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Definition (Partially Observed Markov Decision Processes POMDP)

Partially Observed Markov Decision Processes is defined by:

o Finite set of states S, S; = S for any time t € N,

We maximize the expected cumulative reward max;E [ oo; 7 R(st, at)]-

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 10 /1 - 112



POMDP

Definition (Partially Observed Markov Decision Processes POMDP)

Partially Observed Markov Decision Processes is defined by:
o Finite set of states S, S; = S for any time t € N,
— Initial belief by(s) = P(So)

We maximize the expected cumulative reward max;E [ oo; 7 R(st, at)]-

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 10 /1 - 112



POMDP

Definition (Partially Observed Markov Decision Processes POMDP)

Partially Observed Markov Decision Processes is defined by:
o Finite set of states S, S; = S for any time t € N,
— Initial belief by(s) = P(So)
@ The set of possible actions (decisions) at any time A = {ay,..., a4}

We maximize the expected cumulative reward max;E [ oo; 7 R(st, at)]-

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 10 /1 - 112



POMDP

Definition (Partially Observed Markov Decision Processes POMDP)

Partially Observed Markov Decision Processes is defined by:
o Finite set of states S, S; = S for any time t € N,
— Initial belief by(s) = P(So)
@ The set of possible actions (decisions) at any time A = {ay,..., a4}

— a set of observations Z = O = {z,...,2z}

We maximize the expected cumulative reward max;E [ oo; 7 R(st, at)]-

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 10 /1 - 112




POMDP

Definition (Partially Observed Markov Decision Processes POMDP)

Partially Observed Markov Decision Processes is defined by:
o Finite set of states S, S; = S for any time t € N,
— Initial belief by(s) = P(So)
@ The set of possible actions (decisions) at any time A = {ay,..., a4}
— a set of observations Z = O = {z,...,2z}

o Transition matrix T(s¢—1,3:—1,5t) = P(S¢|St—1, ar—1)

We maximize the expected cumulative reward max,E [ oo; 7 R(st, at)]-

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 10 /1 - 112




POMDP

Definition (Partially Observed Markov Decision Processes POMDP)

Partially Observed Markov Decision Processes is defined by:
o Finite set of states S, S; = S for any time t € N,
— Initial belief by(s) = P(So)
@ The set of possible actions (decisions) at any time A = {ay,..., a4}
— a set of observations Z = O = {z,...,2z}
o Transition matrix T(s¢—1,3:—1,5t) = P(S¢|St—1, ar—1)

— observation matrix O(s¢, ar—1,z¢) = P(z¢|st, ar—1)

We maximize the expected cumulative reward max,E [ oo; 7 R(st, at)]-

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 10 /1 - 112




POMDP

Definition (Partially Observed Markov Decision Processes POMDP)

Partially Observed Markov Decision Processes is defined by:
o Finite set of states S, S; = S for any time t € N,
— Initial belief by(s) = P(So)
@ The set of possible actions (decisions) at any time A = {ay,..., a4}
— a set of observations Z = O = {z,...,2z}
o Transition matrix T(s¢—1,3:—1,5t) = P(S¢|St—1, ar—1)
— observation matrix O(s¢, ar—1,z¢) = P(z¢|st, ar—1)
o Reward(=utility) R(s, a) for each state (and action).

We maximize the expected cumulative reward max;E [ oo; 7 R(st, at)]-

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024

10 /1-112



POMDP

Definition (Partially Observed Markov Decision Processes POMDP)

Partially Observed Markov Decision Processes is defined by:
o Finite set of states S, S; = S for any time t € N,
Initial belief by(s) = P(So)
The set of possible actions (decisions) at any time A = {ay,...,aja}

—
(]
— a set of observations Z = O = {z,...,2z}
o Transition matrix T(s¢—1,3:—1,5t) = P(S¢|St—1, ar—1)
— observation matrix O(s¢, ar—1,z¢) = P(z¢|st, ar—1)
o Reward(=utility) R(s, a) for each state (and action).
@ (discount factor v €< 0,1 >).

We maximize the expected cumulative reward max;E [ oo; 7 R(st, at)]-

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024

10 /1-112



POMDP

Definition (Partially Observed Markov Decision Processes POMDP)

Partially Observed Markov Decision Processes is defined by:
o Finite set of states S, S; = S for any time t € N,
Initial belief by(s) = P(So)
The set of possible actions (decisions) at any time A = {ay,...,aja}

—
(]
— a set of observations Z = O = {z,...,2z}
o Transition matrix T(s¢—1,3:—1,5t) = P(S¢|St—1, ar—1)
— observation matrix O(s¢, ar—1,z¢) = P(z¢|st, ar—1)
o Reward(=utility) R(s, a) for each state (and action).
@ (discount factor v €< 0,1 >).

We maximize the expected cumulative reward max;E [ oo; 7 R(st, at)]-

MDP The policy is a function of the state 7 (s)

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024

10 /1-112



POMDP

Definition (Partially Observed Markov Decision Processes POMDP)

Partially Observed Markov Decision Processes is defined by:
o Finite set of states S, S; = S for any time t € N,
— Initial belief by(s) = P(So)
@ The set of possible actions (decisions) at any time A = {ay,..., a4}
— a set of observations Z = O = {z,...,2z}
o Transition matrix T(s¢—1,3:—1,5t) = P(S¢|St—1, ar—1)
— observation matrix O(s¢, ar—1,z¢) = P(z¢|st, ar—1)
o Reward(=utility) R(s, a) for each state (and action).
@ (discount factor v €< 0,1 >).
We maximize the expected cumulative reward max;E [ oo; 7 R(st, at)]-

MDP The policy is a function of the state 7 (s)
)MDP The policy is a function of the history mw(a;—1,zt—1,. .., 21, a0, bo)

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024

10 /1-112



POMDP

Definition (Partially Observed Markov Decision Processes POMDP)

Partially Observed Markov Decision Processes is defined by:
o Finite set of states S, S; = S for any time t € N,
— Initial belief by(s) = P(So)
@ The set of possible actions (decisions) at any time A = {ay,..., a4}
— a set of observations Z = O = {z,..., 2z}
o Transition matrix T(s¢—1,3:—1,5t) = P(S¢|St—1, ar—1)
— observation matrix O(s¢, ar—1,z¢) = P(z¢|st, ar—1)
o Reward(=utility) R(s, a) for each state (and action).
@ (discount factor v €< 0,1 >).
We maximize the expected cumulative reward max;E [ oo; 7 R(st, at)]-

MDP The policy is a function of the state 7 (s)
)MDP The policy is a function of the history mw(a;—1,zt—1,. .., 21, a0, bo)
e or a function of the belief: b: S — (0,1), w(b)

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024

10 /1-112



Tiger Example
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The example is a variant of the Monty Hall problem.
e We face two doors.

o There is a tiger behind one door,
o there is a gold brick behind the other.

The Tiger is left or right S = {left, right}

We may open any door or listen A = {left, right, listen},

we search optimal policy for given observation and reward tables.

We observe Z only if we listen - we listen the tiger left TL or right TR

we reset the world at the beginning and after opening any door:
o the initial belief P(So) = (0.5,0.5)
@ The reward R is a function of the state and the action
o U(gold,I/r) =10, U(tiger,I/r) = —100, U(x, listen) = —1, that is
Teer — oft  right || Z | S=7, A=listen  left right

Action

Listen -1 -1 TL 0.85 0.15
left -100 10 TR 0.15 0.85
right 10 -100 Nolnfo 0 0
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POMPD

Finite horizon POMPD t, v = 1:
et=1
EU;—1(A = left/right) = % = —45
EU;—1(A = listen) = —1
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POMPD

Finite horizon POMPD t, v = 1:
et=1
EUi—1(A = left/right) = =199+H10 — _45
EU;—1(A = listen) = —1

@ horizon t =2
[00,002] [002,039] [039,061] [061,088] [098100]

T(stfl,atflyst) = P(st‘stflaatfl)

O(st,at—lyzt) P(Zt‘st,at—l)

[0.00, 010] [0.10,0.90] [0.90, 1.00]
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POMPD

Finite horizon POMPD t, v = 1:
ot=1
EU,—1(A = left/right) = =10+10 — _45
EU;—1(A = listen) = —1

@ horizon t =2
[000,002] [02,039] [039,0641] (061, 098] [0.9%,1.00]

T(st—1,at-1,5) = P(st|se—1,ac-1)

O(styatflyzt) = P(Zt‘st,atfl)

[0.00, 0.10] [0.10,0.90] [0.90, 1.00]

000,006 [06037 [03806] 062093 093,100
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Infinite Horizon

e v=0.75
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Infinite Horizon

e v=0.75
@ we iterate until convergence

@ Then, we create a graph by joining two successive time slices together.

Figure 14 Policy graph for tiger exanple
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Infinite Horizon

e v=0.75
@ we iterate until convergence
@ Then, we create a graph by joining two successive time slices together.

o We may omit nodes that are not reachable from the initial belief by(s) = 0.5.

Figure 17 Toiunned palicy grapl for tiger exauple
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Markov with respect to belief over states

@ The history is aggregated in the probability distribution over states

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 14 /1-112



Markov with respect to belief over states

@ The history is aggregated in the probability distribution over states

o history hy = {ao, z1,a1,...,2—1,8t—1, 2t}

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 14 /1-112



Markov with respect to belief over states

@ The history is aggregated in the probability distribution over states

o history hy = {ao, z1,a1,...,2—1,8t—1, 2t}
o belief b:(s) = P(S = s|z:, a¢—1, - . ., a0, bo),

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 14 /1-112



Markov with respect to belief over states

@ The history is aggregated in the probability distribution over states
o history hy = {ao, z1,a1,...,2—1,8t—1, 2t}
o belief b:(s) = P(S = s|z:, a¢—1, - . ., a0, bo),
o initial belief by(s) = P(So).

MDP, POMDP 12 19. prosince 2024 14 /1-112

Probabilistic Graphical Models



Markov with respect to belief over states

@ The history is aggregated in the probability distribution over states
history hy = {a0, z1,a1,...,2t—1, 81, 2t }

belief b:(s) = P(S = s|z;, at—1, - - -, a0, bo),

initial belief bo(s) = P(So).

In the tiger example a single number b(/eft), since the other probability is
1 — b(left).
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Markov with respect to belief over states

@ The history is aggregated in the probability distribution over states
history hy = {a0, z1,a1,...,2t—1, 81, 2t }
belief b:(s) = P(S = s|z;, at—1, - - -, a0, bo),

initial belief bo(s) = P(So).
In the tiger example a single number b(/eft), since the other probability is

1 — b(left).
@ We update belief after any iteration. The update consists of:

o a transition - we eliminate unobserved s;_1
e an observation - we condition by z:.

@ belief update

T(bt—bat—hzt) = bt(sl)
ZSO(5|3at—lazt)T(svat—lvsl)bt—l(s)
P(Zt|bt—1»3t—1)
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Markov with respect to belief over states

@ The history is aggregated in the probability distribution over states
history hy = {a0, z1,a1,...,2t—1, 81, 2t }
belief b:(s) = P(S = s|z;, at—1, - - -, a0, bo),
initial belief bo(s) = P(So).
In the tiger example a single number b(/eft), since the other probability is
1 — b(left).
@ We update belief after any iteration. The update consists of:
e a transition - we eliminate unobserved s;_;
e an observation - we condition by z:.

@ belief update

bt(s‘)
ZSO(Sla at—1, Zt) T(57 ar—1, Sl)bt—l(s)
P(Zt|bt—1» at—l)

T(bt—b 3t—172t)

@ Markov with respect to b since 7 does not depend on time.
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Strategy, Value function

o Strategy (policy) is a function 7(b) — a,
@ optimal strategy maximizes the expected discounted cumulative reward

7*(bg) = argmax,;E, [Z(»yf . rt)|b0]

t=0
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@ value function
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Strategy, Value function

o Strategy (policy) is a function w(b) — a,

@ optimal strategy maximizes the expected discounted cumulative reward

7" (bo) = argmax;E [Z(Vt : rt)IbO]

t=0

@ value function

o initial Vo(b) = max,»___. R(s,a)b(s)

ses

don() V(e 1 -, 3)

T T T T T T
00 10

H
g

X< seq(0, 1, lengih.out = 100)
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Strategy, Value function

o Strategy (policy) is a function w(b) — a,

@ optimal strategy maximizes the expected discounted cumulative reward

7 (bo) = argmax,;E [Z(*yt . rt)|b0]
t=0
@ value function
o initial Vo(b) = maxs
e recursively
Vi(b) = max, [2565 R(s,a)b(s) +7>_,., P(zla, b)Vi—1(7(b, a, z))] ,

s R(s, a)b(s)

don() V(e 1 -, 3)

T T T T T T
00 10

H
g

X< seq(0, 1, lengih.out = 100)

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 15 /1-112



Strategy, Value function

o Strategy (policy) is a function 7(b) — a,
@ optimal strategy maximizes the expected discounted cumulative reward

7 (bo) = argmax;E, [zw - rt)|bo]

t=0

@ value function
o initial Vo(b) = max,»
e recursively
Vi(b) = max, [Y-. s R(s,a)b(s) + v, P(zla, b)Vi-1(7(b, a, 2))],
@ optimal strategy for the horizon t:
75 (b) = argmax, [ZSES R(s,a)b(s) + 72262 P(z|a, b)Vi—1(7(b, a, z))]

ses R(s,a)b(s)
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Strategy, Value function

e Strategy (policy) is a function w(b) — a,
@ optimal strategy maximizes the expected discounted cumulative reward

t=0

7*(bg) = argmax;E, [Z(ryf . rt)|b0]

@ value function
o initial Vo(b) = max, >
e recursively
Vi(b) = max, [}, s R(s,a)b(s) + 7Y, , P(zla, b)Ve-1(7(b, 3, 2))],
@ optimal strategy for the horizon t:

s R(s,a)b(s)

Ti(b) = argmax, [ cs R(s,a)b(s) + 7,7 P(z]a, b)Vi_1(7(b, a, 2))].

{a) The belief space (b) The value funetion

MDP, POMDP 12 19. prosince 2024
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o vectors

Velege opa) ’

Fignte 1: FOMDP value function reprsentaton |rt| — O(| A\ . |rt_1|\Z \)
@ value function V;(b) can be represented by a finite number of hyperplanes
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o vectors

V(e aya,) ’
AN/
/o N/
- N N

Fignte 1: FOMDP value function reprsentaton |rt‘ — O(| A\ . |rt_1|\Z \)
@ value function V;(b) can be represented by a finite number of hyperplanes

o each hyperplane is represented as a vector a:

Vi(b) & T ={a;a0,01,...,am} ={a;vo,Va,. .., Vm}.
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o vectors

P —— ITe| = O(JA] - [Fe—1|141)

@ value function V;(b) can be represented by a finite number of hyperplanes
o each hyperplane is represented as a vector a:

Vi(b) & T ={a;a0,01,...,am} ={a;vo,Va,. .., Vm}.
o initial: Fo(b) = {(a; R(s1, a), R(s2,a), ..., R(ss|,a)) }aca
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o vectors

P —— ITe| = O(JA] - [Fe—1|141)

@ value function V;(b) can be represented by a finite number of hyperplanes
o each hyperplane is represented as a vector a:

Vi(b) & T ={a;a0,01,...,am} ={a;vo,Va,. .., Vm}.

o initial: Fo(b) = {(a; R(s1, a), R(s2,a), ..., R(ss|,a)) }aca

o at the time t: Vi(b) = maxaer, ) . s a(s)b(s).
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o vectors

P —— ITe| = O(JA] - [Fe—1|141)

@ value function V;(b) can be represented by a finite number of hyperplanes
o each hyperplane is represented as a vector a:

Vi(b) & T ={a;a0,01,...,am} ={a;vo,Va,. .., Vm}.

o initial: Fo(b) = {(a; R(s1, a), R(s2,a), ..., R(ss|,a)) }aca

o at the time t: Vi(b) = maxaer, ) . s a(s)b(s).

e From
o Vi(b) = max, [} s R(s,a)b(s) +vY_,., P(zla, b)Vi1(7(b, 2, 2))]:
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o vectors

P —— ITe| = O(JA] - [Fe—1|141)

@ value function V;(b) can be represented by a finite number of hyperplanes
o each hyperplane is represented as a vector a:

Vi(b) & T ={a;a0,01,...,am} ={a;vo,Va,. .., Vm}.

o initial: Fo(b) = {(a; R(s1, a), R(s2,a), ..., R(ss|,a)) }aca

o at the time t: Vi(b) = maxaer, ) . s a(s)b(s).

@ From

o Vi(b) = max, [} s R(s,a)b(s) +vY_,., P(zla, b)Vi1(7(b, 2, 2))]:

ZSO(S‘ ,at,2e41) T(s,at,s ‘)bt(s)
Pr(z¢4+1|bt,at)

° T(bn at, Zt+1) =
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o vectors

V=l e a,0,)

Figare 1: POMDP value function representation |rt‘ — O(|A‘ . |rt71|‘z‘)
@ value function V;(b) can be represented by a finite number of hyperplanes

o each hyperplane is represented as a vector a:

Vi(b) & T ={a;a0,0a1,...,am} ={a;vo,Va,..., Vm}.
o initial: To(b) = {(a; R(s1, a), R(s2,a),...,R(s|s|,a)) }aca
o at the time t: Vi(b) = maxaer, ) s a(s)b(s).
e From
o Vi(b) = max, [3 s R(s,a)b(s) +vY_,., P(zla, b)Vi1(7(b, 2, 2))]:

XSO(S‘ ,at,2e41) T(s,at,s ‘)bt(s)
Pr(z¢4+1|bt,ar)

° T(bh at, Zt+1) =

Vi(b) = max; Z R(s, a)b(s)
s€S

+ Zmaxaert . Z Z s,a,5")0(s', a, z)a(s")b(s)

zeZ s’€S ses
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One Step of the Time Update

@ temporal sets Va; € T',_1 (j € S is the a dimension):
M e 0t () = R(,9)

e « o (j) =7 Z T(j,a,s)0(s, a, z)a(s),
s'eS

https://h2r.github.io/pomdp-py/html/index.html J
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@ temporal sets Va; € T',_1 (j € S is the a dimension):
M e 0t () = R(,9)

e « o (j) =7 Z T(j,a,s)0(s, a, z)a(s),
s'eS

@ The utility for the action a summed over possible observation results zx:

P=rr+ri2eri?e..ork™

https://h2r.github.io/pomdp-py/html/index.html
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One Step of the Time Update

@ temporal sets Va; € T',_1 (j € S is the a dimension):
ot « oﬂv*(j) = R(j, a)
e « o —’}/ZTJ,ES)O(S a, z)a(s’),

s’eS

@ The utility for the action a summed over possible observation results zx:

=Tt +rimeri*e...or™

o the new value function for the time t: ['; < (J,c 47

https://h2r.github.io/pomdp-py/html/index.html
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One Step of the Time Update

@ temporal sets Va; € T',_1 (j € S is the a dimension):
ot « oﬂv*(j) = R(j, a)

e « o —’}/ZTJ,ES)O(S a, z)a(s’),
s'eS

@ The utility for the action a summed over possible observation results zx:

=Tt +rimeri*e...or™

@ the new value function for the time t: ['; + |
@ We remove all o that are dominated by others

aGA

https://h2r.github.io/pomdp-py/html/index.html J
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One Step of the Time Update

@ temporal sets Va; € T',_1 (j € S is the a dimension):
ot « oﬂv*(j) = R(j, a)

e « o —’}/ZTJ,ES)O(S a, z)a(s’),
s'eS

@ The utility for the action a summed over possible observation results zx:

=Tt +rimeri*e...or™

@ the new value function for the time t: ['; + |
@ We remove all o that are dominated by others

o there are strategies to remove them earlier

aGA

https://h2r.github.io/pomdp-py/html/index.html J
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One Step of the Time Update

@ temporal sets Va; € T',_1 (j € S is the a dimension):
ot « oﬂv*(j) = R(j, a)

e « o —’}/ZTJ,ES)O(S a, z)a(s’),
s'eS

@ The utility for the action a summed over possible observation results zx:

=Tt +rimeri*e...or™

@ the new value function for the time t: ['; + |
@ We remove all o that are dominated by others

o there are strategies to remove them earlier
e or to avoid to generate many of them at all |I';| = O(|A| - [T+—1|/?]).

aGA

https://h2r.github.io/pomdp-py/html/index.html J

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024

17 /1-112



POMDP

1: procedure pOLICY POMDP( T )
2 I = {[None;0,...,0]}
3 fort=1to T do
4 =0
5: for all (a/,vf,...,v§) €T, allac A all z€ O do
6 forj =1to N do > for all states s;
7 uz,_/ ,‘YZI 1 lp(z|sl) (5,'|3,5j)
8 end for
0: end for > next: free choice k(z) € T for every z
10: for all u, all k(1),...,k(M)=(1,...,1) to (|[|,...,|l]) do
11: for j=1to N do
12: v = [ r(sj,a) + Zz A Z)J > aggregate over z € O
13: end for
14: add (a;vq,...,vy) to I’ > one 2 element
15: end for
16: (optimally prune ')
17: r=r
18: end for
19: return [
20: end rocedure
e dels MDP, POMDP 12 19. prosince 2024 18 /1-112



POMPD policy!

@ From the set of « vectors I' we get the policy:

policy

1: procedure poLICY_ POMDP( T, b= [by,...,bn])
2 a= arg max(a;vlk,...,v,’\‘,)er Z’N:1 Vikbi

3: return a

4: end procedure

(@) pruned value function Vao(b) (b) PBVIvalue function Vio(b

Figure 15.7 The benefit of point-based value iteration over general value iteration:
Shown in (a) is the exact value function at horizon 7' = 30 for a different example,
which consists of 120 constraints, after pruning. On the right is the result of the PBVI
algorithm retaining only 11 linear functions. Both functions yield virtually indistin-
guishable results when applied to control Figure 17: Triumned policy greplh for tiger exeanple
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Approximation - We evaluate only some b points

@ x for the rest of today lecture

@ Pineau & all.: Anytime
Point-Based Approximations for
Large POMDPs, JAIR 2006

@ Pearl the Nursebot

@ Find a person

()rmn al B( lief

et

(b) Reconstruction
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Approximation - We evaluate only some b points

@ We evaluate the belief only in a finite number of points
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Approximation - We evaluate only some b points

@ We evaluate the belief only in a finite number of points
@ only one « vector for each point
2t « a®%(s) = R(s,a)

M e a®(s)=7) T(s,2.5)0(s.a.2)a(s"),
s’eS
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Approximation - We evaluate only some b points

@ We evaluate the belief only in a finite number of points
@ only one « vector for each point
2t « a®%(s) = R(s,a)
% « a®*(s) =7 Z T(s,a,s")0(s, a, z)a(s'),
s'eS

@ max for FINITE number of b€ B

ap = argmax, Z R(s,a)b(s) + Z argmax, cra= Z a(s)b(s)

ses zeZ seS

e = U {as}

beB
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Approximation - We evaluate only some b points

@ We evaluate the belief only in a finite number of points

@ only one « vector for each point
2t « a®%(s) = R(s,a)
% « a®*(s) =7 Z T(s,a,s")0(s, a, z)a(s'),
s’eS

@ max for FINITE number of b€ B

ap = argmax, Z R(s,a)b(s) + Z argmax, cra= Z a(s)b(s)

ses zeZ seS

e = U {as}

beB

@ The number of as does not increase (with respect to the size of B).
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POMDP Evaluation for the Fixed Number of B Points

1. procedure BACKUP( B,I';_1 )

2 for each action a € A do

3 for each observation z € Z do

4: for each solution vector o; € I';_; do
5: a??(s) =7 ues T(s,a,8")0(s",a,z)a(s’), Vs € S
6: end for

7 Ff’z = U,'Oéa’z(s)

8 end for

9 end for
10: =0
11: for each belief point b € B do
12:

ap = argmax, [Y.cs R(s,a)b(s) + 3 ,c 7 argmaxgeras Y se s (s)b(s)]
13: if ap ¢ I, then

14: MN=T:Uap
15: end if

16: end for

17: return I,

18: end procedure

Probabilistic Graphical Models MDP, POMDP 12 19. prosince 2024 22 /1-112



Iterative Number of Points POMDP

1. procedure PBVI-MAIN( Bj,lo,N, T )
2: B = Blnit

3 = rlnit

4 for N expansions do

5: for T iterations do

6 = BACKUP(B,T)

7 end for

8 Brew = EXPAND(B,T)

9 end for

10: return [

11: end procedure
T either a horizon or we select a error bound ~!||V§ — V*||.
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Expand: New Points Selection

1) at random

A \;h N

\l’.wbag bmx:, by‘, b‘f‘ bag, SR I
| g : H H : B :

/

o
b
Wode Wl
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Expand: New Points Selection

1) at random

Ko
b
LR Y

2) greedy maximal error improvement
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Expand: New Points Selection

1) at random

b,
/o \:B e
bwb‘f‘ bag, Yo b b
v
b
. . i»’ﬂthzﬂ *’ﬂ;»"ﬂ
2) greedy maximal error improvement
o b’ a new candidate
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Expand: New Points Selection

1) at random

2) greedy maximal error improvement
o b’ a new candidate
o the upper error bound in b’

, (Rma; —a(s))(b'(s) — b(s))
() < mituce 2ses {( —a(s))(b'(s) — b(s))

Probabilistic Graphical Models MDP, POMDP 12

b'(s) > b(s)
b'(s) < b(s)
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Expand: New Points Selection

1) at random

2) greedy maximal error improvement
o b’ a new candidate
o the upper error bound in b’
, , (R’”‘“ — afs))(b'(s) — b(s)) b'(s) = b(s)
e(b") < min , ’
(F) < minuce 2 ses {( —a(&)(B(s) ~ b))  b(s) < bls)

e b on the fringe, the error Welghted by the probability of observations:

e(b) = Tea}ZO(b,a,z)e(T(ma,z))

zeZ
= Tgaz(% [ZS; T(s,a,s)O0(s, a,z)b(s) | e(7(b, a, 2)).
z s'eS s
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Augmented MDP Application

@ a) and c) plans that ignore
robot's perceptual
uncertainty.

(a)

()
Positional Uncertainty at Goal

Conventiong Navigatjon ~=—
18 oo Navigalen =

Entropy a Godl
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0 05 1 15 2 25 3 35 4 45 5 55

Probabilistic Graphical Models
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Augmented MDP Application

@ a) and c) plans that ignore

@ b) and d) was computed by
AMDRP algorithm. It avoids

Entropy a Godl

Probabilistic Graphical Models

robot's perceptual
uncertainty.

regions where the robot is

more likely to get lost.

2 Positional Uncertainty at Goal
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Augmented MDP Application

@ a) and c) plans that ignore

Entropy a Godl

Probabilistic Graphical Models

robot's perceptual
uncertainty.

b) and d) was computed by

AMDRP algorithm. It avoids
regions where the robot is

more likely to get lost.

Useful for sensors with

maximal range below 4m.

2 Positional Uncertainty at Goal
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N o NSO
e

0 05 1 15 2 25 3 35 4 45 5 55

MDP, POMDP 12

(a)

()

Iy o3

Goal
—e
Starting Position

AT

(b)

Jp9i

Starting Position  Goal

PA AT

iStarting Position B Start Position
s 1
Goal Goal
LY AR YA
~_ — AR Py

19. prosince 2024 25 /1-112



QMPD

@ Each belief point adds a single linear 'Bellman’ equation

N
V(b) = Es[V(s)] = Z b(si)V(s)

Line 4: The value function is calculated in the original space X and controls u
Line 6: The generalization to belief space.

V can be used as an input to the POMDP evaluation.

we may continue with T iterations, even small values of T help.

QMDP

: procedure QMDP( b))
V = MDP_discrete_value_iteration()
for each action a € A do
for each state s € S do

1

2

3

4: R

5: Q(s,a) = R(s,a) +7 > ses V(s)p(s'|a; s)
6:

7

8

end for
end for
return argmax, y_ ¢ b(s)Q(s, a)

9: end procedure
al M MDP, POMDP 12 19. prosince 2024 26 /1-112




Applications

@ Pengfei Zhu, Xin Li , Pascal Poupart, Guanghui Miao: On Improving Deep
Reinforcement Learning for POMDPs,
https://arxiv.org/abs/1704.07978v6
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Applications

@ Pengfei Zhu, Xin Li , Pascal Poupart, Guanghui Miao: On Improving Deep
Reinforcement Learning for POMDPs,
https://arxiv.org/abs/1704.07978v6

@ Maximilian Igl, Luisa Zintgraf, Tuan Anh Le, Frank Wood, Shimon Whiteson:
Deep Variational Reinforcement Learning for POMDPs, Proceedings of
the 35 th International Conference on Machine
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Atari games

@ Simple screens, logic

(e) MsPacman

iE \- : E \E \E
a1 a2 a3 a0 a3

(a) ChopperCommand
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Atari games

@ Simple screens, logic
@ 18 actions
@ used to train an agent by Reinforcement learning with no prior information.

(e) MsPacman

iE \- : E :
a1 a2 a3

(a) ChopperCommand
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Atari games

Simple screens, logic
18 actions

used to train an agent by Reinforcement learning with no prior information.
MDP if ful!y observabl

[ ]
: i at " as it v
(e) MsPacman
\-\E\E\E
. ao " TSP T TS T e T P T
(a) ChopperCommand
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Atari games

@ Simple screens, logic
@ 18 actions

@ used to train an agent by Reinforcement learning with no prior information.
e MDP if ful!y observabl

(e) MsPacman

flickering for POMPD training (50% of figures are black)

w w iE \- : E \E \E
a0 a1 a2 a3 a0 a3

obs

(a) ChopperCommand

Wikipedie
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DeepQNetwork - @ function approx. by a neural network

@ standard reinforcement learning update

Q(s,a) < Q(s,a) + a(r + ymaxy Q(s',a’) — Q(s, a))
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DeepQNetwork - @ function approx. by a neural network

@ standard reinforcement learning update
Q(s,a) « Q(s,a) + a(r + ymaxy Q(s',a’) — Q(s, a))
@ NN @ is trained to minimize the loss function

L(6;) = Es.ar o [(r +ymaxy Q(s', a';09) — Q(s', a’; 6/))?].

Applications 13 19. prosince 2024 29 /113 - 245



DeepQNetwork - @ function approx. by a neural network

@ standard reinforcement learning update
Q(s,a) < Q(s,a) + a(r + ymaxy Q(s',a’) — Q(s, a))
@ NN 6 is trained to minimize the loss function
L(6;) = Es.ar o [(r +ymaxy Q(s', a';09) — Q(s', a’; 6/))?].
@ DRQN uses recurrent LSTM network

Applications 13 19. prosince 2024 29 /113 - 245



DeepQNetwork - @ function approx. by a neural network

@ standard reinforcement learning update
Q(s,a) < Q(s,a) + a(r + ymaxy Q(s',a’) — Q(s, a))
@ NN @ is trained to minimize the loss function
L(6;) = Es.ar o [(r +ymaxy Q(s', a';09) — Q(s', a’; 6/))?].
@ DRQN uses recurrent LSTM network

19. prosince 2024 29 /113 - 245



DeepQNetwork - @ function approx. by a neural network

standard reinforcement learning update
Q(s,a) < Q(s,a) + a(r + ymaxy Q(s',a’) — Q(s, a))
@ NN @ is trained to minimize the loss function
L(6;) = Es.ar o [(r +ymaxy Q(s', a';09) — Q(s', a’; 6/))?].
DRQN uses recurrent LSTM network

o hidden state keeps the track in flickered images
o ADRQN Action-specific Deep Recurent Q-network
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ADRQN Action-specific Deep Recurent Q-network

@ The observation (image) is aggregated by three convolutional layers to 3136
dimensions

O-values a,, 01
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ADRQN Action-specific Deep Recurent Q-network

@ The observation (image) is aggregated by three convolutional layers to 3136
dimensions

@ the action is extended from 18 dimensional indicator vector to 512
dimensional vector

O-values a, 00

I Simulator
P

O-values a,, 0,2
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ADRQN Action-specific Deep Recurent Q-network

@ The observation (image) is aggregated by three convolutional layers to 3136
dimensions

@ the action is extended from 18 dimensional indicator vector to 512
dimensional vector

@ these are concatenated and fed to LSTM

O-values a, 00
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ADRQN Action-specific Deep Recurent Q-network

@ The observation (image) is aggregated by three convolutional layers to 3136
dimensions

@ the action is extended from 18 dimensional indicator vector to 512
dimensional vector

@ these are concatenated and fed to LSTM

@ result is reduced to the number of action dimension, an action is selected and
passed to simulator

O-values a, 00

I Simulator

O-values a,, 0

g
|
I Simulator
u
]
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ADRQN Action-specific Deep Recurent Q-network

@ The observation (image) is aggregated by three convolutional layers to 3136
dimensions

@ the action is extended from 18 dimensional indicator vector to 512
dimensional vector

@ these are concatenated and fed to LSTM

@ result is reduced to the number of action dimension, an action is selected and
passed to simulator

@ the simulator provides the observation o and a new pass begins.

O-values a,, 01

I Simulator
"1p:

O Applications 13 19. prosince 2024 30 / 113 - 245




ADRQN Learning

Algorithm 1 Action-specific Deep Recurrent Q-Network

1: Initialize the replay memory D, # of iterations M
: Initialize Q-Network and Target-Network with 6 and 6~
respectively

)

3: for episode = 1 to M do
@ Simulate M episodes 4: Initialize the first action ag = no operation, hy =0
i 5: Init.the first obs.o; with the preprocessed first screen
@ actual reward r; is used 6:  while o, # terminal do
7: Select a random action a; with the probability e
o future reward from the old 8: Else select a; = argmax, Q(ht—1,at—1, 0t,a;6)
network @°'d 9: Execute action a;
10: Obtain reward r; and resulting observation oy
@ adjust weights 0 by the gradient 11 Store transition ({a;—1,0¢},as, 7, 0041) as one
of record of the current episode in D
12: Randomly sample a minibatch of transition
[(rJ + sequences (a;—1, 0;, a]j,r]- ,f0j+1> from Dk
13: m - rget n 1]
VmaXaQ(hj, aj,0j11, a; G?Id) B Compute Q-value of target netwo
) i P 2 R 0j 1 =terminal
Q(hlfl’ dj—1,9j, dj; 9)) ] Yi :{ 7‘;’+"/maXQ(h]‘7(l]‘,O]‘.F[,lZ;H_), 0j+1#terminal
14: Compute the gradient of (i —

Q(h,jfl, aj—1,0j, 053 0))2 to update 6
15: end while
16: end for

Probabilistic Graphical Models Applications 13 19. prosince 2024 31 /113 - 245



Deep Variational Reinforcement Learning for POMDPs

@ Mountain hike
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Deep Variational Reinforcement Learning for POMDPs

@ Mountain hike

e POMPD
0 S=0=A=R?
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Deep Variational Reinforcement Learning for POMDPs

10

@ Mountain hike

e POMPD 5
e S=0=A=R?
o state, observed state, the desired ©
step.

-10
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10
@ Mountain hike
e POMPD 5
e S=0=A=R?
o state, observed state, the desired ©
step.
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Deep Variational Reinforcement Learning for POMDPs

10
@ Mountain hike
e POMPD 5
e S=0=A=R?
o state, observed state, the desired ©
step.
® St11 =5t + 3 + €5 -5
e ¢~ N(0,0.25-1)
10

Applications 13 19. prosince 2024 32 /113 - 245



Deep Variational Reinforcement Learning for POMDPs

10 0.0

@ Mountain hike —0.6
e POMPD 5 -12
e S=0=A=R? oLe

o state, observed state, the desired © —24
step. —-3.0

@ Si11 =5+ 3r + €t -5 —36

o €~ N(0,0.25- /) —42

—48

e 3 is a: with the length capped to 10
|3:] <0.5. -10 -5 0 5 10

Tl Avplications 13 19. prosince 2024 32 / 113 - 245



Deep Variational Reinforcement Learning for POMDPs

10 0.0
@ Mountain hike —0.6
e POMPD 5 -12
e S=0=A=R? oLe

o state, observed state, the desired © —24
step. —-3.0

@ Si11 =5+ 3r + €t -5 —36

o €~ N(0,0.25- /) —42

—48

e 3 is a: with the length capped to 10
|3 < 0.5. -10 -5 0 5 10
® 0t =St t+ €ot

Tl Avplications 13 19. prosince 2024 32 / 113 - 245



Deep Variational Reinforcement Learning for POMDPs

10 0.0
@ Mountain hike —0.6
e POMPD 5 —1.2
e S=0=A=R? oLe

o state, observed state, the desired © —24
step. —-3.0

@ Si11 =5+ 3r + €t -5 —36

o €~ N(0,0.25- /) —42

—48

e 3 is a: with the length capped to 10
|3:] < 0.5. —10 -5 0 5 10

@ O = S + €o,t

e~ N(0,00 1), oo € {0,1.5,3}

T Tl Applications 13 19. prosince 2024 32 / 113 - 245



Deep Variational Reinforcement Learning for POMDPs

@ Mountain hike

e POMPD
e S=0=A=R?
o state, observed state, the desired
step.
@ Si11 =5+ 3r + €t
e ¢~ N(0,0.25-1)

e 3 is a: with the length capped to 10

|3:] <0.5.
® O = St + €0yt
e e~ N(0,00-1), o0 € {0,1.5,3}
o Ry =r(xe,y:) — 0.01|3]|, r the
color in the figure.

Probabilistic Graphical Models

Applications 13

10

wt

0

-5

—10

19. prosince 2024

32 /113 - 245



Deep Variational Reinforcement Learning for POMDPs

@ Mountain hike

e POMPD
e S=0=A=R?
o state, observed state, the desired
step.
@ Si11 =5+ 3r + €t
e ¢~ N(0,0.25-1)

e 3 is a: with the length capped to 10

|3:] <0.5.
® O = St + €0yt
e e~ N(0,00-1), o0 € {0,1.5,3}
o Ry =r(xe,y:) — 0.01|3]|, r the
color in the figure.
by ~ N([-8.5,—8.5]", 1),

Probabilistic Graphical Models

Applications 13

10

wt

0

-5

—10

19. prosince 2024

32 /113 - 245



Deep Variational Reinforcement Learning for POMDPs

10 0.0
@ Mountain hike —0.6
e POMPD 5 ~1.2
e S=0=A=R? oLe

o state, observed state, the desired © —24
step. —-3.0

@ Si11 =5+ 3r + €t -5 —36

o €~ N(0,0.25- /) —42

—48

e 3 is a: with the length capped to 10
|3 < 0.5. —10 -5 0 5 10

® O = St + €0yt

e e~ N(0,00-1), o0 € {0,1.5,3}

o Ry =r(xe,y:) — 0.01|3]|, r the
color in the figure.

o by ~ N([-8.5,—8.5]", 1),

e T=T75 steps.

T Tl Applications 13 19. prosince 2024 32 / 113 - 245



Deep Variational Reinforcement Learning for POMDPs

@ Mountain hike

e POMPD
e S=0=A=R?
o state, observed state, the desired
step.
@ Si11 =5+ 3r + €t
e ¢~ N(0,0.25-1)

e 3 is a: with the length capped to 10

|3:] <0.5.
® O = St + €0yt
e e~ N(0,00-1), o0 € {0,1.5,3}
o Ry =r(xe,y:) — 0.01|3]|, r the
color in the figure.
o by ~ N([-8.5,—8.5]", 1),
e T=T75 steps.

Probabilistic Graphical Models

Applications 13

10 0.0
—0.6

—1.2

wt

1.8
—2.4
3.0
5 —3.6
—4.2
—4.8

—10 -5 0 5 10

@ Red: Recurrent Neural Network

19. prosince 2024

32 /113 - 245



Deep Variational Reinforcement Learning for POMDPs

@ Mountain hike

e POMPD
e S=0=A=R?
o state, observed state, the desired
step.
@ Si11 =5+ 3r + €t
e ¢~ N(0,0.25-1)

e 3 is a: with the length capped to 10

|3:] <0.5.
® O = St + €0yt
e e~ N(0,00-1), o0 € {0,1.5,3}
o Ry =r(xe,y:) — 0.01|3]|, r the
color in the figure.
o by ~ N([-8.5,—8.5]", 1),
e T=T75 steps.

Probabilistic Graphical Models

Applications 13

10 0.0
—0.6

—1.2

wt

1.8
—2.4
3.0
5 —3.6
—4.2
—4.8

—10 -5 0 5 10

@ Red: Recurrent Neural Network

o Black: Deep Variational
Reinforcement Learning

19. prosince 2024

32 /113 - 245



Deep Variational Reinforcement Learning for POMDPs

@ Mountain hike

e POMPD
e S=0=A=R?
o state, observed state, the desired
step.
@ Si11 =5+ 3r + €t
e ¢~ N(0,0.25-1)

e 3 is a: with the length capped to 10

|3:] <0.5.
® O = St + €0yt
e e~ N(0,00-1), o0 € {0,1.5,3}
o Ry =r(xe,y:) — 0.01|3]|, r the
color in the figure.
o by ~ N([-8.5,—8.5]", 1),
e T=T75 steps.

Probabilistic Graphical Models

Applications 13

10 0.0
—0.6

—1.2

wt

1.8
—2.4
3.0
5 —3.6
—4.2
—4.8

—10 -5 0 5 10

@ Red: Recurrent Neural Network

o Black: Deep Variational
Reinforcement Learning

@ dots: observations.

19. prosince 2024

32 /113 - 245



Deep Variational Reinforcement Learning for POMDPs

Recurrent Neural Network

@ h; latent state

5V (he)--
@y RN ey D !
N |
@ “w(adhe)-

he—y

(a) RNN-based approach. The RNN a s an encoder for the

action-observation history, on which actor and critic are condi-

tioned. The networks are updated end-to-end with an RL loss.
Generative ¢ -,

Model <,
DVRL

[
o

V(o) -~
\
>RL loss

¥ r(adlb)-

(b) DVRL. The agent learns a generative model which is used to
update a belief distribution. Actor and critic now condition on the

belief. The generative model is learned to optimise both the ELBO
and the RL loss.

Figure 1: Comparison of RNN and DVRL encoders.
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Recurrent Neural Network

@ h; latent state
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(a) RNN-based approach. The RNN a s an encoder for the
action-observation history, on which actor and critic are condi-
tioned. The networks are updated end-to-end with an RL loss.
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Generative ¢ -,

Model <,
DVRL

a1 "
o 3-RL loss

(b) DVRL. The agent learns a generative model which is used to
update a belief distribution. Actor and critic now condition on the

belief. The generative model is learned to optimise both the ELBO
and the RL loss.

Figure 1: Comparison of RNN and DVRL encoders.
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Recurrent Neural Network
@ h; latent state

PALDOEN
>-RL loss

a1 RN
@ the current update n, steps
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(a) RNN-based approach. The RNN a s an encoder for the
action-observation history, on which actor and critic are condi-
tioned. The networks are updated end-to-end with an RL loss.

Generative ¢ -,

Model <,
DVRL

a1 "
o 3-RL loss

(b) DVRL. The agent learns a generative model which is used to
update a belief distribution. Actor and critic now condition on the

belief. The generative model is learned to optimise both the ELBO
and the RL loss.

Figure 1: Comparison of RNN and DVRL encoders.
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Deep Variational Reinforcement Learning for POMDPs

Recurrent Neural Network
@ h; latent state
@ the current update ng steps
@ computational graphs n, steps

@ ng > ns greatly improves the
performance.

DVRL

O Applications 13
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>-RL loss
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(a) RNN-based approach. The RNN a s an encoder for the
action-observation history, on which actor and critic are condi-
tioned. The networks are updated end-to-end with an RL loss.

Generative ¢ -,
Model <
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o >RL loss

bioy |
ELBO

(b) DVRL. The agent learns a generative model which is used to
update a belief distribution. Actor and critic now condition on the
belief. The generative model is learned to optimise both the ELBO
and the RL loss.

Figure 1: Comparison of RNN and DVRL encoders.
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Deep Variational Reinforcement Learning for POMDPs

Recurrent Neural Network
@ h; latent state
@ the current update ng steps
@ computational graphs n, steps

@ ng > ns greatly improves the
performance.

DVRL

e K = 30 particles (h¥, zK, w))

O Applications 13
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a-y RNN  k---., & LY
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(a) RNN-based approach. The RNN acts as an encoder for the
action-observation history, on which actor and critic are condi-
tioned. The networks are updated end-to-end with an RL loss.
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Model <

Belief
Update [==
@
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o >RL loss

(b) DVRL. The agent learns a generative model which is used to
update a belief distribution. Actor and critic now condition on the
belief. The generative model is learned to optimise both the ELBO
and the RL loss.

Figure 1: Comparison of RNN and DVRL encoders.
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Recurrent Neural Network

@ h; latent state
@ the current update ng steps
@ computational graphs n, steps

@ ng > ns greatly improves the
performance.

DVRL

e K = 30 particles (h¥, zK, w))
o hX the latent state of an RNN
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Applications 13
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(a) RNN-based approach. The RNN acts as an encoder for the
action-observation history, on which actor and critic are condi-
tioned. The networks are updated end-to-end with an RL loss.

Generative ¢ -,
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o >RL loss

o
Xr(alb)

by |
ELBO

(b) DVRL. The agent learns a generative model which is used to
update a belief distribution. Actor and critic now condition on the
belief. The generative model is learned to optimise both the ELBO
and the RL loss.

Figure 1: Comparison of RNN and DVRL encoders.
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Recurrent Neural Network
@ h; latent state
@ the current update ng steps
@ computational graphs n, steps
@ ng > ns greatly improves the

performance.

DVRL
e K = 30 particles (h¥, zK, w))
o hX the latent state of an RNN

@ zF an additional state to learn the

transition

Applications 13
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(a) RNN-based approach. The RNN acts as an encoder for the
action-observation history, on which actor and critic are condi-
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(b) DVRL. The agent learns a generative model which is used to
update a belief distribution. Actor and critic now condition on the
belief. The generative model is learned to optimise both the ELBO
and the RL loss.

Figure 1: Comparison of RNN and DVRL encoders.
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Deep Variational Reinforcement Learning for POMDPs

Recurrent Neural Network

@ h; latent state
@ the current update ng steps
@ computational graphs n, steps

@ ng > ns greatly improves the
performance.

DVRL

e K = 30 particles (h¥, zK, w))

o hX the latent state of an RNN

@ zF an additional state to learn the

transition

e w/ an particle importance weight.

Applications 13
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(a) RNN-based approach. The RNN acts as an encoder for the
action-observation history, on which actor and critic are condi-
tioned. The networks are updated end-to-end with an RL loss.
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by !
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(b) DVRL. The agent learns a generative model which is used to
update a belief distribution. Actor and critic now condition on the
belief. The generative model is learned to optimise both the ELBO
and the RL loss.

Figure 1: Comparison of RNN and DVRL encoders.
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Recurrent Latent State Update

@ resample particles
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Recurrent Latent State Update

@ resample particles @ RNN latent state update
k U
w. RNN t—1
Ufﬂ ~ Discrete e tilk =t (h,2} ’Zt ;at—1,0t)
j=1 W —1

@ model the transition

Zk ~ %(Zt |ht 153t-1,0¢)

B 1 1 K —t— ur
bt = (Rh_y 2ty wd )KL h 3 )

VRN (RSt 2F, e, 0) —————>hf

[u

o (=t |15 ae-1)

Vy(he)
To(arlhe)

! <l

(! A k

— | 06 GE L a1, 00 == 5 .} <
s p———

—— aggregate
- = > eval under distrbution
——> pass argument

po(oelhyty" ¥, ae-1)

K

Applications 13 19. prosince 2024 34 /113 - 245



Recurrent Latent State Update

@ resample particles @ RNN latent state update
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Learning DVRL

Advantage function

ng—i—1

Aj;v"(atﬂ, St41) = Z Yrerivj+ W"S_iV;/d(SHns) — Vi (se+1)
j=0
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Learning DVRL

Advantage function

ng—i—1
AL (ae41, Ser1) = Z Y revivj + 7"5_'V;/d(5t+ns) — Vi (se+1)
j=0
Loss function
; B s—1 i
e policy p: L{(p) = *,,el,,s envs D /Ogﬂp(3t+1|5t+1)Af7"’Old(3t+1, St+1)

Probabilistic Graphical Models Applications 13 19. prosince 2024 35 /113 - 245



Learning DVRL

Advantage function

ng—i—1
A (at+175t+1 < Z ’ijr+:+1 + ™ IVO/d(StJrns) - (5t+:)>
j=0

Loss function

° p0|lcy P ‘C’A( ) - "e"s Zenvs Z? /ngp(at+1|5t+1)A ”’Old(at-l-l) 5t+1)

o value ‘Cg/( ) - ne”s Zenvs Zi:o An’ (af+175f+1)2
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Learning DVRL

Advantage function

ng—i—1
A (at+175t+1 < Z ’ijr+:+1 + ™ IVO/d(StJrns) - (5t+:)>
j=0

Loss function
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o value ‘CQ‘/( ) - nens Zenvs Z'— A ; (af+17sf+1)2

. —1 gy
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Learning DVRL

Advantage function

ng—i—1
A (at+175t+1 < Z ’ijr+:+1 + ™ IVO/d(StJrns)— (5t+:)>

j=0
Loss function
e policy p: L{(p) = ,,e,,s D envs 2oivo /Ogﬂp(3t+1|5t+1)A o (@ g1, 5e41)
o ot £1(5) = Tl T 47 )
o exploration L¢/(n) = 2->0 Z?;fl H(m,(.|se+1))
° p.q, fit - ELBO LEEO(0,0) = — 1 500, 5777 log (% 0%, wi)
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Experiments

@ The average return is slightly better for

DVRL
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(a) Influence of the particle number on per-
formance for DVRL. Only using one particle
is not sufficient to encode enough informa-
tion in the latent state.

0 2 s 0 2 1
Frames x107 Frames x107

(b) Performance of the full DVRL algorithm  (c) Influence of the maximum backpropaga-
compared to setting A = 0 ("No ELBO”) ~ tion length n, on performance. Note that
or not backpropagating the policy gradients

through the encoder ("No joint optim”).

N relies mostly on memory, not inference.
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Experiments

@ The average return is slightly better for

DVRL
@ One particle is not enough
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(b) Performance of the full DVRL algorithm
compared to setting A* = 0 ("No ELBO")
or not backpropagating the policy gradients
through the encoder ("No joint optim”).

(a) Influence of the particle number on per-
formance for DVRL. Only using one particle
is not sufficient to encode enough informa-
tion in the latent state.

O Applications 13

‘This is consistent with our conjecture that
RN relies mostly on memory. not inference.
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Experiments

@ The average return is slightly better for
DVRL

@ One particle is not enough
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~150

@ Backpropagation is necessary, ELBO
improves the result
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(a) Influence of the particle number on per-
formance for DVRL. Only using one particle
is not sufficient to encode enough informa-
tion in the latent state.

(b) Performance of the full DVRL algorithm
compared to setting \* = 0 ("No ELBO")
or not backpropagating the policy gradients
through the encoder ("No joint optim”).

O Applications 13

(¢) Influence of the maximum backpropaga-
tion length n, on performance. Note that
most from very short lengths.
is consistent with our conjecture that
RNN relies mostly on memory, not inference.



Experiments

@ The average return is slightly better for

DVRL

@ One particle is not enough

@ Backpropagation is necessary, ELBO

improves the result

@ memory length improves the result —_—
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(a) Influence of the particle number on per-
formance for DVRL. Only using one particle
is not sufficient to encode enough informa-
tion in the latent state.
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(b) Performance of the full DVRL algorithm
compared to setting A* = 0 ("No ELBO™)
or not backpropagating the policy gradients
through the encoder ("No joint optim”).

Probabilistic G hical Models Applications 13

Frames x107

(¢) Influence of the maximum backpropaga-
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Experiments

@ The average return is slightly better for

DVRL

@ One particle is not enough

@ Backpropagation is necessary, ELBO

improves the result

@ memory length improves the result

@ with minimal memory n; = 5 DVRL

works, RNN does not.
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6000 4 — Yo i

2000
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Frames Frames x107
(a) Influence of the particle number on per-
formance for DVRL. Only using one particle
is not sufficient to encode enough informa-
tion in the latent state.

Probabilistic

13

Graphical Models

Applications

(b) Performance of the full DVRL algorithm
compared to setting \* = 0 ("No ELBO"
or not backpropagating the policy gradients RN
through the encoder ("No joint optim”).

Frames x107

n (¢ Influence of the maximum backpropaga-

tion length n, on performance. Note that
NN suffers most from very short lengths.

This is consistent with our conjecture that

RNN relies mostly on memory, not inference.
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Next time

@ Bring you computer (if possible)

@ Check moodle for libraries to install
Python 3

pgmpy, numpy, matplotlib
networkx

(graphviz, sklearn)

may be others.
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Next time

@ Bring you computer (if possible)

@ Check moodle for libraries to install
Python 3

pgmpy, numpy, matplotlib
networkx

(graphviz, sklearn)

may be others.

Have a nice holiday.
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POMDP Applications

o Karkus, Hsu, Lee: QMDP-Net: Deep Learning for Planning under Partial
Observability
https://proceedings.neurips.cc/paper/2017 /file/e9412ee564384b987d086df32d4
Paper.pdf
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POMDP Applications

o Karkus, Hsu, Lee: QMDP-Net: Deep Learning for Planning under Partial

Observability
https://proceedings.neurips.cc/paper/2017 /file/e9412ee564384b987d086df32d4

Paper.pdf

@ Eric Mueller and Mykel J. Kochenderfer :Multi-Rotor Aircraft Collision
Avoidance using Partially Observable Markov Decision Processes,
American Institute of Aeronautics and Astronautics
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POMDP Aircraft Collision Avoidance

@ the algorithms designed for
fixed-wing aircraft analyze
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POMDP Aircraft Collision Avoidance

@ the algorithms designed for
fixed-wing aircraft analyze

e turns
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POMDP Aircraft Collision Avoidance

@ the algorithms designed for
fixed-wing aircraft analyze
o turns
e vertical meneuvers
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POMDP Aircraft Collision Avoidance

@ the algorithms designed for
fixed-wing aircraft analyze
o turns
e vertical meneuvers

@ multirotor aircraft (drones) and
helicopters can also
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POMDP Aircraft Collision Avoidance

@ the algorithms designed for
fixed-wing aircraft analyze
o turns
e vertical meneuvers

@ multirotor aircraft (drones) and
helicopters can also

o horizontal plane accelerations
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POMDP Aircraft Collision Avoidance

@ the algorithms designed for
fixed-wing aircraft analyze
o turns
e vertical meneuvers

@ multirotor aircraft (drones) and
helicopters can also

o horizontal plane accelerations

e state 2D, (3D)
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POMDP Aircraft Collision Avoidance

@ the algorithms designed for
fixed-wing aircraft analyze
o turns
e vertical meneuvers

@ multirotor aircraft (drones) and
helicopters can also

o horizontal plane accelerations
e state 2D, (3D)

o relative range states rx, ry, (rz)
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POMDP Aircraft Collision Avoidance

@ the algorithms designed for
fixed-wing aircraft analyze
o turns
e vertical meneuvers

@ multirotor aircraft (drones) and
helicopters can also

o horizontal plane accelerations
e state 2D, (3D)

o relative range states ry, ry, (r;)
e velocities for the ownship Vo, Voy,

(vez)

T Tl Applications 13
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POMDP Aircraft Collision Avoidance

@ the algorithms designed for
fixed-wing aircraft analyze
o turns
e vertical meneuvers

@ multirotor aircraft (drones) and
helicopters can also

Uix

o horizontal plane accelerations

po
e state 2D, (3D) ! .
o relative range states ry, ry, (r;) T N ¢
e velocities for the ownship Vo, Voy,
(voz)
o velocities for the intruder v, vj, A d
(vie) Y
Voy

Y
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POMDP Aircraft Collision Avoidance

@ the algorithms designed for
fixed-wing aircraft analyze

e turns
e vertical meneuvers
@ multirotor aircraft (drones) and
helicopters can also
o horizontal plane accelerations
e state 2D, (3D)
\

o relative range states ry, ry, (r;) T N ¢
e velocities for the ownship Vo, Voy,

(voz)

o velocities for the intruder v, vj, A d
y

(viz)

e absolute displacement from the Voy

desired trajectory dx, dy, (d;) Vor dy
N :
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POMDP Aircraft Collision Avoidance

@ the algorithms designed for
fixed-wing aircraft analyze
o turns
e vertical meneuvers

@ multirotor aircraft (drones) and
helicopters can also

Uix

o horizontal plane accelerations
e state 2D, (3D)

o relative range states ry, ry, (r;) Tz N ¢

e velocities for the ownship Vo, Voy,
(voz)

o velocities for the intruder v, vj, A d
(Viz) Y

e absolute displacement from the Voy

desired trajectory dx, d, (d;) @.’J Vog d,
o the desired trajectory is @ >

normalized to unit velocity in the
xaxis and zero velocity in the y
axis.
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MDP Transitions

@ the prediction horizon is very short

Ixk = Vix Vox
fy = Vip— Vo
Vox = ax+ Nox
Voy = ay+ Ny
Vix = Nix
Viy = N,'y
dx = Vix — Vox
dy = Viy = Voy
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MDP Transitions

@ the prediction horizon is very short

@ updates done every 0.1 to 1 seconds

I = Vix Vox
y = Vi — Vo
Vox = ax+ Nox
Voy = ay+ Ny
Vix = Nix
Viy = N,'y
dx = Vix = Vox
dy = Vy — Vo
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MDP Transitions

@ the prediction horizon is very short
@ updates done every 0.1 to 1 seconds

@ simple update equation are sufficient

I = Vix Vox
fy = Vi — Vo
Vox = ax+ Nox
Voy = ay+ Ny
Vix = Nix
Viy = N,'y
dx = Vix — Vox
dy = Vy — Vo
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MDP Transitions

@ the prediction horizon is very short

@ updates done every 0.1 to 1 seconds

@ simple update equation are sufficient

@ not a benefit to using more complex dynamic ix = Vix — Vox

equations. fy = Vi — Vo

Vox = ax+ Nox
Voy = ay+ Ny
Vie = Nix
vy = Ny
de = Ve — Vox
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MDP Transitions

@ the prediction horizon is very short
@ updates done every 0.1 to 1 seconds
@ simple update equation are sufficient
@ not a benefit to using more complex dynamic B = Vix — Vox
equations. y = Vi —Vy
@ a,, a, acceleration by the ownship Vox = ax+ Nox
Voy = ay+ Ny
Vie = Nix
vy = Ny
de = Vix — Vox
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MDP Transitions

@ the prediction horizon is very short
@ updates done every 0.1 to 1 seconds
@ simple update equation are sufficient
@ not a benefit to using more complex dynamic B = Vi = Vox
equations. ry = Vi — Vo
@ a,, a, acceleration by the ownship Vox = ax+ Nox
@ N, noise to the ownship, intruder, x and y axis Voy = ay+ Ny
Vie = Nix
vy = Ny
de = Vix — Vox
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MDP Transitions

@ the prediction horizon is very short
@ updates done every 0.1 to 1 seconds
@ simple update equation are sufficient
@ not a benefit to using more complex dynamic B = Vix — Vox
equations. ry = Vi — Vo
@ a,, a, acceleration by the ownship Vox = ax+ Nox
@ N, noise to the ownship, intruder, x and y axis Voy = ay+ Ny
o No(p=0,0.30s"2), Ni(u = 0,0.4552), Ve = Ni
vy = N
de = Vix — Vox
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MDP Transitions

the prediction horizon is very short
updates done every 0.1 to 1 seconds

o
o
@ simple update equation are sufficient
o

not a benefit to using more complex dynamic e = Vix = Vox
equations. y = Vi —Vy
@ a,, a, acceleration by the ownship Vox = ax+ Nox
@ N, noise to the ownship, intruder, x and y axis Voy = ay+ Ny
o No(p =0,0.305"2), N;j(u = 0,0.45572), Ve = Ny
@ Bellman update vy, = N,
de = Vix — Vox
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MDP Transitions

@ the prediction horizon is very short

@ updates done every 0.1 to 1 seconds

@ simple update equation are sufficient

@ not a benefit to using more complex dynamic B = Vi~ Vox
equations. y = Vi — Vg

@ a,, a, acceleration by the ownship Vox = ax+ Nox

@ N, noise to the ownship, intruder, x and y axis Voy = ay+ Ny

o No(p =0,0.305"2), N;j(u = 0,0.45572), Ve = Ny

@ Bellman update vy = N

transition from s with acceleration a to s! dy = Ve — Vox

Q[s, a] + R(s, a)+72 T(sl|s, a)max, Q[s, al]. d = Vg~ Vo

sl
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Reward

@ Minimum reward R,

1
R(s,a) = max | Rpin, —(kax|ax| + kay|ay|) — K.

2 2
Tk e o)
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Reward

@ Minimum reward R,

o collision

R(s, a) = max | Rmin, —(kax|ax| + kaylay|)

Probabili YTl Applications 13

1
- K.

S
Kcr2 + ki ry2

— K7 (kaxd? + kayd?)
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Reward

@ Minimum reward R,

o collision
o physically impossible states

R(s, a) = max | Rmin, —(kax|ax| + kaylay|)
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Reward

@ Minimum reward R,

o collision
o physically impossible states
o keeps the sum finite

R(s, a) = max | Rmin, —(kax|ax| + kaylay|)

Probabilistic Graphical Models Applications 13

1
- K.

S
Kcr2 + ki ry2

— K7 (kaxd? + kayd?)

19. prosince 2024

41 /113 - 245



Reward

@ Minimum reward Rpin
o collision
o physically impossible states
o keeps the sum finite

@ we prefer no acceleration

1
R(s,a) = max | Rpin, —(kax|ax| + kay|ay|) — K.

2 2
Ty e o)
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Reward

@ Minimum reward R,

o collision
o physically impossible states
o keeps the sum finite

@ we prefer no acceleration

@ we prefer long distance to the intruder

1
R(s,a) = max | Ruin, —(kax|ax| + kay|ay|) — K. — K7 (kaxd? + kayd?)

S
Kcr2 + ki ry2
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Reward

@ Minimum reward R,

o collision
o physically impossible states
o keeps the sum finite

@ we prefer no acceleration
@ we prefer long distance to the intruder

o we prefer short distance to the desired trajectory

1
R(s,a) = max | Rmin, —(kax|ax| + kay|ay|) — K — K7 (kaxd? + kayd?)

S
Kecr2 + kry ry2
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Reward

Minimum reward R,

o collision
o physically impossible states
o keeps the sum finite

we prefer no acceleration
we prefer long distance to the intruder
we prefer short distance to the desired trajectory

Ks, K, Rmin weights was learned, k weights was = 1.

1
a) = max | Rmin, —(kax|ax| + kay|ay|) — Ks

y

Probabilistic Graphical Models Applications 13
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QMDP Approximation

o offline optimization

State variable

State Description

Discretization

Tas Ty
Yoz Yoy

Vizs Viy

dy, d,

Intruder range components
ownship velocity components
intruder velocity components
desired trajectory distance

~15,[-7,-3],-1,0,1,[3,7), 15
—5,-3,-1,0,1,3,5 571
—5,[=3],—1,0,1,[3],5 s~!
~10,[-3],-1,0,1,[3], 10

O Applications 13
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QMDP Approximation

o offline optimization

o a few hours for coarse discretization, 1 PC

State variable

State Description

Discretization

Ty Ty
Voxs Voy

Vizs Viy

dy, d,

Intruder range components
ownship velocity components
intruder velocity components
desired trajectory distance

~15,[-7,-3],-1,0,1,[3,7), 15
—5,-3,-1,0,1,3,5 571
—5,[=3],—1,0,1,[3],5 s~!
~10,[-3],-1,0,1,[3], 10
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QMDP Approximation

o offline optimization

o a few hours for coarse discretization, 1 PC
o initially stationary intruders

State variable State Description Discretization

Tay Ty Intruder range components -15,[-7,-3],-1,0,1,[3,7],15
Voz s Voy ownship velocity components —5,—3,-1,0,1,3,5 s71

Viz, Viy intruder velocity components  —5, [—3],—1,0,1,[3],5 s~

dy, dy desired trajectory distance —10,[-3],-1,0,1,[3], 10
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QMDP Approximation

o offline optimization
o a few hours for coarse discretization, 1 PC
o initially stationary intruders
e intruders moving at uniform velocity with a variety of relative headings angles

State variable State Description Discretization

Tay Ty Intruder range components -15,[-7,-3],-1,0,1,[3,7],15
Voz s Voy ownship velocity components —5,—3,—1,0,1,3,5 s~

Viz, Viy intruder velocity components  —5, [—3],—1,0,1,[3],5 st

dy, dy desired trajectory distance —10,[-3],-1,0,1,[3], 10

Probabilistic Graphical Models Applications 13 19. prosince 2024 42 /113 - 245



QMDP Approximation

o offline optimization

o a few hours for coarse discretization, 1 PC

o initially stationary intruders

e intruders moving at uniform velocity with a variety of relative headings angles
e intruders state and dynamic uncertainty were added to the encounters.

State variable State Description Discretization

Tay Ty Intruder range components -15,[-7,-3],-1,0,1,[3,7],15
Voz s Voy ownship velocity components —5,—3,—1,0,1,3,5 s~

Viz, Viy intruder velocity components  —5, [—3],—1,0,1,[3],5 st

dy, dy desired trajectory distance —10,[-3],-1,0,1,[3], 10
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QMDP Approximation

o offline optimization

a few hours for coarse discretization, 1 PC

initially stationary intruders

intruders moving at uniform velocity with a variety of relative headings angles
intruders state and dynamic uncertainty were added to the encounters.

@ all values normalized

State variable State Description Discretization

Tay Ty Intruder range components -15,[-7,-3],-1,0,1,[3,7],15
Voz s Voy ownship velocity components —5,—3,-1,0,1,3,5 s™!

Vizs Viy intruder velocity components  —5, [—3],—1,0,1,[3],5 s~

dy, dy desired trajectory distance —10,[-3],-1,0,1,[3], 10

Probabilistic Graphical Models Applications 13 19. prosince 2024 42 /113 - 245



QMDP Approximation

o offline optimization

a few hours for coarse discretization, 1 PC

initially stationary intruders

intruders moving at uniform velocity with a variety of relative headings angles
intruders state and dynamic uncertainty were added to the encounters.

@ all values normalized

o the coarse set contained a total of 765,625 discrete states

State variable State Description Discretization

Tay Ty Intruder range components -15,[-7,-3],-1,0,1,[3,7],15
Voz s Voy ownship velocity components —5,—3,—1,0,1,3,5 s™!

Viz, Viy intruder velocity components -5, [—3],—1,0,1,[3],5 st

dy, dy desired trajectory distance —10,[-3],-1,0,1,[3], 10
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QMDP Approximation

o offline optimization

a few hours for coarse discretization, 1 PC

initially stationary intruders

intruders moving at uniform velocity with a variety of relative headings angles
intruders state and dynamic uncertainty were added to the encounters.

@ all values normalized

o the coarse set contained a total of 765,625 discrete states
o the finely discretized version contained 9,529,569 states.

State variable State Description Discretization

Tay Ty Intruder range components -15,[-7,-3],-1,0,1,[3,7],15
Voz s Voy ownship velocity components —5,—3,—1,0,1,3,5 s™!

Vizs Viy intruder velocity components  —5, [—3],—1,0,1,[3],5 s~

dy, dy desired trajectory distance —10,[-3],-1,0,1,[3], 10
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Evaluation Function

@ The primary goal is to remain safely
separated from the intruder aircraft.

Lateral Position

Lateral Position

10 0 1o 20 30 40
Longitudinal Position

50

Proportion of Trajectories

=

o
I

o

A original CPA -
f separation a

[ desived
separation

A B B
CPA Separation

Figure 3: Separation metric used to evaluate the collision avoidance algorithm
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Evaluation Function

@ The primary goal is to remain safely
separated from the intruder aircraft.

o rsycpa the closest point of

approach’, we allow 5%

trajectories a little bit closer.

Lateral Position
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50

Proportion of Trajectories

A original CPA L
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S actual CPA
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Figure 3: Separation metric used to evaluate the collision avoidance algorithm
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Evaluation Function

@ The primary goal is to remain safely
separated from the intruder aircraft.

Lateral Position

Lateral Position

o rsycpa the closest point of

approach’, we allow 5%

trajectories a little bit closer.

o Figure: required 1.5 units, never

closer than 1.1 units.

& original cPA L~
@ 71 separation 7
4 g / A
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, i/ :
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= o4 /‘ A
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Figure 3: Separation metric used to evaluate the collision avoidance algorithm
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Evaluation Function

@ The primary goal is to remain safely _ _ '
separated from the intruder aircraft. @ Figure: required 1.5 units, never
closer than 1.1 units.

o rsoycpa 'the closest point of @ Mean deviation distance from
' 0 . .
approach’, we allow 5% the desired trajectory fidey -
trajectories a little bit closer.
L A original CPA =
» I separation /
4 £ oy /I prton A
l 10~
g go4 p
27 £ |/ /
2.,/
4 gox ) [ desive
<7 cepamion
7§20 -10 0 10 20 30 40 50 o lJ 2 3 4 5 [
Longitudinal Position CPA Scparation
Figure 3: Separation metric used to evaluate the collision avoidance algorithm
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Reward Tuning — Bayesian Optimization

o We tune Rp = (K7, Ks, Rinin)

Reward R, Dynamic  |@(s:a) (b)
;i Policy Simulation
Parameters Programming

E[I(F(Rp))] trajectories

Gaussian Objective

a Metrics
Process Function T5%CPA: Hdev

B Range

Figure 5: Process for tuning POMDP reward parameters
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Reward Tuning — Bayesian Optimization

o We tune Rp = (K7, Ks, Rinin)

@ [ weights the two objective
functions

F(Rp) = (Bx(rsvcpa) " +(1—B) X tidev)-

Reward By Dynamic  |Q(s. ) (b)
;i Policy Simulation
Parameters Programming

E[I(F(Rp))|

Gaussian Objective )
q 5 Metrics
Process F(Rp) Function T5%CPAs Hdev

trajectories

Figure 5: Process for tuning POMDP reward parameters
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Reward Tuning — Bayesian Optimization

@ Gaussian process models F(Rp).

o We tune Rp = (K7, Ks, Rinin)

@ [ weights the two objective
functions

F(Rp) = (Bx(rsvcpa) " +(1—B) X tidev)-

Reward By Dynamic  |Q(s. ) (b)
;i Policy Simulation
Parameters Programming

E[I(F(Rp))|

Gaussian Objective )
q 5 Metrics
Process F(Rp) Function T5%CPAs Hdev

trajectories

Figure 5: Process for tuning POMDP reward parameters
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Reward Tuning — Bayesian Optimization
@ Gaussian process models F(Rp).

o We tune Rp = (K7, Ks, Runin) @ We determine the point at
which the objective function is

expected to have the largest
improvement, E[/(F(Rp))] over

F(Rp) = (B (rsocpa)” t+(1—B) X frdey ) that of the current minimum.

@ [ weights the two objective
functions

Reward By Dynamic  |Q(s. ) iy (b) Siumlation
Parameters Programming
trajectories

F
Gaussian Objective )
q 5 Metrics
Process F(Rp) Function T5%CPAs Hdev

Figure 5: Process for tuning POMDP reward parameters
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Reward Tuning — Bayesian Optimization
@ Gaussian process models F(Rp).

o We tune Rp = (K7, Ks, Runin) @ We determine the point at
which the objective function is

expected to have the largest

improvement, E[/(F(Rp))] over

F(Rp) = (ﬂx(fs%cPA)_l-i'(l—ﬂ)Xudev)- that of the current minimum.

@ This set of Rp is passed to
QMDP to evaluate.

Reward By Dynamic  |@(s,) - ) | ation
Parameters Programming ! 2
trajectories

F
Gaussian Objective )
q 5 Metrics
Process F(Rp) Function T5%CPAs Hdev

@ [ weights the two objective
functions

Figure 5: Process for tuning POMDP reward parameters

e el  Applications 13 19. prosince 2024 44 / 113 - 245



Reward Tuning — Bayesian Optimization
@ Gaussian process models F(Rp).
o We tune Rp = (K7, Ks, Runin) @ We determine the point at
which the objective function is
expected to have the largest
improvement, E[/(F(Rp))] over

F(Rp) = (ﬂx(fs%cPA)_l-i'(l—ﬂ)Xudev)- that of the current minimum.
@ This set of Rp is passed to
QMDP to evaluate.

@ until convergence.

@ [ weights the two objective
functions

Dynamic  |(s,a) 5 7(b)
i Policy
Programming 3

Simulation }

Reward By
Parameters
F trajectories
Gaussian Objective )
q 5 Metrics
Process F(Rp) Function T5%CPAs Hdev

Figure 5: Process for tuning POMDP reward parameters
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Bayesian Optimization

we know QMDP and F values for
one or more X = Rp points

we search the point x = Rg to
observe

we minimize y = F(R}) and search
the maximal probability of
improvement

'the chance to improve' is
expressed by the Expected
improvement (E/)

Probabilistic Graphical Models

Applications 13

2| Gaussian process posterior on the objective function

5,
Acquisition Function

50 100 150 200 250 300

Peter |. Frazier: A Tutorial on Bayesian Opti-
mization, rXiv:1807.02811v1 [stat.ML] 8 Jul
2018
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Pareto Optimal frontier

@ 194 parameter sets evaluated

T T T
—— QMDP optimal front
® QMDP designs

Inverse 5% CPA Range, 7550 pa

Mean Deviation
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Pareto Optimal frontier

@ 194 parameter sets evaluated
@ 3 between 0.01 and 0.99 .

T T T
—— QMDP optimal front
® QMDP designs

Inverse 5% CPA Range, 7550 pa

Mean Deviation
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Pareto Optimal frontier

@ 194 parameter sets evaluated
@ 3 between 0.01 and 0.99 .

@ resulting in nine non-dominated, Pareto—optimal designs.
3

T T T
—— QMDP optimal front
® QMDP designs

Tnverse 5% CPA Range, rsycpa

Mean Deviation

19. prosince 2024 46 / 113 - 245
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Human Expert Check

o Left: intruder starts at (0,0),

+ CPA locations
* Ownship start points

£ 4 [ S Intruder start point
2
A~ T
e
2 ]
g :
k] \
-10

Ownship stops to
allow intruder to pass

-15
0 10 20 -4 -12 -0 8 -6 -4 2

-20 -10
Longitudinal Position Longitudinal Position
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Human Expert Check

o Left: intruder starts at (0,0),

@ random heading, fixed velocity of
the intruder

10
/‘\\ / \ + CPA locations
9 T~ * Ownship start points
£ o Intruder start point A
& — _Intruder start point
F S5 ~ —-
s ]
< i \
2 \
-10 v
Ownship stops to
allow intruder to pass
-15
-20 -10 0 10 20 -4 12 -10 -8 -6 -4 -2
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Human Expert Check

o Left: intruder starts at (0,0),

@ random heading, fixed velocity of
the intruder

@ the ownship starts at the blue cross

10
/‘\\ / \ + CPA locations
9 | T~ \ * Ownship start points
T \—‘ - - 5/
§ o +— Intruder start point .
& — __Intruder start point
E S ~ o -
3 E— /
2 | ‘ /
-10 - \ 5 \
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allow intruder to pass v
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Human Expert Check

@ Left: intruder starts at (0,0), ° R|ght The goa| is hovering

@ random heading, fixed velocity of
the intruder

@ the ownship starts at the blue cross

10
/ — / \ + CPA locations
5 | —_ \ * Ownship start points
T \,‘ - . 5
£ o — Intruder start point L
g — ___Intruder start point
E S 7 °F —
g S /
g /
= \ /
10 b \ s ‘\ /
Ownship stops to /
allow intruder to pass v
-13
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Human Expert Check

o Left: intruder starts at (0,0), ) R|ght The goal is hovering
e random heading, fixed velocity of e the intruder comes from the
the intruder right with the unknown
@ the ownship starts at the blue cross behaviour.
10
\ + CPA locations
5 (\ < Ownship start points
5 N
2 {4\
& N __Intruder start point
R N earas -
: \ ' / /
o Own;hjp stops to \ N ‘\ r/
allow intruder to pass
s 1 to pas \/

20 -10 0 10 20 -4 -12 -0 8 -6 -4 -2

Longitudinal Position Longitudinal Position
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State Discretization

The fine discretization improves the results.
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Figure 10: Cumulative distributions of encounter model metrics as a function of state discretization
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Value lteration, QMDP Policies

@ considerable improvement in
convergence speed by
initializing by the value of
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Value lteration, QMDP Policies

@ considerable improvement in
convergence speed by
initializing by the value of
previously evaluated policy

@ the value of maximum negative
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convergence speed

@ v < 0.99 taking hundred
iterations to converge.

@ smaller v did not ensure the
return to the desired path.
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Value lteration, QMDP Policies

o considerable improvement in @ Figures: Owhship at the origin
convergence speed by o different intruder positions

initializing by the value of

previously evaluated policy red=right
@ the value of maximum negative
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convergence speed

@ v < 0.99 taking hundred
iterations to converge.
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return to the desired path.
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Value lteration, QMDP Policies

@ considerable improvement in °
convergence speed by °
initializing by the value of °

previously evaluated policy

the value of maximum negative ¢
reward influenced the
convergence speed

v < 0.99 taking hundred
iterations to converge.

smaller v did not ensure the
return to the desired path.

Figures: Owhship at the origin

different intruder positions

policies indicated by color: black=up,
red=right

left: both own and intruder velocities
are zero, d =0

right: owhship is moving in the positive
y—axis direction at 1 s~1 with zero

trajectory error and nominal trajectory
matches the velocity.
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Value lteration, QMDP Policies

@ considerable improvement in o Figures: Owhship at the origin
convergence speed by o different intruder positions
initializing by the value of o policies indicated by color: black=up,
previously evaluated policy red=right
o the value of maximum negative o |eft: both own and intruder velocities
reward influenced the are zero. d = 0
convergence speed . - o o
vere 'p @ right: owhship is moving in the positive
T 9'99 taking hundred y—axis direction at 1 s~1 with zero
iterations to converge. trajectory error and nominal trajectory
@ smaller v did not ensure the matches the velocity.
return to the desired path. @ The intruder is stationary.
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Beliefs

@ Uncertainty does not increase with time, QMPD is justifiable.
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Beliefs

Uncertainty does not increase with time, QMPD is justifiable.

State uncertainty is incorporated only when actions are selected

a set of potential states is calculated from the observations received at each
step.

the probability distribution on potential states is the belief used to select an
action.

w(b) = max, Z Q(s,a)b(s)
sES,
The value Q(s(), a)b(¥) approximated from QMDP solutions

e rectangular interpolation between 2" nearest neighbor
e simplex interpolation between n + 1 nearest neighbor
e prior work has found little benefit to using more sophisticated approaches.

Probabilistic Graphical Models Applications 13 19. prosince 2024 50 / 113 - 245



Table of Content

o Basics, Classifiers

9 Variable Elimination Algorithm, Hidden Markov Models
© Markov Random Fields and Other Models

@ Junction Tree Algorithm (Optimized Evaluation)

e Approximate Evaluation

@ Structure Learning

@ Bayesian Learning, EM Algorithm

@ Gaussian Graphical Models

© Gaussian Processes

@ Variational Approximation

@ Decision Trees, Decision Graphs
@ MDP, POMDP

@® Applications

Probabilistic Graphical Models Content 14 19. prosince 2024

50 / 246 - 247



Summary Links

@ BN basics

@ BN Evaluation

. OO, MI, KL, CMI, €D, AIC

o Variable Elimination Algorithm Junction Tree Algorithm
,

. CIEETTD, CEEND, (T
o Parameter Learning

@ Structure Learning

YL Frequency Ratio L Dirichlet, BDeu priors : Bayesian Learning BO' MAP' ML' ' EM algorithm
PR Chow-Liu Tree Learning TAN Classifier
i

o (EEEIRTEERD G, (Structural EM)
@ Gaussian Variables

. O (CEETTTE)
@ Decisions

,

B i G s 3 Grptic Rerasin 3 (deviance, idev, Irt)

'Yl Decision Graphs =IDs Variable Elimination for DG
'

o Variational Approximation

) ( Markov Decision Processes Value Iteration Algorithm ) Partially Observed Markov Decision Processes Policy Graph
' ’ ’
PRI Variational Approximation ( Latent Dirichlet Allocation )
f .
— TGS | e

19. prosince 2024

50 / 246 - 247



	Basics, Classifiers
	Variable Elimination Algorithm, Hidden Markov Models
	Markov Random Fields and Other Models
	Junction Tree Algorithm (Optimized Evaluation)
	Approximate Evaluation
	Structure Learning
	Bayesian Learning, EM Algorithm
	Gaussian Graphical Models
	Gaussian Processes
	Variational Approximation
	Decision Trees, Decision Graphs
	MDP, POMDP
	Applications
	Content

