Further ML Methods

@ Linear Projections

o Principal Component Analysis (PCA): 'the most spread variance’ directions
o Sparse PCA. (sklearn)

e Partial Least Squares: not mentioned here. (sklearn)

o Archetypal analysis: extremes, instead of 'centers’ from clustering; data=lin.
comb. of archetypes (archetypes)

o NMF Nonnegative Matrix Factorization: 'linear r-dimensional autoencoder’
(sklearn)

e Factor analysis: A view on 'independent factors' observed via a linear
combination mixture with a gaussian noise (sklearn)

o Independent Component Analysis: splits the signal according to
non-gaussian features (max. divergence from gaussian) (sklearn)

o Procrustes transformation - curve fitting.

@ Principal curves and surfaces (predefined f;(\), curve paramater \)
(prinPy),
o Kernel PCA. (sklearn)

e Spectral Clustering. (sklearn)
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PCA Principal Components, Curves and Surfaces

The principal components of a set of data in R”
provide a sequence of best linear approximations to
that data, of all ranks g < p.

let 11 be a location vector in RP, Visa p x g
matrix with g orthogonal unit vectors as columns, A
is a g vector of parameters.

f(A) = p+ Vg represents an affine hyperplane of
rank q.

We minimize the reconstruction error (by least
squares)
o min xSy X — = Vil
We can partially optimize
e =X
o )\; = VqT(X,' — Y).
This leaves us to find the orthogonal matrix V,
. N — T —\[12
miny, »i_y ||(X,- —X)— VeV, (xi — X)H .

We center the data X = 0 to simplify the formulas.
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Handwritten 3 Example

@ 130 handwritten digits 3, each 16x16 grayscale

; 2132333233323 33|
image. 2313238333333
256 3332333) 33322
e xeR 33323232333353
. A 23333/332333323[3
@ First two principal component plot 23312323 333¢33
. - . 3359223333332353
o For the first two principal components quantiles 3333333333333
5,25,50,75,95 percent. ?gg%g%%g%g%gg

e First component - x axis: mainly the length of 3

e Second component - the thickness.

@ The projection on the first two components is: %%E%%
FON = 2+ Avr+ A g %%Q
3@ [ S

@ First 12 components account for 63% data
variations.

@ Explained variance by PCA (blue) and randomized
directions (orange).

nnnnnnnn
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Sparse Principal Components

@ We often interpret PCA by examining loadings: direction vectors v;.
@ This interpretation is easier if the loadings are sparse.
@ If both A=X; =0 and
Definition (Sparse PCA) N > p, than v =0 is the
largest principal component

Sparse principal component technique solves Lo
p P P P a direction.

for a single component:
@ When p > N the solution

N may not be unique unless
ming,, > _ |Ixi — 0vTxi[3 + Allv[|3 + Al v]x A>0. For A>0and A\; =0
i=1 is the solution proportional to
subject to |6, = 1. the largest principal

component direction.

Sparse principal component for multiple components minimizes © and V p x K
matrices

mmevan, GVTx,||2+AZ||vk||2+2A1k||vku1

k=1 k=1
subject to ©70 =
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Corpus Callosum (CC) Sparse PCA Example

@ The Corpus Callosum scan.

@ The area represented by a number
of points aligned by Procrustes
analysis,

@ a set of 2d points for now.

‘Walking Speed

>

Verbal Fluency

> Y

Principal Components  Sparse Principal Components
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Archetypal Analysis

@ Archetypal Analysis approximates data points by a linear combination of
prototypes
e that are themselves linear combinations of data points.
e Each data point is approximated by a convex combination of prototypes.
e This forces the prototypes to lie on the convex hull of the data cloud.
o In this sense, they are 'archetypal’.

4 Prototypes

@ K-means clustering

e approximates any point by one
prototype

e each prototype is a linear
combination of samples (the
mean of a cluster).
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Archetypal Analysis

@ “linear autoencoder" of the dimension r

Definition (Archetypal Analysis)

@ A non-negative N x p data matrix X is modeled X ~ WH,

e H= BXis r x p matrix of r archetypes (rows of H),

o Bis r x N matrix where by; > 0 and (Vk) (Z{Vﬂ bii = 1).

o Wis N x r matrix where wi > 0 and (Vi) (3_,_, wi = 1).

o We minimize over W and B: J(W, B) = || X — WH|]> = || X — WBX|>.

@ Its minimized in an alternating fashion,

with each separate minimization involving a F] F]
convex optimization.

o Converges to a local minimum. F] I] g}
|

o Figure: 2,3, and 4 prototypes for the

Handwritten 3 example. t] F} E-] :]

@ Extreme 3's both in size and shape.
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Non-negative Matrix Factorization

Original
NMFE
Definition (Non-negative Matrix Factorization) =i
St
o A centered N x p data matrix X is modeled |1 i 111 x
XNWH’ '7.‘:.-‘;:-hx:
e Wis N x r matrix, H is r x p, - - =
r < max(N, p). VO '
e We assume x;, Wik, hj > 0. Ee *viﬁg';'

S 0 [ log(WH); — (WH);]. e e -

o We maximize over W and H: L(W, H) = MR [T H

@ NMF assumes x;; has a Poisson distribution
with mean (WH);;

@ we maximize the loglikelihood. 3

PCA Extensions, Independent CA 13 523 - 545 May 17, 2023 356 / 390




NMF
® The NMF solution

is not unique.
1: procedure NMF:(X centered data)

2: repeat Any hy, hy basis vectors in the open space
Zj;l hiixij/(WH) ;i between the coordinate axes and data work
3 Wik <= Wik " ' (given an exact reconstruction of the data).
= hy
N ;
Z’; wixij [ (WH)
4: hyj < hj = Eey—— /e
D i bie /. ..
5: until convergence A
6: return W, H / y .
7: end procedure S

sklearn.decomposition.NMF has the objective function:

05[1X — WHllioss  +  aw  Ilratiop|[vec(W) 1 + 0.5aw - (1 = Mrato)p| W7o
T aH - I]-ratioN”VeC(H)”l S 0-506H . (1 - Ilratio)N”H”?—'ro
o |lvec(W)|: = Zij abs(Wi; ;) elementwise L1 norm
° |W|Z, = Do W?; Frobenius norm

@ Joss is Frobenius norm or another beta-divergence loss, /1.t = 0.
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Independent Component Analysis

o Multivariate data as multiple
indirect measurements from an
underlying source.

@ Examples: EEG brain scans, 'body
fat', trading prices.

o Factor analysis

e typically wed to Gaussian
distributions

e which has hindered their
usefulness

e and has no unique solution

@ any linear transformation is a
solution.
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FIGURE 14.41. Fifteen seconds of EEG data (of 1917 seconds) at nine (of
100) scalp channels (top panel). as well as nine ICA components (lower panel).
While nearby electrodes record nearly identical miztures of brain and non-brain
activity, ICA components are hmpmallﬂ/ distinct. The colored scalps represent the
ICA unmizing coefficients &; as a heatmap, showing brain or scalp location of the
source.
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Latent Variables and Factor Analysis

@ Take the singular value decomposition X = UDV' T

e we assume that the columns of X have zero mean
e where D is a diagonal matrix
e U is orthogonal.

@ X has a latent variable decomposition X = SAT
o where S = VNU, AT = 2DV’

o each of the columns of X is a linear combination of the columns of S

e columns of S have zero mean, are uncorrelated and have unit variance,
Cov(S) = 1.

e we can interpret the SVD, or the corresponding PCA as an estimate of a
latent variable model X = AS

X1 = anSi+anS+...+a1,5
Xo = anSi+anS+...+ a2p5p
Xp = ap151 + ap252 4+ ...+ ap,,Sp

o Notice that for any orthogonal p x p matrix R is X = AS = ARTRS = A*S*.
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Factor Analysis

@ In the SVD decomposition any rank g < p truncated decomposition
approximates X in an optimal way.
e Factor analysis model (popular in psychometrics)
e with g < p, a factor analysis model has the form X = AS + ¢

X1 = auSi+anS+...+ a5+ a
Xa = anSi+anS+...+ a5+ e
Xp = ap151 + ap252 + ...+ apqu + €p

S is a vector of g < p underlying latent variables or factors
Ais a p X g matrix of factor loadings
o used to name and interpret the factors

@ ¢; are uncorrelated zero-mean disturbances.

Typically, S¢ and ¢; are modeled as Gaussian random variables, and the model
is fit by maximum likelihood.

o The parameters all reside in the covariance matrix

¥ = AAT + D,
o where D, = diag[Var(e1), Var(e2), ..., Var(ep)]

o S independent factors like intelligence, drive in a battery of educational tests.
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Independent Component Analysis

Xl = 81151 + 31252 + ...+ alp5p
Xo = a»nSi+ansS+...+ 32p5p
Xp = ap151 + ap252 +...+ appSp

@ S are assumed statistically independent rather than uncorrelated
e correlation: second order interaction
e independence: all orders of interactions.

e Multivariate Gaussian is determined by its second moments alone (up to
rotation).

o Otherwise, the extra moments allow to identify the elements of A uniquely.
o We assume X has been whitened to have Cov(X) = /; Simplest: multiply by
W = ¥ =2, typically achieved via the SVD to D=2 V7.
o Var(S) = I, therefore is A orthogonal.

o ICA searches an orthogonal S such that S = A" X are independent
(not-Gaussian) components.
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Example

o Cocktail party problem Different microphones X; pick up mixtures of
different independent sources S, (music, speech from different speakers).

o |ICA is able to perform blind source separation

o by exploiting the independence and non—Gaussianity of the original sources.

Source Signals Measured Signals

~/] A S
~/ UV

e

1 1 ]

VINVARNAN 1 1A
VYV =
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Entropy

entropy H(Y) =~ [ gly)loge(y)dy
mutual information /(Y) = z": H(Y;) — H(Y)
I(Y) = D" H(Y) = H(X) ~ log | det(A)
= ) HOG) ~ HX)

@ since Cov(X) =1, Y = ATX and A is orthogonal.
@ We search A to minimize /(Y) = I(ATX)
o looks for the orthogonal transformation that leads to the most independence
between its components
e minimizes the sum of the entropies of the separate components of Y
e this amounts to maximizing their departures from Gaussianity.
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Negentropy, FastICA
@ For each Y;, let Z; be a Gaussian random variable
with the same variance as Y.
@ The negentropy J(Y;) is defined

J(Yj) = H(Zj) = H(Y))

@ It is non—negative, and measures the departure of Y;
from Gaussianity.

@ Can be approximated by
J(Y)) ~ [EG(Y)) — EG(Z))?

o G(u) = Llogcosh(au) for 1 < a<2.

FastICA

o ICA starts from essentially a factor analysis
solution

@ and looks for rotations that lead to

independent components.
¥ PCA Extensions, Independent CA 13 523 - 545

first five ICA
components

Above diagonal:

Below diagonal:

first five PCA

components
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unit variance.
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FastICA

@ X are centered and whitened data with Cov(X) =/

o typically achieved via the SVD, X < v/ DU from X = UDV'T.
@ g the number of components

e Only one is allowed to follow Gaussian distribution.
@ a a parameter.

FastICA

1. procedure FASTICA:(X, a€ (1,2), g<p)
2: Wi, ..., Wq < randomly initialize N-dimensional weight vectors
3: for /=1,...,q do
4 repeat
5 w, Z,{V:lxtanh(ang) — (Zf\lzl W) w
6 we — w, — Zf;ll w,” w;jw; # orthogonal to previous
7 Wp :ﬁw # normalize
¢ We
8: until convergence
9 end for

10: end procedure
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Procrustes Transformations

@ Assume each handwritten S is represented as
N = 96 points.

@ Both Xj and X, are N x 2 matrices (green, orange
curve).

e with column means X1, X2, centered to Xi, Xz.

e To find landmarks (points) are difficult and subject
specific.

o In this example, dynamic time wrapping of the
speed signal along each signature was used.

@ Procrustes transformation
e R is an orthonormal p X p matrix,
o R+ UVT from X[ X = UDVT.
e 4 a p vector of location coordinates
@ [L <4 X2 — /A?Yl.

o [|X||2 = trace(XTX) = Zf\il J’.’Zl |x;|? is the squared Frobenius matrix norm

o We minimize the Procrustes distance

min.g ||Xo — (iR + 1uT)|[2.
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Shape Averaging, Procrustes Average

I From now on, we assume the data are centered.

Definition (Procrustes average)

The Procrustes average of a collection = o~ P
of L shapes is M that minimizes ?\( /OZ /Of
L

. 2
mingg,yL.m Z [XeRe — M.
=1

Procrustes Average

1: procedure PROCRUSTES AVERAGE:(N x p shapes {X,}\_; )
2 M <+ X1 # init the average

3 repeat

4 Xé < XZIA?Z # M fixed, solve L Procruster rotations /A?g
5 M 2570, X} # average

6 until convergence

7: end procedure
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Principal Curves and Surfaces

@ To find a principal curve f()) of a distribution,

consider

o f(A) =[f(N), L(A),...,fr(N)] its coordinate
functions and let

o XT =(X1,...,Xp)

Principal Curves and Surfaces

1: procedure PRINCIPAL CURVE:(f(\), X )

2: repeat

3: @(A)<—E[X,-\A(X):A],j:1,2...,p
4: Ar(x) = argminy ||x — FOV)||

5: until convergence

6: end procedure

@ A scatterplot smoother is used to estimate the

we

1

conditional expectations in step 3: by smoothing

each X; as a function of the arc-length A\(X).

PCA Extensions, Independent CA 13
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Kernel Principal Components

@ We can select any kernel function, like
_lx=x1?

radial K(x;, xp) = e~ =
@ Weset M =117 /N and calculate
double-centered version of K

K=(-MK({I-M)=UD>UT

@ then principal components variables are
Z = UD.

o The elements of the mth component z;,
(mth column of Z) can be written (up to
centering)

° Zim = Zszl ajmK (i, x;), where ajm =

o Figure: Radial kernel (top) and spectral
clustering without NN (bottom right) on
the previous 3-'circles’ example.

Machine Learning PCA Extensions, Independent CA 13
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Radial Kerel (c=2)
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8

Radial Kernel Laplacian (c=2)

523 - 545

May 17, 2023 369 / 390



Spectral Clustering

@ The idea is to put close points into the same cluster. o

@ We form a weighted adjacency graph for data samples. P 3

Spectral Clustering

1: procedure SC:(X as N points in RP, ¢ > 0 scale, k > 0)
2: siiv < exp(—d(i,i')?/c) # calculate the similarity matrix
3 W, G < zero matrix N x N

4: for i, i’ symmetric nearest neighbors do

5: Wiir <— Sji» #F connect them
6

7

8
9

end for
for i € X do
gii < »_y Wiir # the degree of vertex i
: end for

10: L < G — W # the graph Laplacian (unnormalized)
11: (or L+ I — G™'W # (normalized))
12: find m eigenvectors Zyx,» with smalest eigenvalues of L
13: return Zyy, rows clustered by standard kK — means

14: end procedure
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Spectral Clustering

@ For any vector f

N
FTLF = Zg;,-f,szfo/w,,

i=1 =1 ° .
= = E E wii (i — )2 . .
i=1i'=1 24 .
e 1711 =0 for any graph. . s
° FOI’ a graph Wlth m connected Eigenvectors Spectral Clustering
components, °] — |
s | i
@ reordered so that L is a block diagonal * .
with a block for each component o |
o then L has m eigenvectors of eigenvalue ¢ N
zero. T e o em e m

Index Second Smallest Eigenvector

@ In practice zero eigenvalues are
approximated by small eigenvalues.
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Separating hyperplane, Optimal separating hyperplane

Classification, we encode the goal class by —1 and 1, respectively.

separate the space X by a hyperplane

Linear Discriminant Analysis LDA is not necessary optimal.

Logistic regression finds one if it exists.

Perceptron (a neural network with one neuron) finds separating hyperplane

if it exists.

e The exact position depends on initial parameters.

FIGURE 4.14. A toy ezample with two classes sep-
arable by a hyperplanc. The orange line is the least
squares solution, which misclassifics one of the train-
ing points. Also shown are two blue separating hyper-
planes found by the perceptron learning algorithm with
different random starts.

hine Learning

Support Vector Machines 14

FIGURE 4.16. The same data as in Figure {.14
The shaded region delineates the mazimum margin sep-
arating the two classes. There are three support points
indicated, which lie on the boundary of the margin, and
the optimal separating hyperplane (blue line) bisects the
slab. Included in the figure is the boundary found using
logistic regression (red line), which is very close to the
optimal separating hyperplane (see Section 12.3.3).
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Optimal Separating Hyperplane (separble case)

We define Optimal Separating Hyperplane as a separating hyperplane with

maximal free space M without any data point around the hyperplane.
Formally:

max
8,80, 118]1=1

subject to y;(x” B+ Bo) > M forall i=1,... N.

de—

Bo+ATz=0
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Formally:
max M
B.,80,118]I=1

subject to y;(x B+ Bo) > M foralli=1,... N.
We re-define: ||3]| = 1 can be moved to the condition (and redefine 3p):

Hﬁ”y’(x B+ Bo) >

Since for any 8 and 3y satisfying these inequalities, any positively scaled multiple
satisfies them too, we can set ||3|| = 7 and we get:

2
min — /3
58,50 2” ”

subject to y;(x” B+ Bo) > 1proi=1,...,N.
This is a convex optimization problem. The Lagrange function, we look for the
saddle point w.r.t. 8 and So:

N
= 18I = eulyi o7+ o) 1.
i=1
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N
Lo = JI817 ~ 3 eul78 + o) — 1.
i=1

Setting the derivatives to zero, we obtain:

N
5 = Z Q;yiXi
i=1
N
0= Z QY
i=1

Substituing these in Lp we obtain the so—called Wolfe dual:

subject to a; > 0
The solution is obtained by maximizing Lp in the positive orthant, for which
standard software can be used.
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N N N
Lp = E o — E QORYiYEX Xk
i=1 1 k=1

subject to a; > 0.
In addition the solution must satisfy the Karush—Kuhn—Tucker conditions:

ailyi(x' B+ Bo) —1] =0

for any i, therefore for any a; > 0 must [y;(x;” 8+ o) — 1] = 0, that means x; is
on the boundary and for all x; outside the boundary is a; = 0.
The boundary is defined by x; with a; > 0 — so called support vectors.

We classify new observations

~

G(x) = sign(xTﬂ + Bo)

@ where = Z,N:1 Qi yiXi, . Wy
o o =ys — x] 3 for any support :
vector as > 0.
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Optimal Separating Hyperplane (nonseparble case)

@ We have to accept incorrectly classified instances in a non—separable case.
@ We limit the number of incorrectly classified examples.
We define slack ¢ for each data point (&1, ...,&n) = & as follows:
@ &; is the distance of x; from the boundary for x; at the wrong side of the
margin
@ and & =0, for x; at the correct side.
We require 1, & < K.
We solve the optimization problem

max M
B,80,1181=1

subject to:

yi(x" B+ Bo) > M(1— &) m

‘ =

where Viis & >0a SV, ¢ < K.
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Optimal Separating Hyperplane (nonseparble case)

Again, we omit replace the condition ||3|| by defining M = H—IH and optimize

T _
min || 3] subject to { 5(’ Zﬂofggl) < gclansti’rzt

We replace the constant by a multiplicative parameter v and solve
1 N
: 2
min = + i
min 31917 + v 2

subject to & > 0 and yi(x" B+ o) > (1 - &).
@ We can set v = oo for the separable case.
o Large ~: a complex boundary, fewer support vectors.
@ Small v: a smooth boundary, a robust model, many support vectors.
@ ~ usually set by crossvalidation.
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We solve
1 N
. 2
min = + i
min 2Hﬂll Y ;:1 3

subject to & > 0 and y;(x,” B+ Bo) > (1 — &).
Lagrange multipliers again for «;, u;:

N
||/3H2+725, Za,[y,Xﬂ+Bo) 1—&) =D s
i=1

i=1

Setting the derivative = 0 we get:

N
= Z Q;jyiXj
i=1
N
0= Z a;y;i
i=1

Qj =7 — Hi.
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Substitute to get Wolfe dual:

N N

N
Lp = Z o — Z Z QO YiYiX; Xk
i=1 1 k=1

and maximize Lp subject to 0 < a; <y a Z,N:l a;y; = 0.
Solution satisfies:
ailyi" B+ o) —(1—&) = 0
i
vilx"B+Bo)—(1-&)] > 0

|
o

@ The solution is ﬁA = Z,N:l Q;Yix;i.
@ support points with nonzero coefficients &; are
e points at the boundary
0 &=0 (therefore 0 < oy < =),
e and points on the wrong side of the margin
° 2,->0(ando7,-:'y).

@ Any point with 5 = 0 can be used to calculate Eo, typically an average.

e [ for a boundary point a; > 0, & = 0:
PN
o [(xTB+ Bo) — (1-0)] =0
I Eiiiﬁiﬁﬁi ai iffﬂprl hv tiinino (crocevalidatinp)
Support Vector Machines 14 546 - 564 May 17, 2023
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SVM Solution

o The solution is 3 = S, &yixi. 2

@ support points with nonzero

coefficients &; are R

e points at the boundary
0 &=0 (therefore 0 < o < ),

e and points on the wrong side of <

the margin

og>0(ando/z\;:7). 4

@ Any point with E, =0 can be used .|

to calculate Sy, typically an average.

° B\o for a boundary point & = 0:
ai [y(xTB+ o)~ (1 - 0)] =0

o o= ¢ =0 for points 1,4,8,9,11
e a >0, =0 for points 2,6,8

1 11 ninte R R
Support Vector Machines 14

a8

1/118l1

12
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Support Vector Machines

Let us have the training data (x;, y;)Y;, x; € RP, y; in {—1,1}. We define a
hyperplane

{x:f(x)=x"B+ Bo =0} (13)
where [|3]| = 1.
We classify according to

G(x) = sign [XTB + ﬂo]
where f(x) is a signed distance of x from the hyperplane.

Support vector machines replace the scalar product (x;, x) by a kernel
function.

f(x) = Bx+ Bo
N
F) = D iy x+ fo

k=1

N
?(X) = Zé\é,‘y,'<X,',X + 3

?(X) = ZO‘)/I Xn +ﬁ0
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SVM Example

@ kernel functions are function to replace scalar

product with a scalar product in a transformed

space.

SVM - Degree-4 Polynomial in Feature Space

dth Degree polynomial:

K(x,x‘) =(1+ <x,x|))d

Radial basis

2

K(x, x|) = exp(Z)

Neural network

K(x,x1) = tanh(k1(x, x!) + /92)

@ For example a degree 2 with two dimensional input:
K(x,x'") = (1 + (x,x))* =

(1 + 2X1X{ =+ 2X2X£ + (X1X:|/_)2 + (X2X2/)2 =+ 2X]_X]/_X2X2/) SVM - Radial Kernel in Feature Space

e thatis M =6, hi(x) = 1, ha(x) = v2xq,
h3(x) = V2x2, ha(x) = x2, hs(x) = x3,

hG(X) = ﬁX1XQ.

"Al'he classification functionN
F(x) = h(x)TB+po = Y_i=y iyi(h(x), h(xi))+ Bo

does not need evaluation of h(i), only the scalar

product (h(x), h(x;)).
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String Kernels and Protein Classification

IPTSALVKETLALLSTHRTLLIANETLRIPVPVHKNHQLCTEEIFQGIGTLESQTVQGGTV
ERLFKNLSLIKKYIDGQKKKCGEERRRVNQFLDYLQEFLGVMNTEWI

PHRRDLCSRSIWLARKIRSDLTALTESYVKHQGLWSELTEAERLQENLQAYRTFHVLLA
RLLEDQQVHFTPTEGDFHQAIHTLLLQVAAFAYQIEELMILLEYKIPRNEADGMLFEKK

@ Consider all possible sequences of length m.
@ We define a feature map

Om(x) = {¢a(x)}aca,

@ The kernel function is the inner product:

Km(Xh XZ) = <¢m(X1)7 ¢m(X2)>.
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SVM as a Penalization Method

o We fit a linear function wrt. basis . |

{hi(x)}: f(x) =h"B+ . 2

—— Hinge Loss

—— Class Huber

Binomial Deviance
Squared Error

o Consider the loss function o
L(.y7f):[1_.yf]+ °
o The optimization problem s
. N 1 £ A 2 $
ming,,s Zi:l[ -y ]+ + HBH o i
@ is equivalent to SVM - 2 a4 0 1z 3
H 1 2 N yf
o ming,g 3 lIBI* +7 > L, &
° subject to fi >0 and Loss Function] Liy, f(x)) Minimizing Function
-
yi(x" B+ Bo) =2 (1 = &). — —
L. } . Deviance log[1 4 ¢~¥/() J@) =los 55—
@ is similar to smoothing splines
penalty; SVM Hinge - yf@)s £(x) = sign[Pr(Y = +1[z) &

Loss

= f@) = [ - vf@)*

flz) =2Pr(Y = +1|z) — 1

. N

@ Ming,q, Zi71[1 —yfl+ + o Ka  Somm
- Error

o where a”Ka = J(f) is the p—

smoothing penalty. N e

—dyf(z) yf(w) <-1

1—yf(z))2 otherwise

fla) =2Pr(Y = +1jz) - 1

S (s 4E]
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SVM and Kernel Dimsension

@ The first Simulated example
o 100 observations of each class
o First class: four standard normal
independent features

X1, X2, X3, Xa.
e Second class conditioned on
9 < Z )(12 < 16. Test Error (SE)
Method No Noise Features Six Noise Features
@ Second example SV Classifier 0 150 (0.003) 0.472 (0.003)
. . SVM/poly 2 0.078 (0.003) 0.152 (0.004)
o The first one augmented with an /) 105 0.180 (0.004) 0.370 (0.004)
additional six standard Gaussian SVM/poly 10 | 0.230 (0.003) 0.434 (0.002)
. BRUTO 0.084 (0.003) 0.090 (0.003)
noise features. MARS 0.156 (0.004) 0.173 (0.005)

e BRUTTO: Additive spline model.

@ BRUTTO and MARS has the ability
to ignore noisy features.

@ We can see the overfitting of SVM.
The degree 2 polynomial kernel is
the best since the decision boundary
is quadratic.
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SVM

SVM Complexity

The SVM complexity is m® 4+ mN + mpN, where m is the number of support
vectors.

Parameter tuning for different radial basis lengthscale .

¥y=5 y=1 v=0.5 v=0.1
8
o
ﬂ-“f
L

o d :
3 7 4 N

§ j ™~

i \\
0
&g 4
s

/ \\/w
R R ! I e T
< 4
° T T T T T T T T T T T T
1le-01 le+01 1e+03 le-01 le+01 1e+03 le-01 le+01 1e+03 1le-01 le+01 1e+03
C
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SVM for Regression

o In regression, we fit a function: f(x) = x" 3+ S
o We consider error function V. (left figure)

Vi(r) = {0 if |r| <,

|r| — €, otherwise.

@ and minimize:

N
A
H(B. o) = Y Velys = F(x)) + 5111
i=1
(]
N ! 8 3 J
o | = . |
< iy ° T
4 2 0 2 4 4 2 0 2 4
T r
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SVM for Regression 2

@ The solution has the form: &;,&f >0

B = Z(&;—@i)xia

f(:L) = Z C— &) {x, x;) + Po,

@ and solve the quadratic programming problem
N N

(1511;1 ETZ; o + o ; ;”2,::1(0/f — o) (ag — oy ) (@i, xir)
@ subject to the constraints
0<ay, of <1/A,
N
> (o —ai) =0,
=1
a;af =0.
@ Support vectors are those with nonzero (&} — &;).
@ With scaled response y, you may use the default €.
@ )\ is tuned by cross-validation.
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SVR

sklearn.svm.SVR J

Support Vector Regression

— RBF model —— Linear model —— Polynomial model
O RBF support vectors > Linear support vectors ©  Polynomial support vectors
O other training data O other training data O other training data

target

0 1 2

3
— EmETE ] s

4 s 0 1 2 3 a 5 0 1 2 3 4 5
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