

Value Iteration, QMDP Policies
considerable improvement in
convergence speed by
initializing by the value of
previously evaluated policy
the value of maximum negative
reward influenced the
convergence speed
γ ← 0.99 taking hundred
iterations to converge.
smaller γ did not ensure the
return to the desired path.

Figures: Owhship at the origin
different intruder positions
policies indicated by color: black=up,
red=right
left: both own and intruder velocities
are zero, d = 0
right: owhship is moving in the positive
y–axis direction at 1 s−1 with zero
trajectory error and nominal trajectory
matches the velocity.
The intruder is stationary.

Figure 2: Policies resulting from value iteration solution of POMDP formulation. Arrows indicate actions.

D. Beliefs

A POMDP is an extension of the MDP formulation in which the current state is not precisely known.
Instead, observations are received at each step and those are used to update one’s “belief” about the true
state of the system. This “belief state” may be a continuous probability distribution over the states, or, as
is done in this approach to solving the POMDP, a discrete set of possible states, each with an associated
probability. In this QMDP approach, the MDP is solved using the Bellman update defined in eq. (1) without
any consideration of state uncertainty (the dynamic equations do contain acceleration uncertainties). State
uncertainty is incorporated only when actions are selected during algorithm execution: a set of potential
states is calculated from the observations received at each step using a sigma point sampling technique.15

These potential states become the beliefs used to select an action:

π(b) = max
a

[∑

k

Q
(
s(k), a

)
b(k)

]
(4)

The states, s(k), are unlikely to lie exactly on one of the discretized grid points given in table 1. The value
of Q

(
s(k), a

)
is therefore calculated for each action by interpolating between the 2n nearest neighbor states

using rectangular interpolation, or between the n+1 neighbor states using simplex interpolation. Although
the eight state variables require 256 interpolants under the rectangular method, the much more complex
determination of the 9 interpolants in the simplex method means that rectangular interpolation is actually
faster. The sum of Q

(
s(k), a

)
, weighted by b(k), is computed for each action, and the action with the highest

value is executed. This method of extending MDPs to partial observability is one of the simplest ways to
incorporate state uncertainty, and it was employed here because prior work has found little benefit to using
more sophisticated approaches.15

IV. Collision Avoidance Algorithm Optimization

The collision avoidance policy obtained by value iteration is guaranteed to be optimal for the specific
reward parameters, discount factor, state-action discretization, and assumed model of the POMDP for-
mulation. However, if the parameters are not selected carefully then the algorithm may not provide the
appropriate avoidance behavior. Surrogate modeling has been shown to be effective in improving collision
avoidance problems posed as POMDPs.4 This section describes an approach to automatically tune the
reward parameters to balance the separation with an intruder and the deviation from the desired trajectory.

7 of 17

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d

by
 N

A
SA

 A
M

E
S

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
Ju

ne
 1

5,
 2

01
6

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

6-
36

73

Probabilistic Graphical Models Applications 13 19. prosince 2024 49 / 113 - 245

Beliefs

Uncertainty does not increase with time, QMPD is justifiable.
State uncertainty is incorporated only when actions are selected
a set of potential states is calculated from the observations received at each
step.
the probability distribution on potential states is the belief used to select an
action.

π(b) = maxa

∑
s∈Sp

Q(s, a)b(s)


The value Q(s(k), a)b(k) approximated from QMDP solutions

rectangular interpolation between 2n nearest neighbor
simplex interpolation between n + 1 nearest neighbor
prior work has found little benefit to using more sophisticated approaches.

Probabilistic Graphical Models Applications 13 19. prosince 2024 50 / 113 - 245

Beliefs

Uncertainty does not increase with time, QMPD is justifiable.
State uncertainty is incorporated only when actions are selected
a set of potential states is calculated from the observations received at each
step.
the probability distribution on potential states is the belief used to select an
action.

π(b) = maxa

∑
s∈Sp

Q(s, a)b(s)


The value Q(s(k), a)b(k) approximated from QMDP solutions

rectangular interpolation between 2n nearest neighbor
simplex interpolation between n + 1 nearest neighbor
prior work has found little benefit to using more sophisticated approaches.

Probabilistic Graphical Models Applications 13 19. prosince 2024 50 / 113 - 245

Beliefs

Uncertainty does not increase with time, QMPD is justifiable.
State uncertainty is incorporated only when actions are selected
a set of potential states is calculated from the observations received at each
step.
the probability distribution on potential states is the belief used to select an
action.

π(b) = maxa

∑
s∈Sp

Q(s, a)b(s)


The value Q(s(k), a)b(k) approximated from QMDP solutions

rectangular interpolation between 2n nearest neighbor
simplex interpolation between n + 1 nearest neighbor
prior work has found little benefit to using more sophisticated approaches.

Probabilistic Graphical Models Applications 13 19. prosince 2024 50 / 113 - 245

Beliefs

Uncertainty does not increase with time, QMPD is justifiable.
State uncertainty is incorporated only when actions are selected
a set of potential states is calculated from the observations received at each
step.
the probability distribution on potential states is the belief used to select an
action.

π(b) = maxa

∑
s∈Sp

Q(s, a)b(s)


The value Q(s(k), a)b(k) approximated from QMDP solutions

rectangular interpolation between 2n nearest neighbor
simplex interpolation between n + 1 nearest neighbor
prior work has found little benefit to using more sophisticated approaches.

Probabilistic Graphical Models Applications 13 19. prosince 2024 50 / 113 - 245

Beliefs

Uncertainty does not increase with time, QMPD is justifiable.
State uncertainty is incorporated only when actions are selected
a set of potential states is calculated from the observations received at each
step.
the probability distribution on potential states is the belief used to select an
action.

π(b) = maxa

∑
s∈Sp

Q(s, a)b(s)


The value Q(s(k), a)b(k) approximated from QMDP solutions

rectangular interpolation between 2n nearest neighbor
simplex interpolation between n + 1 nearest neighbor
prior work has found little benefit to using more sophisticated approaches.

Probabilistic Graphical Models Applications 13 19. prosince 2024 50 / 113 - 245

Beliefs

Uncertainty does not increase with time, QMPD is justifiable.
State uncertainty is incorporated only when actions are selected
a set of potential states is calculated from the observations received at each
step.
the probability distribution on potential states is the belief used to select an
action.

π(b) = maxa

∑
s∈Sp

Q(s, a)b(s)


The value Q(s(k), a)b(k) approximated from QMDP solutions

rectangular interpolation between 2n nearest neighbor
simplex interpolation between n + 1 nearest neighbor
prior work has found little benefit to using more sophisticated approaches.

Probabilistic Graphical Models Applications 13 19. prosince 2024 50 / 113 - 245

Beliefs

Uncertainty does not increase with time, QMPD is justifiable.
State uncertainty is incorporated only when actions are selected
a set of potential states is calculated from the observations received at each
step.
the probability distribution on potential states is the belief used to select an
action.

π(b) = maxa

∑
s∈Sp

Q(s, a)b(s)


The value Q(s(k), a)b(k) approximated from QMDP solutions

rectangular interpolation between 2n nearest neighbor
simplex interpolation between n + 1 nearest neighbor
prior work has found little benefit to using more sophisticated approaches.

Probabilistic Graphical Models Applications 13 19. prosince 2024 50 / 113 - 245

Beliefs

Uncertainty does not increase with time, QMPD is justifiable.
State uncertainty is incorporated only when actions are selected
a set of potential states is calculated from the observations received at each
step.
the probability distribution on potential states is the belief used to select an
action.

π(b) = maxa

∑
s∈Sp

Q(s, a)b(s)


The value Q(s(k), a)b(k) approximated from QMDP solutions

rectangular interpolation between 2n nearest neighbor
simplex interpolation between n + 1 nearest neighbor
prior work has found little benefit to using more sophisticated approaches.

Probabilistic Graphical Models Applications 13 19. prosince 2024 50 / 113 - 245

Table of Content

1 Basics, Classifiers
2 Variable Elimination Algorithm, Hidden Markov Models
3 Markov Random Fields and Other Models
4 Junction Tree Algorithm (Optimized Evaluation)
5 Approximate Evaluation
6 Structure Learning
7 Bayesian Learning, EM Algorithm
8 Gaussian Graphical Models
9 Gaussian Processes
10 Variational Approximation
11 Decision Trees, Decision Graphs
12 MDP, POMDP
13 Applications

Probabilistic Graphical Models Content 14 19. prosince 2024 50 / 246 - 247

Summary Links
BN basics

Bayesian Network , Conditional Independence , Separation , d-separation , Markov Blanket , ...
Naive Bayes Classifier , Functions MI, KL, CMI, loglik, BIC , AIC

BN Evaluation
Variable Elimination Algorithm , Junction Tree Algorithm

Likelihood weighting , Gibbs Sampling , (Metropolis Hastings Sampling)
Parameter Learning

Frequency Ratio , Dirichlet, BDeu priors , Bayesian Learning BO, MAP, ML, Missing Data , EM algorithm

Structure Learning
Chow–Liu Tree , Learning TAN Classifier

Myopic Structure Search , PC–Algorithm , (Structural EM)
Gaussian Variables

Gaussian Graphical Models , Graphical Regression , GGM Model Selection (deviance, idev, lrt)
Gaussian Process , (Bayesian Optimization)

Decisions
Decision Tree , DT Evaluation

Decision Graphs =IDs , Variable Elimination for DG

(Markov Decision Processes , Value Iteration Algorithm ,) Partially Observed Markov Decision Processes , Policy Graph

Variational Approximation
Variational Approximation (, Latent Dirichlet Allocation).

Probabilistic Graphical Models Content 14 19. prosince 2024 50 / 246 - 247

	Basics, Classifiers
	Variable Elimination Algorithm, Hidden Markov Models
	Markov Random Fields and Other Models
	Junction Tree Algorithm (Optimized Evaluation)
	Approximate Evaluation
	Structure Learning
	Bayesian Learning, EM Algorithm
	Gaussian Graphical Models
	Gaussian Processes
	Variational Approximation
	Decision Trees, Decision Graphs
	MDP, POMDP
	Applications
	Content

