Decision Problem Examples

Let us have a random outcome based on known probabilities. Think about the
following lotteries. Which one you prefer? Answer intuitively, you may maximize
MEU after that.

@ 80% chance to gain $400
@ 100% chance to gain $300
Which one you prefer?

Lottery B

Which one from this pair?
Q@ 20% chance to gain $400
@ 25% chance to gain $300
Which one you prefer?
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Money Utility

Two lotteries again
@ You get $1000000
@ or a 50% chance to get $3000000, any gain otherwise.

@ The utility of money is not linear.

@ Assume | have $k. The utility to have n is
roughly ($):

moneyutility.pdf
U(Sk4n) = —263.31 4 22.09/0g(n + 150000)

valid from —$150000 to $800000.
(Mr. Beard)
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Decision Problem — Milk Example

@ The farmer has 50 cows.
@ The milk from each cow is poured into a common container and transported
to the diary.
@ The value of the milk is $2 per cow.
@ The diary checks the milk carefully
e and if it is infected it is thrown away.
@ After having milked a cow, the farmer may perform two different tests

e Ta costs 0.06 and it has a false positive/negative rate of 0.01
e Tp costs 0.20 and it has a false positive/negative rate of 0.001.

@ We assume the farmer has clean milk from the 49 other cows.
o (Check general problem gives to the same strategy.)

@ Putting the milk into the container, the farmer will gain $100 if it is not
infected, $0 otherwise.

@ Throwing it away, he will gain $98 regardless of the state of the milk.

Should he perform the tests and in which order?
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Definition (Decision Tree)

(Probabilistic) Decision Trees

@ A decision tree is a model that encodes the structure of the decision

problem.
@ The nonleaf nodes are
e decision nodes (rectangular boxes) D;
o or chance nodes (circles or ellipses) X;
@ and the leaf nodes are utility nodes (diamond shaped) U.
@ The links in the tree have labels.
@ Link from a decision is labeled with the action chosen
@ a link from a chance node is labeled by a state and the conditional probability
of this state P(X = x;|path from the root to X).
@ A path from the root represents the time order:

o the state of a random variable is known iff it is on the path from the root to
the decision (nonforgetting).
@ an utility node is labeled by the utility of the decision scenario from the root
to it.
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Decision Scenario

@ We require the decision tree to be complete
e from a chance node there must be a link for each possible state
e from a decision node there must be a link for each possible decision.
@ Each path from the root to the leaf specifies a complete sequence of
observations and decisions
@ we call such sequence a decision scenario.
@ The decision tree specifies all the possible scenarios in the decision problem.

milk3.png
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Expected utility (=Expected Value)

@ We know the value of any scenario V/(d, x, €)
@ we do not know which scenario will take place.

@ We maximize the expected utility
EU(dle) Zv (d,x,e) - P(x|d, e)

More value functions V4, ..., V, we usually sum together
V(U)=WVi(U)+...+ V,(U)

@ multiplicative composition would be much simpler to evaluate.

Functions V;(U) may depend on different subsets of the universe U.
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Probabilities

We calculate the probabilities.
inf <- cptable(~inf, values=c(0.0007,0.9993),levels=c('yes’,'no"))
test <- cptable(~test+inf, values=c(1,99,99,1),levels=c('pos’,'neg"))

milk2.png milk3.png
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Definition (Strategy)

@ A solution to a decision tree is a strategy that specifies how we should act at
the various decision nodes.

@ An optimal strategy is a strategy with the maximal expected utility.

milk3.png
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EU(X;T) Expected Utility for a decision tree

Let X be a node in a decision tree T. To caculate an optimal strategy and
the maximum expected utility for the subtree rooted at X do:
o If X is a utility node, then return U(X).
o If X is a chance node, then return
EU(X, T) = X sesp(x) EU(child(X = x), T) - P(X = x|past(X))
o If X is a decision node, then

o mark the arc labeled: x’ = arg maxyesp(x) EU(child(X = x), T)
o and return EU(X|past(X)) = max,espx) EU(child(X = x), T)

0.9351  99.94 + 0.0649 x (—0.06)
milk3.png 0.999993  99.94 + 0.000007 % (—0.06)

93.45
99.9393

. — an o170
Probabilistic Graphical Models Decision Trees, Decision Graphs 11 14. prosince 2023 9/1-54




Decision Trees and Decision graphs (=Influence diagrams)

@ Decision Tree
o general problem representation and evaluation
e grows fast, sub-trees may repeat
e requires an independent probabilistic model
@ Decision Graph (Influence Diagram)
e decisions and utilities incorporated in the probabilistic model
e an implicit definition of the decision tree
@ a more compact evaluation.
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Decision graph (=Influence diagram)

Definition (Decision graph, Influence Diagram)

Decision graph is a DAG with three types of nodes and two types of tables:

@ Rectangular decision nodes D; have a finite domain of mutually exclusive
values (decision choices). No table attached (will be attached as a solution)

o Elliptical random nodes are the same as in Bayesian networks: finite domain
and a conditional probability table given parents

@ Diamond utility nodes have no children and represent a function from the
parent configurations to real numbers (values).

o Edges into random nodes represent conditioning as in Bayesian networks.

o Edges into decision nodes represent information flow: the random value is
known before the decision is made

@ We assume non forgetting.

o Directed path ordering all decision is required. (May contain also random
variables).
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Example - Milk (T.D.Nielsen)

Tables
o P(Milk),
o P(Test|Milk),
o P(TestRes|Test, Test?),
o U(Pour?, Milk),
o C(Test?).
Artificial node TestRes to
solve the asymmetry: the

Test cannot be observed un-
less Test = yes.

Temporal ordering: Test? < { TestRes} < Pour? < {Milk, Test}.
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Poker Probabilities

pokerprob.png
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Example - Poker (T.D.Nielsen)

Each player gets 5 cards

FC the first choice: the player may change up to 3 cards
SC the second choice: the player may change up to 2 cards
each player may 'call’ or 'fall’

the highest hand takes the bank.
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Poker Decision Graph

o Each player
gets 3 cards

o FC the first

choice: the @ @

player may

change up to 3

= e
@ SC the second

choice: the

player may

change up to 2

cards MHO MH1 MH2 @
@ each player <\—/x\

may 'call’ or

ol o}——u>

@ the highest
hand takes the
bank.
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Poker — Non-forgetting Information Arcs
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Partial Temporal Ordering

Temproral ordering: @}_"\0// @I_'l\l// OH2

{MHO} =< MFC =
{MH1, OFC} < MSC <
{MH2,05C} < D <

{OHO, OH1, OH1, GH}. %@E&\ %

MFc\ ]Msc
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Decision Graph Evaluation

Definition

The optimal strategy for a decision graph is defined as the optimal strategy of a
decision tree representing the same decision problem.

@ Decision graph requires the temporal ordering which makes sufficient to
evaluate a single decision tree.

Assume the temporal ordering of decisions Dy, ..., D,.

We denote fy the set of random variables observable by D; (the parents of D;)

generally, the set /; are parents of D;y1 that are not parents of any previous D;

I, random variables that do not have any decision child.

@ We get a partial temporal ordering of decision and random variables
lo < Dy <l <...< D, =< I, This ordering must be fulfilled in the decision
tree.

e The elements of a set /x may be ordered arbitrary.
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Chain Rule for Decision Graphs

Definition (Chain Rule for Decision Graphs)

Let O be the random variables and Dy, ..., D, decisions in a decision graph. Then

P(OIDy, ..., Dn) = NxcoP(X|pa(X)).

@ According this rule we are able to calculate all conditional probabilities in the
decision tree.

@ In each utility leaf we sum appropriate values from all utility nodes in the
decision graph >, Vi(O, D, ..., D,).

@ The same optimal strategy can be evaluated also by a more compact way.
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The Optimal Strategy

o For a given temporal ordering Iy < Dy < h < ... < D, < I, is the optimal
strategy for D;:

oi(lo, D1, hy ..., Dio1,li1) =
argmaxp, Z maxp,,, ... maxp, Z P(O|Dy,...,Dy)V(O,Dy,...,Dy)
I; In

@ The expected value of the strategy startlng in Dj is:
pi(lo, D1, Iy, ..., Di1, liq) =

P(lo,..,li— 1\017 Di_1)’

maxp, Z maxp,,, . .. maxp, Z P(O|Dx,...,Dp)V(O,Ds,...,Dy).
I; In

@ The solution may be stored in the form of a policy network
e Replace each decision D; by a chance node Df with parents
I()7 D17 Il, ey D,'_1, l,'_1.
o For each parent configuration, set P(D? = dj|pa(D;)) = 1 for the optimal
decision oi(pa(D?))
e zero for all other choices.
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Variable Elimination Algorithm Initialization

@ &y « all probability potentials P(O;|pa(0;)).
@ Wy, < all utility potentials V;(pa(V})).

o We will sequentially eliminate all variables in the reversed temporal order.
For each decision, we remember its strategy at the time it is eliminated.
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Example - Milk Elimination Start

(Milk),

o P(Test|Milk),

o P(TestRes| Test, Test?),
o U(Pour?, Milk),

o C(Test?).

Temporal ordering: Test? < { TestRes} < Pour? < {Milk, Test}.
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Example - Milk Eliminate Test

Milk),

o o(TestRes|Milk, Test?)
e U(Pour?, Milk),

o C(Test?).

©( TestRes| Milk, Test?) + Z P(Test|Milk)P( TestRes| Test, Test?)

Test

Temporal ordering: Test? < { TestRes} < Pour? < {Milk}.
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Example - Eliminate Milk

o}~

&

Tables
o P(TestRes|Test?) <= > i P(Milk)p( TestRes|Milk, Test?),
o U «+ W > mik P(Milk)p( TestRes|Milk, Test?)U(Pour?, Milk),
o C(Test?).

Temporal ordering: Test? < { TestRes} < Pour?.
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Example - Eliminate Pour?

SETP O

[ Test?]

Tables
o P(TestRes|Test?),
@ maxpyy? U'(TestRes, Pour?),
o C(Test?).

Temporal ordering: Test? < { TestRes}.
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Example - Eliminate TestRes
(o

Tables
0 U" <3 1.iires P(TestRes| Test?) maxpoy2 U'( TestRes, Pour?),
o ((Test?).

Eliminate Test?
® maxyes?[U"(Test?) + C(Test?)].
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Variable Elimination Algorithm (Decision Graphs)!

Eliminate X means:
Q ox = {(]S S (b,'_1|X € dom(d))}
Uy = {”(/J S \U,'_1|X € dom(z/;)}
@ If X is a random variable
d)X = ZX I_ICDX
Ux = g x NPx (X Wx)
Q else X #decision
¢X = maxxﬂd)x
x = maxx (3 Vx)
Q always
S =1\ dx U {ox}
Vi =W\ Ux U {Yx}

For each decision D; we store the optimal policy oj(past) = argmaxsy(p,)¥p;-

i i

https://pypi.org/project/pycid/
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Unconstrained Influence Diagrams

Definition (Unconstrained Influence Diagram)

An Unconstrained Influence Diagram (UID) U

@ A nonobservable cannot have a decision as a child.

is a DAG
over decision variables Dy, chance variables Oy and utility variables.
utility variables have no children.

There are two types of chance variables

e observables (double circled)
e nonobservables (single circled).

Any decision has a cost (to simplify the graph).

The partial temporal order induced by U is denoted by <.

An observable can be observed when all its antecedent decision variables have
been decided on.

In the case we say the observation is free and we release an observable when
the last decision in its ancestral set is taken.
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Example - UID Two Tests

Temporal ordering of decision
is not fixed.
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Example - UID Two Tests, Two Treatments

Tr 1

-—>‘

9

Tr 2
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S-DAG - Solution Strategy for a UID

Definition (S-DAG)
Let U be a UID. An S-DAG is a directed acyclic graph G. The nodes are labeled
with variables from Dy U Oy such that each maximal directed path in G
represents an admissible ordering of Dy U Oy.

We add tho unary nodes Source and Sink, Source is the only node with no parents
and Sink is the only node with no children.

A strategy for U is a step policy for each node of the S-DAG together with a
decision policy for each decision node.

2O O
@

Tn @
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Further Variants of IDs

LIMIDs - Limited Memory IDs
languages for asymmetric decision scenarios (Valuation networks,AlDs)
CEG - Chain Event Graphs - closed to the coalescent decision trees.

Repetitive in the time
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Influence Diagrams: Ommited Topics

Strong Junction Tree - slightly more effective evaluation
@ Approximate inference - Monte Carlo Sampling

@ LIMIDs - Limited Memory IDs - intentionally restrict the domains for
decisions

@ languages for asymmetric decision scenarios (Valuation networks,AlDs)
@ CEG - Chain Event Graphs - closed to the coalescent decision trees.

@ Unconstrainded influence diagrams (no ordering on decisions required).

= Reasoning on the structure of the influence diagram.
@ Influence diagram M consists of

e a DAG graph G
o a list of probability and utility potentials.
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Value of Information

@ @ Are all edges material?
@ @ @ Is there a structural criterion?

Definition (Materiality, Schachter 2016)

For a single-decision influence diagram (or SCIM) M, let Mx_4p be the model
M, modified by removing the edge X — D, and let maximal expected utility in
a model be V*(M) = max,E"[U].

The observation X € pa(D) is material if V*(Mxp) < V*(M).

Reference: Everitt, Tom & Carey, Ryan & Langlois, Eric & Ortega, Pedro &
Legg, Shane. (2021). Agent Incentives: A Causal Perspective.
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Nonrequeisite observation

Definition (Nonrequeisite observation, Lauritzen and Nilsson 2001)

o Let UP = U N desc(D) be the utility nodes downstream of D.
@ An observation X € pa(D) in a single-decision ID (CID) G is nonrequisite if:

X LqUP|(pa(D) U {D} \ {X}).

In this case, the edge X — D is also called nonrequisite.

@ Otherwise, X and X — D are requisite.

@ Recall d-separation criterion.
o We distinguish;

e the graphical structure G
o the model including the probability tables (and structural equations later) M.
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Value of Information

Definition (Value of Information)

@ A node x has value of information Vol in a ID (SCIM) M if it is material
in the model M x_,p obtained by adding the edge X — D to M.

e A ID (CID) G admits Vol for X if X as Vol in a ID M compatible with G.

Theorem (Value of information criterion)

A single decision ID (CID) G admits Vol for X € V' \ desc(D) if and only if X is a
requisite observation in Gx_,p, the graph obtained by adding X — D to G.
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Causality

@ Generally, a link in a BN does not have causal meaning.

o The probabilistic relation between Rain and WetGrass may be represented by
a link in any direction.

e In an ID, the links from decision and the descendants need to represent
causality.

e Still, the link X — Y does not have to represent causality.

o Further, we define causal models with all links causal.

Y~{0,1} X =Y Y = X X~{0,1}
D > D >
De{0,1} U=X+D De{0,1} U=X+D
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Causal Inference Example

https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-
toy-example/

x = randn) y =1+ 2'randn) U
y =x + 1+ sqrt(3)*randn() x = (y-1)/4 + sqrt(3)*randn()/2 i -

O—W® O—

pearsonr = 0.47,
.
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Observation

@ The conditional probability p(y|X = 3) is similar in all three cases.

0.20

015

0.10

0.05

0.00

ply|X=3)

— script 1
— script 2
— seript 3
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Intervention

@ The intervention

z =randn()
sets the value x = randn() y =1+ 2*randn() x=3
1 ' x=3 x=3 X=z
X = 3 constantly - | y=x+1+sqrt(3)*randn() x = (y-1)/4 + sqrt(3)*randn()/2 x=3
. . . x=3 x=3 y =z + 1+ sqrt(3)*randn()
@ The distributions x=3
differ.
plydotx=3) - ' ‘ . : .
. 4 4
2 2 2
=0 >0 =0
2 2 2
. . . t
pearsonr = nan; p =1 pearsonr = nan; p = 1 pearsonr = nan; p = 1
* 250 275 300 325 350 - 250 275 300 325 350 78 250 275 300 325 350
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Probabilistic model of the intervention

—O —O

X y

N
0 © 0 %
P(yldo(X)) = p(yl|z) P(yldo(X)) = p(y) P(yldo(X)) = p(y)

o do(X) operator disconnects X from its parents and enters the evidence.

I We need a causal graph, not an arbitrary Bayesian network.
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Structural Causal Model

Definition (Structural Causal Model, Pearl 2009, Chapter 7)

A structural causal model is a tuple (£,V,F, P), where

e & is a set of exogenous variables

@ V is a set of endogenous variables

o F = {fy}vev is a collection of functions
fv : dom(pa(V) U Ey) — dom(V)

@ The uncertainty is encoded through a probability distribution P(g) such that
the exogenous variables are mutually independent.

Posts

ép D =x(Ep)
< Opinion
O*C? O = fo(D,&0)
Clicks
Eu

/ U = fu(D,0, &)
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Structural Causal Influence Model

Definition (Submodel, Intervention)

Let M = (£,V,F,P) be an SCM, X a set of variables in V, and x a particular
realization on X. The submodel M, represents the effect of an intervention
do(X = x), and is formally defined as the SCM (€, V, F, P), where

F, = {fv|V ¢ X} U{X = x}.

The original functional relationships of X € X are replaced with the constant
function X = x.

Posts

Eo e ‘ poss ® oo
D =mn(Ep) d = apolitical Ep > exogenous

node
Opinion .
Eo > ! Opinion
O = fo(D,&o) Ou = fo(d. €6) Eo >

Clicks
& *@ Clicks
U=fu(D,0,&v)  yo, = fu(D,0u Ev) k&”

(b) SCM (c) SCM with nested counterfactual

structural node

intervened
node

decision node

OD@O

utility node
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Causal influence diagram

Definition (Causal influence diagram)

& +[D]
A causal influence diagram is a DAG G where the opiion
vertex set V is partitioned into structure nodes X, O fo- iz
decision nodes D, and utility nodes U. Utility nodes oSS,
have no children.

(a) SCIM

Definition (Structural causal influence model)

A structural causal influence model is a tuple M = (G, &, F, P) where

@ G is a CID with finite-domain variables V partitioned into X, D, U where
utility variable domains are a subset of R. We say that M is compatible
with G.

o {Ev}vev is a set of exogenous variables, one for each endogenous variable,

o F={fy}vew\p is a collection of structural functions
fv : dom(pa(V) U Ey) — dom(V),

@ P(g) such that the exogenous variables are mutually independent.

v
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Response Incentives

Definition (Response Incentives)

Let M be a single-decision SCIM. A policy 7 responds to a variable X if there
exists some intervention do(X = x) and some setting £ = ¢, such that

D, (g) # D(e).

The variable X € X has a response incentive if all optimal policies responds to
X.

A CID admits a response incentive on X if it is compatible with a SCIM that has
a response incentive on X.

Definition (Minimal reduction)

The minimal reduction G™" of a single-decision CID G is the result of removing
from G all information links from nonrequisite observations.

Theorem (Response incentive criterion)

A single decision CID G admits a response incentive on X € X if and only if the
minimal reduction G™" has a directed path X --» D.
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Incentivised unfairness

Definition (Counterfactual fairness, Kusner et al. 2017)

A policy is counterfactually fair with respect to a sensitive attribute A if
P™(Dy = d|pa(D), a) = P™(D = d|pa(D), )

for every decision d € dom(D), every context pa(D) € dom(pa(D)) and every pair
of attributes a, a’ € dom(S) with P(pa(D), a) > 0.

Theorem (Counterfactual fairness and

response incentives)

In a single-decision SCIM M with a
sensitive attribute A € X, all optimal
policies T are counterfactually unfair

with respect to A if and only if A has a

response in cen tiVe. (b) Admits no response incentive on race
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Value of Control

Definition (Value of control)

In a single-decision SCIM M, a non-decision node X has positive value of

control if

max; B [U] < max; xE™[Uyx]
where g% : dom(pa(X) U {Ex}) — dom(X) is a soft intervention at X, i.e. new
structural function for X that respects the graph.

A CID G admits positive value of control for X if there exists a SCIM M
compatible with G where X has positive value of control.

Theorem (Value of control criterion)

A single decision CID G admits positive value of control for a node X € V\ {D} if
and only if there is a directed path X --» U in the minimal reduction G™"
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Definition (Control Incentive)

In a single-decision SCIM M, there is a control incentive on X € V if for every
optimal policy 7*, there exists a setting for parents of the decision

pa(D) € dom(pa(D)) with P(pa(D)) > 0 and an alternative decision d € dom(D)
such that E™ [Ux, |pa(D)] # E™ [U|pa(D)].

A CID G admits a control incentive on X if there exists a SCIM M compatible
with G in which there is a control incentive on X.

@ In Pearl's terminology, a control
incentive means that D has a natural
md!rect effef:t on U via X under all o . ,;-
optimal policies. : user opinions

@ Can be viewed as instrumental goal.

Theorem (Control incentive criterion)

A single decision CID G admits a control
incentive on X € V if and only if there is a
directed path from the decision D to a utility
node U € U that passes through X, i.e. a
directed path D --» X --» U.

(b) Admits no control incentive on user opinion
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Counterfactual

https://www.inference.vc/causal-inference-3-counterfactuals/

Example (Counterfactual)

a Given that Ferenc Huszar have a beard, and that Ferenc Huszar have
a PhD degree, and everything else we know about him, with what
inFERENCe  probability would he have obtained a PhD degree, had he never grown

a beard.

observed, factual imagined,
counterfactual

fi/~ ‘

f3

fa

L o110

00 [ ofof1|1

1{0f[1]o0 o o Bl o

Ve o1 |01

1f1jojo ol1]o0o]o

(@@ =0,0=1,0=1,L=1,=1)
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Counterfactual Il

€1 €2/€3 ...

u= fi(e) u= fi(e)
. & * * & z = fo(u,€2) 2= fa(u, €2)
We set: p(y|do(X = X)p(y*|X* = X). z:fj(%:sx) Some
y = fa(u, 2, €4) Yy = fa(u, 2 €)

mrimw

We may notice:
plyldo(X =%)) = ply*|X* =X)
= / p( y* [X*'=%,X=x,Y=y,U=u,Z=2)p(x,y, u, z)dxdydudz
X,y U,V
= Ep, PV X" =%X=xY=y,U=u2=2z).
that is, p(y|do(X = X) is the average of counterfactuals over the observable

population.

More on causality: Sucar, Luis Enrique. "“Probabilistic Graphical Models:
Principles and Applications.” Probabilistic Graphical Models (2021)
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Dynamic Bayesian Networks

@ We ame to monitor a process in time.

@ We asume a constant BN that represents \
e intra edges and parameters inside one time slice ®‘®
o inter edges and parameters from one time slice to another

o initial probability distributions @9

?

Are variables UO and AO independent given A37

@ Observations usually make non-observable variables dependent.

@ Hidden Markov models 'join' each time slice to one 'product’ variable S.
e DBN is always useful for the input specification.

Probabilistic Graphical Models
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Dynamic Influence Diagram

G nips/idemobayestusion combayesbox “ B ¢ » @ @

Evidentious Models, Inc. (BayesBox demo) & Cose: (o case selected) Evdence: (rone)© @ Dashbourd~ ple) Q100%~ HFnd @ ®

roblents solution graph.
conmnm-d o the community by Chas Murray

oy R X anLahn, and 4, Mostow (2004). Locking ahead to
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Hidden Markov Model

Definition (Hidden Markov Model)
Hidden Markov Model is defined by

@ p the number of hidden states, possible values of S;

m the number of observation O; per state

N the length of observation/prediction sequence
Initial probability distribution P(Sp) ® @
State transition probabilities, P(Sy11 = j|S: = i)

Observation distribution per state P(O; = k|S; = i).

Filtering, Smoothing = a special case of the evidence propagation

@ Baum-Welch algorithm = a special case of the EM algorithm.
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HMM and LSTM comparison

Manie Tadayon and Greg Pottie: Comparative Analysis of the Hidden Markov Model and LSTM:
A Simulative Approach, (2020), https://arxiv.org/abs/2008.03825

@ The authors simulated data from a DBN. ®\®
@ Learned a HMM and a LSTM and compared the results. @)

N
@ Several DBNs, HMMs and LSTMs were tested. 2R3

@ DHMM has much less parameters to train.
o LSTM 4484 parameters
o DHMM 27 parameters
@ It may perform well. It may perform even better than LSTM with little
training data.

Number of Samples LSTM Accuracy(%) DHMM Accuracy(%)
8000 61.59 60.95

3000 58.36 60.01

1000 56.12 57.90

50 33.84 50.16

10 30.23 37.20
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Markov Decision Processes

@ We assume a finite set of states S in each time t

o First order Markov property the state t + 1 does not depend on t — i,
i > 0 given the state t, that is:

Ser1 AL S i|S:

@ Higher order Markov processes condition by more time slots.
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Markov Decision Process MDP

Definition (Markov Decision Processes MDP)

Markov Decision Processes is defined by:

o Finite set of states S, S; = S for any time t € Np,
Initial state sp
The set of possible actions (decisions) at any time A
Transition matrix T (s, a,s!) = P(sl|s, a)
Reward(=utility) R(s, a, s!) for each state (and action).
(discount factor v €< 0,1 >).

3 0.8
2 E 0.1 ’_ _‘ 0.1
LT
ote ® R(s) = —0.04,yv =1
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Cumulative payoff

The reward is summed through the time.
There are two approaches:

o finite horizon MDP — we set the number of steps n € N in advance
o this leads to a standard influence diagram (=decision graph)

@ infinite horizon and a discount factor 7, 0 < v < 1 to make the infinite sum
finite. We maximize

E(U(so,---,5t,--.)) =E <nytR(st)> (ny (st, m(5t), Se1)|m )
=0

o We maximize the expected value due to probabilistic outcome of actions.

@ v corresponds to the interest rate % — 1 we have to pay.

@ the sum is finite since U(sp,...,St,...) < %.
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Strategy (policy)

A solution is a strategy 7* that maximizes the expected reward.
o0
" = argmax,E Z’th(st,w(st), Seq1)|m
t=0

o For a finite horizon, the strategy is not stationary. It depends on the number
of steps to the end. 7 : History — A

@ Infinite horizon leads to a stationary strategy. The optimal choice of an
action does not depend on the number of steps passed.

o It is easier to represent a stationary strategy 7 : S — A.
@ In case of certainity to reach a goal state we may use v = 1.

Probabilistic Graphical Models MDP, POMDP 12 14. prosince 2023 58 / 55 - 77



Value Iteration Algorithm for MDP

Value Iteration Algorithm for MDP

input: MDP, states S, transitions T, reward R > 0, discount f. ,e
vars: U, U!, vectors of utilities of states S, initialize U! « 0!l
& maximal U change in the current cycle
repeat
U« ULs«0
for each state s in S do
Ulls] < R[s] +ymaxs > T(s,a,s)U(s))
if |U![s] — U[s]| > d then 6 « |U![s] — U[s]|
until § < e(1—7)/y
return U/
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Bellman Equations for the Optimal Strategy

-|=| == || =@

A -|= A V(=

== V=4 |<

—_
2 ? . ? R(s) <-1.6284 —0.4278 < R(s) <—0.0850
-

o ~-1-| hK

- = + - |=

oo H=l=lv] [+

—-0.0221 <R(s) <0 R(s)>0
(a) (b)

@ The evaluation of POLICY _VALUE(w, U, MPD) requires solution of |S| linear
Bellman equations for U[s].

Ulel = Ris, () +1 T Uials]
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Policy lteration Algorithm for MDP

input: MDP, states S, transitions T, reward R, discount f. ~
vars: U, a vector of utilities of states S, initialize U < 0I°!
7 policy, initialize at random
repeat
U + POLICY_VALUE(w, U, MPD)
unchanged? + true
for each state s in S do
if max, >, T(s,a,sN)U[s] > >, T(s,n[s],s)U[s!]
then
7[s] « argmax, 3" T(s,a,s)U[s]
unchanged? + false
until unchanged?
return 7

@ The only difficulty may be a huge number of states like 10° equations for 10°
variables.

@ There are hybrid algorithms of value and policy iteration (for example
prioritized sweeping).
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Example

@ The process above is not a Markov process.

o O'FV5(T17 F\/l, TQ, F\/Q7 T3, FV3, T4, F\/47 T5) is a very Iarge table.
@ We approximate.

°

Consider the second model and eliminate variables V; to get a Markov process

® oy (T, FV, To, FVo, T3, FV3, Ty, FVy, Ts) = O'FV_r,(Tsl)-
° apv5(T5‘) is small (not larger than the MDP specification).
@ We do not have to approximate. Let us introduce the POMPD.
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Partially Observable Markov Decision Processes (POMDP)

@ We are not able to observe the state directly.

@ Our observations are noisy.
@ The ideas:
e The process is Markov with respect to the belief on states.
@ = the probability distribution on states
o there are infinitely many such distributions (a continuous space)
o Hidden Markov Model + Decisions + Rewards = Partially Observed Markov
Decision Processes.
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POMDP

Definition (Partially Observed Markov Decision Processes POMDP)

Partially Observed Markov Decision Processes is defined by:
o Finite set of states S, S; = S for any time t € Ny,
— Initial belief by(s) = P(So)
@ The set of possible actions (decisions) at any time A = {ay,..., a4}
— a set of observations Z = O = {z,..., 2z}
@ Transition matrix T(s;—1,ar—1,St) = Pr(st|st—1,at—1)
— observation matrix O(sy, ar—1,2:) = Pr(z¢|st, ar—1)
o Reward(=utility) R(s, a) for each state (and action).
@ (discount factor v €< 0,1 >).
We maximize the expected cumulative reward max;E [> oo, v R(st, ar)].

MDP The policy is a function of the state 7 (s)
)MDP The policy is a function of the history mw(a;—1,zt—1,. .., 21, a0, bo)
e or a function of the belief: b: S — (0,1), w(b)
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Tiger Example

The example is a variant of the Monty Hall problem.
e We face two doors.

o There is a tiger behind one door,
o there is a gold brick behind the other.

The Tiger is left or right S = {left, right}

We may open any door or listen A = {left, right, listen},

we search optimal policy for given observation and reward tables.

We observe Z only if we listen - we listen the tiger left TL or right TR

we reset the world at the beginning and after opening any door:
o the initial belief P(So) = (0.5,0.5)
@ The reward R is a function of the state and the action
o U(gold,I/r) =10, U(tiger,I/r) = —100, U(x, listen) = —1, that is
Teer — oft  right || Z | S=7, A=listen  left right

Action

Listen -1 -1 TL 0.85 0.15
left -100 10 TR 0.15 0.85
right 10 -100 Nolnfo 0 0
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POMPD

Finite horizon POMPD t, v = 1:
ot=1
EU,—1(A = left/right) = =10+10 — _45
EU;—1(A = listen) = —1

@ horizon t =2
[000,002] [02,039] [039,0641] (061, 098] [0.9%,1.00]

T(5t717 at—1, st) = Pr(st\stfl, at,].)

O(Shatfl,zt) = Pr(Zt‘shatfl)

[0.00, 0.10] [0.10,0.90] [0.90, 1.00]

000,006 [06037 [03806] 062093 093,100
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Infinite Horizon

e v=0.75
@ we iterate until convergence
@ Then, we create a graph by joining two successive time slices together.

o We may omit nodes that are not reachable from the initial belief by(s) = 0.5.

Figure 17 Toiunned palicy grapl for tiger exauple
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Markov with respect to belief over states

@ The history is aggregated in the probability distribution over states
history hy = {a0, z1,a1,...,2t—1, 81, 2t }
belief b:(s) = P(S = s|z;, at—1, - - -, a0, bo),
initial belief bo(s) = P(So).
In the tiger example a single number b(/eft), since the other probability is
1 — b(left).
@ We update belief after any iteration. The update consists of:
e a transition - we eliminate unobserved s;_;
e an observation - we condition by z:.

@ belief update

bt(s‘)
ZSO(Sla at—1, Zt) T(57 ar—1, Sl)bt—l(s)
Pf(zt|bt—1a at—l)

T(bt—b 3t—172t)

@ Markov with respect to b since 7 does not depend on time.
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Strategy, Value function

o Strategy (policy) is a function 7(b) — a,
@ optimal strategy maximizes the expected discounted cumulative reward

PICAE rt)bo]

t=0

7 (bo) = argmax;E

@ value function
o initial Vo(b) = max,
e recursively
Vi(b) = max, [Y_. s R(s,a)b(s) + v, , P(zla, b) Vi1 (7(b, 3, 2))],
@ optimal strategy for the horizon t:

75 (b) = argmax, [ZSES R(s,a)b(s) + szez P(z|a, b)Vi—1(7(b, a, z))]

s R(s, a)b(s)

inction®) VI, 1- 053
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o vectors

Velgpe
VAl

Tel = O(A] - [Te—1]'?T)
@ value function V;(b) can be represented by a finite number of hyperplanes

o each hyperplane is represented as a vector a Vi(b) < 't = {aw, a1,...,am}.

o initial: To(b) = {(R(s1,a), R(s2,a),..., R(ss|,a))}aca
o at the time t: Vi(b) = maxaer, ) s a(s)b(s).

@ From

o Vi(b) = max, [ZSES R(s,a)b(s) +7)_,., P(zla, b)Vi—1(7(b, a, z))]:
¥,0(s! ,at,2e11) T(s,at, sl)be(s)
Pr(zt11be,ar)

o 7(bt,ar,zt41) =

Vi(b) = max; Z R(s, a)b(s)
s€S

+ WZmaxaert . Z Z s,a,5")0(s', a, z)a(s") b(s)

zeZ s’e€S seS
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One Step of the Time Update

@ temporal sets Va; € I';_1:

et « a®%(s) = R(s,a)

e « a®(s)=n Z T(s,a,s')0(s, a,z)a(s),

s’eS

@ The utility for the action a summed over possible observation results z;:

=Tt +rimeri*e...or™

o the new value function for the time t: ['; < (J,c 47
@ We remove all o that are dominated by others
o there are strategies to remove them earlier

e or to avoid to generate many of them at all |I';| = O(|A| - [T+—1|/?]).

https://h2r.github.io/pomdp-py/html/index.html J
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Approximation - We evaluate only some b points

@ Pineau & all.: Anytime
Point-Based Approximations for
Large POMDPs, JAIR 2006

@ Pearl the Nursebot
@ Find a person

()rmn al B( lief

et

(b) Reconstruction
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Approximation - We evaluate only some b points

@ We evaluate the belief only in a finite number of points

@ only one « vector for each point
2t « a®%(s) = R(s,a)
% « a®*(s) =7 Z T(s,a,s")0(s, a, z)a(s'),
s’eS

@ max for FINITE number of b€ B

ap = argmax, Z R(s,a)b(s) + Z argmax, cra= Z a(s)b(s)

ses zeZ seS

e = U {as}

beB

@ The number of as does not increase (with respect to the size of B).
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POMDP Evaluation for the Fixed Number of B Points

1. procedure BACKUP( B,I';_1 )

2 for each action a € A do

3 for each observation z € Z do

4: for each solution vector o; € I';_; do
5: a??(s) =7 ues T(s,a,8")0(s",a,z)a(s’), Vs € S
6: end for

7 Ff’z = U,'Oéa’z(s)

8 end for

9 end for
10: =0
11: for each belief point b € B do
12:

ap = argmax, [Y.cs R(s,a)b(s) + 3 ,c 7 argmaxgeras Y se s (s)b(s)]
13: if ap ¢ I, then

14: MN=T:Uap
15: end if

16: end for

17: return I,

18: end procedure
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Iterative Number of Points POMDP

1. procedure PBVI-MAIN( Bj,lo,N, T )
2: B = Blnit

3 = rlnit

4 for N expansions do

5: for T iterations do

6 = BACKUP(B,T)

7 end for

8 Brew = EXPAND(B,T)

9 end for

10: return [

11: end procedure
T either a horizon or we select a error bound ~!||V§ — V*||.
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Expand: New Points Selection

1) at random

2) greedy maximal error improvement
o b’ a new candidate
o the upper error bound in b’
, , (R’”‘“ — afs))(b'(s) — b(s)) b'(s) = b(s)
e(b") < min , ’
(F) < minuce 2 ses {( —a(&)(B(s) ~ b))  b(s) < bls)

e b on the fringe, the error Welghted by the probability of observations:

e(b) = Tea}ZO(b,a,z)e(T(ma,z))

zeZ
= Tgaz(% [ZS; T(s,a,s)O0(s, a,z)b(s) | e(7(b, a, 2)).
z s'eS s
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QMDP Approximation

@ QMDP underestimates the state uncertainty in the POMDP.
: procedure QMDP( b )
V = MDP_discrete_value__iteration()
for each action a € A do
for each state s € S do

1
2
3
4.
5 Q(s.3) = R(5,3) +7 Yes V(s)p(s']a,s)
6: end for

7

8

9

end for

return argmax, » .. b(s)Q(s, a)
: end procedure
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