Intelligent Data Mining Techniques (tutorial presented at ANNIE'2003)

Iveta Mrázová

Department of Software Engineering Charles University Prague

Content outline

- Intelligent Data Mining: introduction and overview of Intelligent Data Mining Techniques (20 min)
- Selected Data Mining Techniques: principles and examples
 - <u>undirected DM-techniques:</u>
 - Market Basket Analysis (MBA) (20 min)
 - Link Analysis and Scale-Free Networks (10 min)
 - Automatic Cluster Detection and Fuzzy Systems: Clustering the World Bank Data (20 min)
 - directed DM-techniques:
 - Internal Knowledge Representation in BP-Networks (20 min)
 - Modular Networks, Sensitivity Analysis and Feature Selection (20 min)
 - Neural Networks and Decision Trees: Students' Questionnaire (20 min)
 - Genetic Algorithms and BP-networks: Generating Melodies (10 min)
- Conclusions, Questions + Answers (10 min)

Intelligent Data Mining: References

- M. J. A. Berry, G. Linoff: *Data Mining Techniques for Marketing, Sales, and Customer Support*, John Wiley & Sons, 1997
- M. J. A. Berry, G. Linoff: *Mastering Data Mining*, John Wiley & Sons, 2000
- J. Han, M. Kamber: *Data Mining: Concepts and Techniques*, Morgan Kaufmann Publishers, 2001
- D. Hand, H. Mannila, P. Smyth: *Principles of Data Mining*, The MIT Press, 2001
- D. Pyle: *Data Preparation for Data Mining*, Morgan Kaufmann Press, 1999
- I. H. Witten, E. Frank: *Data Mining: practical machine learning tools and techniques with Java implementations*, Morgan Kaufmann Publishers, 2000 http://www.mkp.com/datamining
 http://www.cs.waikato.ac.nz/ml/weka

What is Data Mining?

discovering patterns in data

- discovered patterns should be meaningful
- should lead to some advantage, e.g. economic, ...
- allows to make **non-trivial predictions** on new data
- the data is present in substantial **quantities**
- automatic or semi-automatic process
- two extremes for the form of discovered patterns:
 - **<u>black box</u>** e.g. neural networks
 - <u>transparent box</u> more structured, capture the decision structure in an explicit way

Building models for the data

Classification model:

- assigns an existing classification to new records
- Predictive model
 - Time-series model
- Clustering model

Data Analysis: Influence of other disciplines

- statistics
- sampling
- regression analysis
 - linear regression
- correlation analysis
- memory-based reasoning
- link analysis
- genetic algorithms and neural networks

- → interpret observations
- \rightarrow reduce the size of data
- → inter- and extrapolate observations
 - fit a line to observed data
- → mutual occurrence of observations
- \rightarrow directly from AI
- \rightarrow graph theory
- → model biological processes

Intelligent DM-Techniques: an overview

- Market Basket Analysis (MBA)
- Memory-Based Reasoning (MBR)
- Automatic Cluster Detection
- Fuzzy Systems (FS)
- Link Analysis
- Decision Trees
- Artificial Neural Networks (ANN)
- Genetic Algorithms (GA)

Market Basket Analysis (MBA)

Analyses in the retail industry:

What items occur together in a "basket"?

Results:

- expressed as rules
- highly actionable

Applications:

- planning store layouts
- offering coupons, limiting specials
- bundling products

Memory-Based Reasoning (MBR)

Look for the nearest "known" neighbor to classify or predict value!

- applicable to virtually any data
- new instances learned by adding them to the data set
- distance to neighbors estimates the correctness of the results
 - Key elements in MBR:
 - distance function to find nearest neighbors
 - *combination function* combine values at nearest neighbors to classify or predict

find patterns in relationships between records visualize the links

Application areas:

- telecommunications
- law enforcement clues about crimes are linked together to solve them
- marketing relationships between customers

Goal:

Find previously unknown similarities in the data!

- Build models that find data records similar to each other
- Good as an initial analysis of the data
- Undirected data mining

Decision Trees and Rule Induction

Divide the data into disjoint subsets characterized by simple rules!

- Directed data mining (classification)
- Explainable rules applicable directly to new records

Techniques:

- <u>Classification And Regression Trees (CART)</u>
- <u>Ch</u>i-squared <u>A</u>utomatic <u>I</u>nduction (CHAID)
- C4.5

Artificial Neural Networks (ANN)

Detect patterns in the data in a way "similar" to human thinking!

- Directed data mining (classification and prediction)
- Applicable also to undirected data mining (SOMs)
 - Two major drawbacks:
 - difficulty in understanding the models they produce
 - sensitivity to the format of incoming data

Genetic Algorithms (GA)

Apply genetics and natural selection to find optimal parameters of a predictive function!

- GA use "genetic" operators to evolve successive generations of solutions:
 - selection
 - crossover
 - mutation
- Best candidates "survive" to further generations until convergence is achieved
- Directed data mining

On-Line Analytic Processing (OLAP)

- an important tool for extracting and presenting information
- facilitates understanding of the data and important patterns inside it
 - a way of presenting relational data to users
- multi-dimensional databases (MDDs):
 - a representation of data
 - allows users to drill down into the data and understand various important summarizations

Market Basket Analysis (MBA)

Analyses in the retail industry:

What items occur together in a "basket"?

Results:

- expressed as rules
- highly actionable

Applications:

- planning store layouts
- offering coupons, limiting specials
- bundling products

Association rules

How do the products relate one to each other?

- Association rules should be:
 - *easy to understand:* once the pattern is found, it is easy to justify it
 - *useful:* contain actionable information leading to other interventions

Association rules should not be:

- *trivial:* results are already known by anyone familiar with the business
- *inexplicable:* seem to have no explanation and do not suggest any action

MBA to compare stores,

Virtual items:

- specify which group the transaction comes from
- do not correspond to a product or service
- Comparison between new and existing stores:
 - 1 Gather data for a specific period from store openings
 - 2 Gather about the same amount of data from existing stores
 - 3 Apply MBA to find association rules in each set
 - 4 Consider especially association rules containing the virtual items

- Items products or service offerings
- **Transactions** contain one or more *items*

Co-occurrence table

- indicates the number of times that any two
 items co-occur in a *transaction* (i.e. these
 products were purchased together)
- values along the diagonal represent the *number of transactions* containing just that one item

MBA - example

■ <u>Grocery transactions:</u>

Co-occurrence of products:

Customer	Items
1	bread, butter
2	milk, bread, butter
3	bread, coffee
4	bread, butter, coffee
5	coffee, butter

	bread	butter	milk	coffee
bread	4	3	1	2
butter	3	4	1	2
milk	1	1	1	0
coffee	2	2	0	3

Sales patterns apparent from the co-occurrence table:

Bread and butter are likely to be purchased together. Milk is never purchased with coffee.

MBA - Association rules

IF Condition THEN Result.

(Rule_r: IF Item_i THEN Item_j.)

Questions:

- How good are the found association rules?
 - support
 - confidence
 - improvement
- How to find association rules automatically?

Support and confidence

<u>Support:</u> How frequently can the rule be applied?

Nr_of_Transactions_containing_i_and_j

 $Support(Rule_r) =$

- • 100 %

<u>Confidence:</u> How much can we rely on the result of the rule?

$$Confidence(Rule_r) = \frac{Nr_of_Transactions_containing_i_and_j}{Nr_of_Transactions_containing_i} \bullet 100 \%$$

Support and confidence - example

Rule 1:If a customer purchases bread then the
customer also purchases butter.Rule 2:If a customer purchases coffee then the
customer also purchases butter.

Support (Rule_1) = $3/5 \cdot 100\% = 60\%$

Support (Rule_2) = $2/5 \cdot 100\% = 40\%$

Confidence (Rule_1) = $3/4 \cdot 100\% = 75\%$

Confidence (Rule_2) = $2/3 \cdot 100\% = 66\%$

Improvement of a rule

<u>Improvement:</u> *How much is a rule better at predicting the result than just assuming it?*

 $Improvement(Rule_r) = \frac{p(i_and_j)}{p(i) \bullet p(j)}$

If Improvement < 1:

- rule is worse at predicting the result than random chance
- <u>NEGATING</u> the result might produce a better rule

IF Condition THEN NOT Result.

Improvement of a rule - example

Rule:If a customer purchasesmilkthenthecustomer also purchasesbutter.

Support (Rule 1) = $1/5 \cdot 100\% = 20\%$

Confidence ($Rule_1$) = 1/1 • 100 % = 100 %

Improvement ($Rule_1$) = (1/5)/((1/5) • (4/5)) = 5/4 = 1.25

- <u>Choose</u> the right set of <u>items</u> and the right level
- Generate rules by deciphering the co-occurrence matrix
 - calculate the probabilities and joint probabilities of items and their combinations in transactions
 - limit the search with thresholds set on support
- Analyze probabilities to <u>determine best rules</u>
 - overcome limits imposed by the number of items and their combinations in "interesting" transactions

Gathering transaction data:

- often bad quality requiring extensive pre-processing
- items of interest may change over time
- the right level of detail:
 - a growing number of item combinations
 - actionable results (specific items)
 - rules with sufficient support (frequent occurrence in the data set)

Taxonomies: hierarchical categories

MBA - Complexity of generated rules:

- Use more general items initially
- Then, generate rules for more specific items using only transactions containing these items

MBA - Actionable results:

Items should occur in roughly the same number of transactions:

- roll up rare items to higher levels in the taxonomy (to become more frequent)
- keep more common items at lower levels (to prevents rules from being dominated by the most common items)

- cross product boundaries of original items
 - e.g. designer labels Calvin Klein
- may include information about the transaction itself
 - *anonymous* (day of week, time, etc.)
 - *signed* (info about customers and their behavior over time)
- might be a cause of redundant rules
 - items from the taxonomy are associated with just one virtual item ("*If Coke product then Coke*.")
 - virtual and generalized items appear together in a rule ("If
 Coke product and diet soda then pretzels" instead of "If diet
 coke then pretzels")

MBA - generating rules

Compute the co-occurrence table:

- provides the information about which combinations of items occur most commonly in the transactions
- applicable for evaluating basic probabilities necessary to evaluate the importance of generated rules
- Provide useful rules:
 - improvement should be greater than 1
 - low improvement can be increased by negating the rules
 - negated rules might be less actionable than original rules
 - reduce the number of generated rules **PRUNING**

Minimum support pruning

Eliminate less frequent items

- actions should *affect enough transactions*
- two possibilities:
 - eliminate rare items from consideration (then, eliminate their respective associative rules)
 - use taxonomy to generalize items (then, resulting generalized items should meet the threshold criteria)

■ *variable minimum support* - a cascading effect

MBA - Dissociation rules

Rule:

IF A AND NOT B THEN C.

- Introduce new items inverse to original ones
- Each transaction will contain an inverse item if it does not contain the original one

Drawbacks:

- doubled number of items
- growing size of transactions
- inverse items tend to occur more frequently than original (leading to less actionable rules with all items inverted:
 "IF <u>NOT</u> A AND <u>NOT</u> B THEN <u>NOT</u> C.")

Time-series analysis with MBA

Analyze cause and effects:

- time- or sequencing information to determine when transactions occurred relative to each other
- usually requires some way of identifying the customer

Conversions to an MBA-problem:

- include in transactions items before the event of interest (for *causes*) or after the event of interest (for *effects*);
 then, remove duplicate items from the transaction
- *time-window*: a "snapshot" of all items that occur within a certain period (e.g. all transactions within a month)
 trends for rare items

Strengths of MBA

- Produces clear and understandable results
 actionable IF THEN rules
- Supports undirected data mining
 - important when approaching large data sets with no prior knowledge
- Works on variable-length data
- Computations are *easy to understand*
 - Computational costs grow exponentially with the number of items!

Weaknesses of MBA

- Exponentially growing computational costs

 necessity for item taxonomies and virtual items

 Limited support for attributes on the data
 - pruning of less actionable general items
- Difficult to determine the right number of items
 - items should have approximately the same frequency
 - Discounts rare items
 - variable thresholds for minimum support pruning
 - higher levels in item taxonomies

find patterns in relationships between records visualize the links

Application areas:

- telecommunications
- law enforcement clues about crimes are linked together to solve them
- marketing relationships between customers
Scale-Free Networks

- Some nodes have an extremely large number of links (edges) to other nodes - hubs
- Most nodes have just a few links to other nodes
- Robust against accidental failures
- Vulnerable to coordinated attacks
- New application areas
 - preventing computer viruses spreading through the Internet
 - medicine (vaccinations)
 - business (marketing)

Scale-Free Networks

A random graph

A scale-free network

Distribution of edges

Distribution of edges

adapted from "A. L. Barabasi and E. Bonabeau: Scale-Free Networks, Scientific American, May 2003"

Examples of Scale-Free Networks

Social networks

- research collaboration (scientists, co-authorship of papers)
- Hollywood (actors, appearance in the same movie)
- Biological networks
 - cellular metabolism (molecules involved in energy production, participation in the same biological reaction)
 - protein regulatory network (proteins controlling cell activity, interactions among proteins)
 - Socio-technical networks
 - Internet (routers, optical or other connections)
 - World Wide Web (Web-pages and URLs)

Scale-Free Networks: basic characteristics

Two basic mechanisms:

- growth
- preferential attachment
- <u>"The rich get richer</u>" (hubs):
 - new nodes tend to connect to the more connected sites
 - "popular locations" acquire more links over time than less connected neighbors
- <u>Reliability</u>
 - *accidental failures* (80% of *randomly selected* nodes can fail without fragmenting the cluster)
 - *coordinated attacks* (eliminating 5-15% of *all hubs* can crash the system)

adapted from "A. L. Barabasi and E. Bonabeau: Scale-Free Networks, Scientific American, May 2003"

Implications of Scale-Free Networks

Computing

- networks with scale-free architectures

Medicine

- vaccination campaigns and new drugs

Business

- cascading financial failures
- marketing

Computing

- computer networks with scale-free architectures (e.g. WWW)
 - highly resistant to accidental failures
 - very vulnerable to deliberate attacks and sabotage
- eradicating viruses from the Internet will be effectively impossible

Implications of Scale-Free Networks

Medicine

- vaccination campaigns against serious viruses focused on hubs
 - people with many connections to others
 - difficult to identify such people
- new drugs targeting the hub molecules involved in certain diseases
- control the side-effects of drugs with maps of networks within cells

Scale-Free Networks <u>Business</u>

financial failures

Implications of

- understand how companies, industries and economies are inter-linked
- monitor and avoid cascading financial failures
- marketing
 - study the spread of a contagion on a scale-free network
 - more efficient ways of propagating consumer buzz about new products

<u>Goal:</u>

Find previously unknown similarities in the data!

- Build models that find data records similar to each other
- Good as an initial analysis of the data
- Undirected data mining

Economies grouped according to their results

- Cluster 1
- Cluster 2 ×
- Cluster 3 +
- Cluster 4
- Cluster 5
- Cluster 6 ∘
- Cluster 7 •
- Cluster 8 A Cluster 9 A
- projection v

Mining the World Bank Data: the Fuzzy c-means Clustering Approach

with Cihan H. Dagli,

Engineering Management Department, University of Missouri - Rolla

FCM-clustering: introduction

World Development Indicators (WDI)

- published annually by the World Bank
- reflect development process in the countries
- incomplete and imprecise data

Previously applied techniques

- regression analysis linear relationships
- US-based grouping of countries (G. Ip, Wall Street Journal)
- GDP-based grouping of economies (World Bank)
- self-organizing feature maps (T. Kohonen, S. Kaski, G. Deboeck)

Poverty maps - T. Kohonen

	ESP		GRC			ŕ	1	THA		MAR	٠	IN	1D
IRL		•	UF	łY	ARG		ECU mex			EC	àΥ	hti	lao png ZAR
	•		KOR	•		zaf		•		TUN	dza irq	G	HA
ISR		•		e.	COL PER		lbn		lby	ZV	/E	omn	
			MUS tto			•	F	RN PRY syr		hnd	BWA	K	EN
•		СНІ	. P/	N	alb		mng sau			vn	m	jor nic	

adapted from "T. Kohonen: *Self-Organizing Maps*, 3-rd Edition, Springer-Verlag, 2001"

- more neurons than countries
- only local geometric relations are important
- countries mapped
 close to each other
 have a similar state
 of development

Poverty maps - T. Kohonen, S. Kaski

adapted from "T. Kohonen: *Self-Organizing Maps*, 3-rd Edition, Springer-Verlag, 2001"

<u>U-matrix:</u>

- illustrate "boundaries" between clusters
- represent average distances between neighboring neurons in a gray scale
 - small average distance ⇒ *light shade*
 - large average distance
 ⇒ *dark shade*

Cluster efficiently imprecise data
Estimate the number of clusters
Visualize the results
Interpret the results

Our goal

- Cluster efficiently imprecise data
- Estimate the number of clusters
- Visualize the results
- Interpret the results
 - > fuzzy c means clustering (FCM)
 - > cluster validity indicators
 - > spread-sheet-like form
 - > find "landmarks"

The objective function

• corresponds to the weighted distance between input patterns and cluster centers: cluster center

$$J_{s}(\mathbf{U}, \mathbf{v}) = \sum_{p=1}^{P} \sum_{i=1}^{c} (u_{ip})^{s} \left[\sum_{j=1}^{n} (x_{pj} - v_{ij})^{2} \right]$$

fuzziness
parameter membership degree input pattern

membership degrees between 0 and 1: $0 \le u_{ip} \le 1$ total membership of a pattern equals to 1: $\forall p | \sum_{i=1}^{c} u_{ip} = 1$ no empty or full clusters: $\forall i | 0 < \sum_{p=1}^{P} u_{ip} < P$ Fuzzy *c*-means Clustering (FCM)

- Step 1: Initialize c, s, ε and t. Choose randomly $U^{(0)}$.
- **Step 2:** Determine new fuzzy cluster centers:

$$\vec{v}_{i}^{(t)} = \frac{1}{\sum_{p} (u_{ip}^{(t)})^{s}} \sum_{p} (u_{ip}^{(t)})^{s} \vec{x}_{p}$$

Step 3: Calculate new partition matrix $U^{(t+1)}$:

$$u_{ip}^{(t+1)} = \frac{(1 / \| \vec{x}_{p} - \vec{v}_{i}^{(t)} \|^{2})^{1/s-1}}{\sum_{k=1}^{c} (1 / \| \vec{x}_{p} - \vec{v}_{k}^{(t)} \|^{2})^{1/s-1}}$$

Step 4: Evaluate $\Delta = \| U^{(t+1)} - U^{(t)} \| = \max_{i,p} \| u_{ip}^{(t+1)} - u_{ip}^{(t)} \|$ If $\Delta > \varepsilon$ then set t = t + 1 and go to Step 2. If $\Delta \le \varepsilon$ then Stop. END of FCM

Windham's proportion exponent: $W(U;c) = -\sum_{p=1}^{P} \ln \left[\sum_{j=1}^{\lfloor \mu_p^{-1} \rfloor} (-1)^{j+1} {c \choose j} (1-j \cdot \mu_p)^{c-1} \right]; \quad \mu_p = \max_{1 \le i \le c} \{u_{ip}\}$

Cluster validity indicators for artificial data

21 input patterns, s = 1.4, $\varepsilon = 0.05$

Fuzzy 4-partition of the data

 $' \times '$ indicates cluster centers, patterns from the same clusters are labeled identically

'×' indicates cluster centers, patterns from the same clusters are labeled identically

Fuzzy 8-partition of the data

'×' indicates cluster centers, patterns from the same clusters are labeled identically

Interpret the results!

Characteristic features for detected clusters:

- cluster centers "fictive" patterns out of the data set
- "calibrate" clusters with the "most representative" patterns from the data set - *based on just one pattern*
- Determine outstanding properties for clusters:
 - compared to other properties within the cluster
 - compared to properties of other clusters
 - exception: "border areas"

fuzzy *c*-landmarks

Automatic landmark selection

Fuzzy c-landmark for cluster i^* : (j^*, v_{i^*, i^*})

"fuzzy distance" from the cluster center should be small
 "fuzzy distance" from all other cluster centers should be large

Iveta Mrázová, ANNIE'03

Supporting experiments: The World Bank Data

- 99 state economies with 16 (latest) indicators for each country
- economical and social potential of countries and their citizens
- all indicators are relative to population
- element-wise transformation to (0,1) with:

the choice of other parameters (k=4; s=1.4; $\varepsilon=0.05$)

Used Development Indicators

- GNP per capita
- Purchasing Power Parity
- Growth rate of GDP per capita
- GDP implicit deflator
- External debt (% of GNP)
- Total debt service (% of export of goods and services)
- High technology exports
 (% of manufactured exports)
- Military expenditures
 (% of GNP)

- Expenditures for R&D (% of GNP)
- Total expenditures on health (% of GDP)
- Public expenditures on education (% of GNP)
- Male life expectancy at birth
- Fertility rates
- GINI-index (distribution of income/consumption)
- Internet hosts per 10000 people
- Mobile phones per 1000 people

Supporting experiments: the World Bank data

Cluster validity indicators for the WB-data

Cluster validity indicators for the WB-data

99 countries with 16 indicators $s = 1.1, \varepsilon = 0.05$

99 countries with 16 indicators $s = 1.4, \varepsilon = 0.05$

Fuzzy 7-partition of the WB data

			-	-			
26 Egypt A.R.	0.02	0.90	0.01	0.05	0.01	0.00	0.01
27 El Salvador	0.01	0.08	0.01	0.11	0.01	0.00	0.78
28 Estonia	0.04	0.13	0.01	0.06	0.67	0.01	0.09
29 Ethiopia	0.00	0.00	0.97	0.02	0.00	0.00	0.00
30 Finland	0.00	0.00	0.00	0.00	0.02	0.90	0.00
31 France	0.00	0.00	0.00	0.00	0.01	0.99	0.00
32 Georgia	0.96	0.02	0.00	0.01	0.01	0.00	0.01
33 Germany	0.00	0.00	0.00	0.00	0.03	0.97	0.00
34 Ghana	0.00	0.07	0.08	0.82	0.00	0.00	0.02
35 Greece	0.01	0.05	0.00	0.02	0.85	0.04	0.03
36 Guatemala	0.01	0.09	0.18	0.37	0.01	0.00	0.34
37 Guinea	0.00	0.00	0.99	0.01	0.00	0.00	0.00
38 Honduras	0.01	0.03	0.02	0.09	0.01	0.00	0.86
39 Hungary	0.03	0.24	0.01	0.04	0.65	0.01	0.02
40 India	0.01	0.85	0.01	0.11	0.01	0.00	0.02
41 Indonesia	0.06	0.43	0.10	0.20	0.05	0.01	0.16
42 Ireland	0.01	0.02	0.01	0.01	0.13	0.79	0.02
43 Italy	0.00	0.00	0.00	0.00	0.01	0.99	0.00
44 Jamaica	0.07	0.47	0.01	0.14	0.10	0.00	0.22
45 Japan	0.00	0.00	0.00	0.00	0.01	0.98	0.00
46 Jordan	0.09	0.24	0.06	0.26	0.14	0.02	0.20
47 Kazakhstan	0.84	0.10	0.00	0.03	0.01	0.00	0.01
48 Kenya	0.01	0.04	0.19	0.67	0.01	0.00	0.07
49 Korea	0.04	0.09	0.02	0.05	0.38	0.38	0.05
and the second se	the second se			and the second	Environment of the second s		Colored and the second se second second s

A part of the fuzzy 7-partition of the World Bank data:

99 countries with 16 indicators; s = 1.4, $\varepsilon = 0.05$

Iveta Mrázová, ANNIE'03

Landmarks for the WB data

No.	Representant	1. char. feature	2. char. feature	3. char. feature
1	Uzbekistan	GDP impl. defl. 330 % ann. growth	Hi-Tech exports 4 % of annual exp.	Gini-index 33.90
2	Vietnam	Fertility rate 2.57	Gini-index 36.73	Total exp. on health 4.94 % of GDP
3	Guinea	Internet hosts 0 per 10000 people	PPP per capita 1276 USD	GNP per capita 441.43 USD
4	Ghana	Fertility rate 3.94	Life exp. (males) 57.62 years	Gini-index 42.61
5	Slovenia	PPP per capita 13485 USD	Mobile phones 270 per 1000 people	Expend. on R&D 0.98 % of GNP
6	Netherlands	GDP impl. defl. 2.3 % of ann. growth	Ext. debt 1.1 % of GNP	Tot. debt serv. 0.47 % of export
7	Peru	Gini-index 48.98	GDP growth rate -1.92 % per capita	Life exp. (males) 66.95 years

"Representative patterns" and fuzzy 7-landmarks for the World Bank data: 99 countries with 16 indicators; s = 1.4, $\varepsilon = 0.05$

FCM-Clustering: conclusions

FCM-clustering

- efficiency and cluster validity
- choice of the fuzziness parameter
- grouping of country economies (World Bank, Ip, Kohonen, Deboeck)

Visualization

- membership degree
- topological relationships

Landmarks and interpretation of the results

– formulation of "class discriminating" criteria

From FCM towards Fuzzy Systems

Rule extraction:

Characteristics \Longrightarrow *Economical_results*

- fuzzy inference systems
- (feed-forward) neural networks
 - back-propagation
 - RBF-networks

Neuro-fuzzy systems with adaptive inputs

- detection of significant input patterns
- influence of internal knowledge representation
- speed-up the training and recall process

Artificial Neural Networks (ANN)

Detect patterns in the data in a way "similar" to human thinking!

- Directed data mining (classification and prediction)
- Applicable also to undirected data mining (SOMs)
 - Two major drawbacks:
 - difficulty in understanding the models they produce
 - sensitivity to the format of incoming data

Back-Propagation and GREN-networks

0

9

6

Introduction

Multi-layer feed-forward networks (BP-networks)

- one of the most often used models
- relatively simple training algorithm
- relatively good results
- Limits of the considered model
 - the speed of the training process
 - convergence and local minimums
 - generalization and "over-training"

additional demands on the desired network behavior

The error function

corresponds to the difference between the actual and the desired network output:
desired

$$E = \frac{1}{2} \sum_{p \neq p} \sum_{j \neq p} \left(y_{j,p} - d_{j,p} \right)^{2}$$
 output
patterns output neurons actual output

the goal of the training process is to minimize this difference on the given training set

\Longrightarrow Back-Propagation training algorithm
The Back-Propagation training algorithm

- computes the actual output for a given training pattern
- compares the desired and the actual output
- adapts the weights and the thresholds
 - against the gradient of the error function
 - backwards from the output layer towards the input layer

Drawbacks of the standard BP-model

The error function

- correspondence to the desired behavior
- the form of the training set
 - requires the knowledge of desired network outputs
 - better performance for "larger" and "well-balanced" training sets
- Generalization abilities
 - ability to interpret and evaluate the "gained" experience
 - retraining for modified and/or developing task domains

Desired properties of trained networks

- Robustness against small deviations of those input patterns lying "close to the separating hyper-plane"
 - Transparent network structure with a suitable internal knowledge representation
- A possible reuse of already trained networks under changed conditions

- interpret the activity of hidden neurons:
 - $1 \leftrightarrow \text{active} \leftrightarrow \text{YES}$
 - $0 \leftrightarrow \text{passive} \leftrightarrow \text{NO}$
 - $\frac{1}{2}$ \leftrightarrow silent \leftrightarrow
 - \leftrightarrow "no decision possible"
- "clear" the inner network structure
- detect superfluous neurons and prune

How to force the condensed internal representation?

- formulate "the desired properties" in the form of an objective function:
 - $G = E + C_s F$ Representation error function the influence of F on G
- local minima of the representation error function correspond to active, passive and silent states:

Influence of parameters

$$w_{ij}(t+1) = w_{ij}(t) + \alpha \delta_j y_i + \alpha_r \rho_j y_i + \alpha_m \left(w_{ij}(t) - w_{ij}(t-1) \right)$$

- slower forcing of the internal representation and the desired network function
- stability of the forced internal representation and an optimal network architecture
- the shape of the representation error function, the speed of the representation forcing process and its form
- the time-overhead of the weight adjustment

Shape of the representation function $F = y^{s} (1 - y)^{s} (y - 0.5)^{t}$

Further modifications of the representation function

Discrete internal representation:

(S allowed output values r_1, \ldots, r_S for neurons from the last hidden layer)

$$F = \sum_{p} \sum_{j} \left(y_{j,p} - r_1 \right)^{2t_1} \dots \left(y_{j,p} - r_s \right)^{2t_s} = \sum_{p} \sum_{j} \prod_{s} \left(y_{j,p} - r_s \right)^{2t_s}$$

Condensed internal representation for all hidden layers:

$$F = \sum_{l'} \sum_{p} \sum_{j_{l'}} y^{s}_{j_{l'},p} \left(1 - y_{j_{l'},p}\right)^{s} \left(y_{j_{l'},p} - 0.5\right)^{2}$$

Unambiguous internal representation

- Patterns with highly different outputs should form highly different internal representations
- Formulate the requirements as a modified objective function: G = E + F + H

Ambiguity criterion for the internal representation:

$$H = -\frac{1}{2} \sum_{\substack{p \ q \neq p}} \sum_{\substack{j \ o \ output}} \sum_{\substack{o \ output}} \left(d_{o,p} - d_{o,q} \right)^2 \left(y_{j,p} - y_{j,q} \right)^2$$

$$= \text{const. for a given p}$$

$$= \text{const. for a given p}$$

- Decompose the task into the particular subtasks
- Propose and form the modular architecture
 - strategy for extracting ϵ -equivalent BP-modules
 - elimination of superfluous hidden and/or input neurons
 - suitable for "already trained" networks
 - a compromise between the desired accuracy of the extracted module and its optimal architecture
- Communication between the particular modules
 - serial and parallel composition of BP-networks

- The potential change $\delta_r^{-}(\xi)$ is in this case smaller than the potential change $\delta_r^{+}(\xi)$
- The potential should change "towards the separating hyperplane"
- The changed potential should preserve the location of the input pattern in the same half-space
- The allowed potential changes should be independent of each particular input pattern (from S)

Notes on the construction of an ϵ -equivalent network

- possible improvements of network properties:
 - "egalitarian" versus "differentiated" approach
- the relationship of the construction to "more robust" networks
 - necessary knowledge of ε_r-boundary regions
 - preserve the created internal representation

INPUT

Desired properties of "experts" for training (modular) BP-networks

- evaluate the error connected with the actual response of a BP-network
- "explain" the BP-network its error during training
- not require the knowledge of the desired network output
- but should recognize a correct behavior
- "suggest" a "better" behavior

Desired properties of "experts" for training BP-networks

- evaluate the error connectedwith the actual response ofa BP-network
- "explain" the BP-network its error during training
- not require the knowledge of the desired network output
- but should recognize a correct behavior
- "suggest" a "better" behavior

Desired properties of "experts" for training BP-networks

- evaluate the error connected with the actual response of a BPnetwork
- "explain" the BP-network its error during training
- not require the knowledge of the desired network output
- but should recognize a correct behavior
- "suggest" a "better" behavior

GREN-networks: Generalized relief error networks

- assign the error to the pairs [input pattern, actual output]
- trained e.g. by the standard
 BP-training algorithm
- should have good approximation and generalization abilities
- "approximates" the error function
 by:

 $E = \sum_{p} \sum_{e} e_{e,p}^{GR_{B}}$ output values of
the GREN-network

output neurons of the GREN-network

patterns

A modular system for training BP-networks with GREN-networks

Iveta Mrázová, ANNIE'03

- Applied the basic idea of Back-Propagation
- How to determine the error terms at the output of the trained BP-network?

Use error terms back-propagated from the GREN-network

Weight adjustment rules similar to the standard Back-Propagation

Applied the basic idea of Back-Propagation

How to determine $\partial E / \partial y_j^B$ at the output layer of the BP-network *B*?

- Use error terms back-propagated from the GREN-network
- Rules similar to the standard Back-Propagation

$$w_{ij}^{B}(new) = w_{ij}^{B}(old) + \alpha \delta_{j}^{B} y_{i}^{B} \leftarrow \text{actual output} \\ \text{weight} \quad \text{learning rate} \quad \text{error term}$$

For output neurons, compute δ_j^B by means of $\delta_k^{GR_B}$ propagated from the GREN-network GR_B

Error terms for the trained BP-network

The back-propagated error terms δ_j^B correspond for $E = \sum_e e_e$ to:

$$-\left(\sum_{e}e_{e}^{GR_{B}}\left(1-e_{e}^{GR_{B}}\right)w_{je}^{GR_{B}}\right)f'(\xi_{j}^{B})$$

for an output neuron of B and GR_B with no hidden layer

$$-\left(\sum_{k}\delta_{k}^{GR_{B}}w_{jk}^{GR_{B}}\right)f'(\xi_{j}^{B})$$

for an output neuron of *B* and *GR*^B with hidden layers

$$\left(\sum_{k}\delta_{k}^{B}w_{jk}^{B}\right)f'(\xi_{j}^{B})$$

 δ^{B}_{i}

for a hidden neuron of B

Iveta Mrázová, ANNIE'03

- Has not to "know the right answer"
- But should "recognize the correct answer"

for an input pattern, yield the minimum error only for one actual output - the right one

Simple test for "problematic" GREN-experts:

- zero-weights from the actual output y^{B}
- zero "y-terms" of potentials in the 1. hidden layer "too many large negative weights" $\sum_{i} |w_i^-| >> \sum_{i} w_i^+$

Find "better" input patterns!

- input patterns of a GREN-network
- "similar" to those presented to and recalled by the BP-network
- with a smaller error

- minimize the error at the output of the GREN-network, e.g. by back-propagation
- adjust input patterns against the gradient of the GREN-network error function

Avoid "problematic" GREN-networks!

- Insensitive to the outputs of trained BP-networks
 - inadequately small error terms back-propagated by the GREN-network
- Incapable of training further BP-networks
 - small error terms even for large errors

Our goal:

Increase the sensitivity of GRENnetworks to their inputs!

How to handle the sensitivity of BP-networks?

Increase their robustness:

- over-fitting leads to functions with a lot of structure and a relatively high curvature
- favor "smoother" network functions
 - alternative formulation of the objective function
 - penalizing large second-order derivatives of the network function
 - penalizing large second-order derivatives of the transfer function for hidden neurons
 - weight-decay regularizers

Controlled learning of GREN-networks

Require GREN-networks sensitive to their inputs

 non-zero error terms for incorrect BP-network outputs

 Favor larger values of the error terms

Weight adjustment rules

Regularization by means of

$$\Delta_{E^{REG}} W_{ij} = -\frac{\partial E^{REG}}{\partial w_{ij}} = -\frac{\partial}{\partial w_{ij}} \left(-\sum_{s} \sum_{r>n} \left(\frac{\partial y_s}{\partial y_r} \right)^2 \right)$$

weight controlled inputs

Rules similar to the standard Back-Propagation

controlled weight adjustment

output

$$w_{ij}^{GR_B}(T+1) = w_{ij}^{GR_B}(T) + \alpha \Delta_E w_{ij} + \alpha_c \Delta_{E^{REG}}^{\checkmark} w_{ij} + \alpha_m \left(w_{ij}^{GR_B}(T) - w_{ij}^{GR_B}(T-1) \right)$$

BP-weight adjustment moment

Characteristics of the method

- Applicable to any BP-network and/or input neuron
- Quicker training of "actual" BP-networks
 - larger "sensitivity terms" $\partial y_s / \partial y_r$ transfer better the errors from the GREN-network
- Oscillations during training "actual" BP-networks
 - due to the "linear" nature of the GREN-specified error function

Modification of the method

Use "quadratic" GREN-specified error terms for training "actual" BP-networks

Considers both the GREN-network outputs $e_{e,p}^{GR_B}$ and the "sensitivity" terms $\partial e_{e,p}^{GR_B} / \partial y_{j,p}^B$

Crucial for low sensitivity to erroneous training patterns

Output of the standard BP-network

Output of the GREN-trained BP-network

3000 cycles, SSE = 0.89

3000 cycles, SSE = 0.05

Output of the standard BP-network Output of the GREN-trained BP-network (with 8 hidden neurons) (with 8 hidden neurons) network output network output 1 1 0.5 0.5 0 0 1 1 1 1 0.5 0.5 0.5 0.5 y-coordinate y-coordinate x-coordinate 0 x-coordinate 0 0 ົດ

1500 cycles, SSE = 0.51

1500 cycles, SSE = 0.06, GREN-error = 1.2

Sensitivity and error for a standard BP-trained GREN-network

Sensitivity and error for a controlled-trained GREN-network (control rates = 0.2)

Sensitivities and error for a controlled-trained GREN-network (control rates = 0.2) Sensitivities and error for an over-trained GREN-network (control rates = 0.2)

- GREN-networks can train BP-networks without the knowledge of their desired outputs
- A simple detection of "problematic"
 GREN-experts
- GREN-networks can find "similar" input patterns with a lower error

Conclusions: Sensitivity of GREN-networks

- Increase the sensitivity of trained GREN-networks to their inputs
- Detect "over-training" in GREN-networks
- Train BP-networks more efficiently by minimizing squared GREN-network outputs instead of the "linear" ones
 - <u>Further research:</u> simplified sensitivity control

with M. Chlada and Z. Převorovský, Institute of Thermomechanics, Academy of Science

Acoustic Emission and Feature Selection Based on Sensitivity Analysis

- BP-networks and sensitivity analysis
 - larger "sensitivity terms" $|\partial y_j / \partial x_i|$ indicate higher importance of the feature *i*
 - numerical experiments
 - acoustic emission:
 - classification of simulated AE data
 - *feature selection:*
 - reduction of original input parameters (from 14 to 6)
 model dependence between parameters

Simulation of AE-data

Iveta Mrázová, ANNIE'03

Simulation of AE-data

CONVOLUTION WITH THE GREEN FUNCTION

Original Features for AE-signals

- amplitude: $z_{\max} = \max_{t \in T} \{|z(t)|\}$ 6 spectral parameters:
- rise time
- effective value (RMS) $RMS = \sqrt{\frac{1}{T} \int_{T} z^{2}(t) dt}$
- energy moment: $T_E = \int_T t \cdot z^2(t) dt$
- mean value: $t_s = (\int_T t \cdot z(t) dt)/T$
- deviation: $\sigma^2 = \left(\int_T (t_s z(t))^2 dt \right) / T$
- asymmetry: $\eta^2 = \left(\int_T (t_s z(t))^3 dt \right) / \sigma^3$
- excess: $\xi^2 = \left(\int_T (t_s z(t))^4 dt \right) / \sigma^4$

$$P_X = \frac{\int_X f(k)dk}{\int_G f(k)dk}; \quad X \in \{A, B, C, D, E, F\}$$

with
$$A = ([0,0.12]f_N/2)$$

 $B = ([0.12,0.24]f_N/2)$
 $C = ([0.24,0.36]f_N/2)$
 $D = ([0.36,0.48]f_N/2)$
 $E = ([0.48,0.6]f_N/2)$
 $F = ([0.6,1]f_N/2)$
and $G = ([0,1/2]f_N)$

 $f_{\rm N}$ is the Nyquist frequency

Factor analysis for input parameters

									1	
	1	0.04	0.91	0.16	0.10	0.01	0.07	0.06	0.01	0.23 -
	2	0.09	0.02	0.01	0.19	0.03	0.03	0.95	0.03	0.16 -
	3	0.10	0.96	0.15	0.00	0.03	0.00	0.02	0.05	0.07 -
	4	0.13	0.91	0.02	0.03	0.05	0.06	0.04	0.06	0.20 -
	5	0.30	0.05	0.04	0.41	0.06	0.49	0.17	0.07	0.66 -
וומ	6	0.26	0.00	0.04	0.03	0.08	0.93	0.02	0.10	0.20 -
Ial	7	0.29	0.06	0.03	0.27	0.03	0.17	0.16	0.04	0.86
Ъа	8	0.12	0.06	0.01	88.0	0.02	0.02	0.24	0.03	0.36 -
าทเ	9	0.90	0.15	0.09	0.08	0.15	0.17	0.06	0.21	0.18 -
	10	0.93	0.14	0.06	0.08	0.10	0.17	0.06	0.09	0.19 -
	11	- 0.25	0.10	0.12	0.03	0.25	0.11	0.03	0.90	0.05 -
	12	0.20	0.07	0.14	0.02	0.93	0.09	0.03	0.23	0.04 -
	13	0.04	0.09	0.97	0.00	0.05	0.00	0.00	0.06	0.02 -
	14	0.08	0.18	0.95	0.02	0.09	0.04	0.01	0.06	0.02 -
		1	2	3	4	5	6	7	8	9

selected factors

9 factors selected

- "explain" 98.4% of all variables, e.g.
 - higher energy of signals
 lead to higher
 amplitudes and RMS
 (parameters 1, 3, 4)
- allow to <u>reduce linearly</u> <u>dependent input</u> <u>parameters</u>
 - in our case to: 2, 3, 5, 6,
 7, 8, 11, 12 and 2 new
 spectral parameters

Sensitivity analysis of trained BP-networks

	1	- 0.173	0.266	0.149 -
INP UTS	2	- 0.093	0.068	0.047 -
	3	- 0.320	0.193	0.184 -
	4	- 0.301	0.178	0.196 -
	5	0.564	0.250	0.206 -
	6	- 0.196	0.322	0.158 -
	7	- 0.099	0.063	0.043 -
	8	- 0.065	0.015	0.030 -
	9	- 0.022	0.014	0.016 -
	10	- 0.053	0.020	0.012 -
	11	- 0.035	0.012	0.032 -
	12	- 0.039	0.050	0.022 -
	13	- 0.081	0.134	0.082 -
	14	- 0.260	0.172	0.109 -
		1	2	3
			OUTP UTS	

SENSITIVITY COEFFICIENTS

2000 samples

- 500 training s.
- 14-27-19-3
- 180 iterations
 - selected inputs:
 - sensitivity analysis
 - 1, 3, 4, 5, 6, 13, 14
 - + factor analysis
 - 1, 3, 5, 6, 13, 14
- new architecture:

6-13-7-3 (even with slightly better MSE-results)

Model dependence

Model dependence

Knowledge extraction in neural networks (students' questionnaire)

with Eva Poučková,

Department of Software Engineering, Charles University Prague

Knowledge representation in NN

Distributed!

Solution System Sys

 \boxtimes What and how does the

network do?

Knowledge extraction in NN

- Dimension reduction and sensitivity analysis for inputs
- Rule extraction from trained networks
 - Structural learning with forgetting
 - BP-networks
 - GREN-networks
 - Babsi-trees (B. Hammer et al.)
 - GRLVQ

Dimension reduction

- PCA: linear transformation of the input data
- <u>Sensitivity analysis:</u>
 Feature Subset Selection (FSS)
- <u>Correlation-based Feature Selection (CFS)</u>: select a group of features with a high average correlation *input_feature - output* but with a low mutual correlation

Dimension reduction: results

PCA: method not suitable for further processing – knowledge and rule extraction

results for FSS and CFS

Features selected for the overall evaluation

Feature subset selection (FSS):

- (1) understandable subject
- (2) structured and prepared presentations
- (3) interesting classes
- (4) quality of education
- (5) understandable classes
- (6) start/end of class on time
- (7) relationship to students

<u>Correlation-based feature</u> <u>selection</u> (CFS):

- (1) understandable subject
- (2) structured and prepared presentations
- (3) interesting classes
- (4) quality of education
- (5) understandable classes
- (6) start/end of class on time
- (8) students prepare for classes

Methods for knowledge extraction

> SLF – Structural learning with forgetting

- Learning with forgetting
- Learning with forcing internal representations on hidden neurons
- Learning with selective forgetting
- > Babsi-trees
 - Form a tree from a neural network trained by means of the GRLVQ-method

Generalized relevance learning vector quantization (GRLVQ)

- a robust combination of GLVQ and RLVQ
- provides weighing factors (λ) for input features
 - larger λ corresponds to a "more important" feature
- applicable to pruning of input features
 - **GLVQ:** considers class representatives
 - separating surfaces approach the optimum Bayessian ones
 - **<u>RLVQ</u>**: input features can have different importance
 - relatively unstable, sensitive to noise

Generalized LVQ - GLVQ

- Select a fixed number of representatives $\mathbf{w}_1, \ldots, \mathbf{w}_L$ for all classes $C_i, i=1, \ldots, q$.
- Receptive field of the class representative \mathbf{w}_i $R_i = \{ \mathbf{x} \in T \mid \forall k \neq i : || \mathbf{x} - \mathbf{w}_i || < || \mathbf{x} - \mathbf{w}_k || \}$
- Receptive fields of class representatives should be as small as possible!
 - minimize $E = \sum_{k=1}^{p} \sigma(\eta(\mathbf{x}^{(t)}))$; σ denotes the sigmoid

- and
$$\eta(\mathbf{x}^{(t)}) = \frac{\|\mathbf{x}^{(t)} - \mathbf{w}^{(t)}\| - \|\mathbf{x}^{(t)} - \mathbf{w}^{(t)}\|}{\|\mathbf{x}^{(t)} - \mathbf{w}^{(t)}\| + \|\mathbf{x}^{(t)} - \mathbf{w}^{(t)}\|}$$

correct classification —

`wrong classification

Generalized LVQ - GLVQ

Weight adjustment:

$$\Delta \mathbf{w}^{+} = \alpha \sigma' \frac{\|\mathbf{x}^{(t)} - \mathbf{w}^{-}\|}{\left(\|\mathbf{x}^{(t)} - \mathbf{w}^{+}\| + \|\mathbf{x}^{(t)} - \mathbf{w}^{-}\|\right)^{2}} \left(\mathbf{x}^{(t)} - \mathbf{w}^{+}\right)$$

$$\Delta \mathbf{w}^{-} = -\alpha \sigma' \frac{\|\mathbf{x}^{(t)} - \mathbf{w}^{+}\|}{\left(\|\mathbf{x}^{(t)} - \mathbf{w}^{+}\| + \|\mathbf{x}^{(t)} - \mathbf{w}^{-}\|\right)^{2}} \left(\mathbf{x}^{(t)} - \mathbf{w}^{-}\right)$$

with $\sigma' = \sigma(\eta(\mathbf{x}^{(t)}))' = \sigma(\eta(\mathbf{x}^{(t)}))(1 - \sigma(\eta(\mathbf{x}^{(t)})))$ and learning rates α

Relevance LVQ - RLVQ

Input features can have different importance λ

$$dist(\mathbf{x}, \mathbf{w})_{\lambda} = \sum_{i=1}^{n} \lambda_i (x_i - w_i)^2 \qquad ; \qquad \sum_{i=1}^{n} \lambda_i^2 = 1$$

- Receptive field of the class representative \mathbf{w}_i $R_{i\lambda} = \{ \mathbf{x} \in T \mid \forall j \neq i : || \mathbf{x} - \mathbf{w}_i ||_{\lambda} < || \mathbf{x} - \mathbf{w}_j ||_{\lambda} \}$
- Weight adjustment according to GLVQ with adaptive importance factors λ_i for input features ($0 < \varepsilon < 1$):

$$\Delta \lambda_i^{(t)} = \begin{cases} \max \left(\lambda_i^{(t-1)} - \varepsilon \left(x_i^{(t)} - w_{ij} \right)^2, 0 \right) & d^{(t)} = c_j \\ \lambda_i^{(t-1)} + \varepsilon \left(x_i^{(t)} - w_{ij} \right)^2 & \text{else} \end{cases}$$

Generalized Relevance Learning Vector Quantization (GRLVQ)

Weight adjustment according to GLVQ with adaptive importance factors λ_i for input features:

$$\Delta \lambda_i^{(t)} = -\varepsilon \sigma' \left(\frac{\|\mathbf{x}^{(t)} - \mathbf{w}^-\|}{\left(\|\mathbf{x}^{(t)} - \mathbf{w}^+\| + \|\mathbf{x}^{(t)} - \mathbf{w}^-\|\right)^2} \left(x_i^{(t)} - w_i^+\right)^2 - \frac{\|\mathbf{x}^{(t)} - \mathbf{w}^+\|}{\left(\|\mathbf{x}^{(t)} - \mathbf{w}^+\| + \|\mathbf{x}^{(t)} - \mathbf{w}^-\|\right)^2} \left(x_i^{(t)} - w_i^-\right)^2\right)$$

Babsi-trees

Root-trees G=(V,E) satisfying the following conditions:

- > all vertices $v_i \in V$ can have an arbitrary number n_i of sons
- all leaves v_J are labeled with the corresponding classification class C_J
- > all vertices v_i which are not leafs are labeled with I^{v_i}
 - > I^{v_i} stands for the currently processed input dimension *i*
 - > dimensions are "ordered" according to their importance (λ)
- > All edges going from a vertex v_i to its sons are labeled with intervals $\langle st_k^{v_i}, st_l^{v_i} \rangle$
 - interval boundaries are placed in the middle between two neighboring cluster representatives

SLF for layered networks

Results for the SLF-method

Both BP-networks and GREN-trained networks lead to similar sets of rules:

The resulting Babsi-tree

Iveta Mrázová, ANNIE'03

Comparison of the results

<u>SLF</u>

- Few simple hierarchically ordered rules
- Possibility to add rules after achieving the desired accuracy
- Rule correctly applicable - 71% and 73%, resp.

Babsi-trees

- Many simple rules
- Quick training of the network
- Few training parameters
- > Rule correctly applicable - 67%

Knowledge extraction: Conclusions

Main results achieved:

- dimension reduction for the input space
- analysis of various models for knowledge extraction
- rule extraction from GREN-networks
- comparison with other neural network models

Further research:

- adjusting rules extracted from a neural network trained with the GRLVQ-algorithm
- (automatic) selection of training parameters for the SLF-algorithm

Genetic Algorithms (GA)

Apply genetics and natural selection to find optimal parameters of a predictive function!

- GA use "genetic" operators to evolve successive generations of solutions:
 - selection
 - crossover
 - mutation
- Best candidates "survive" to further generations until convergence is achieved
- Directed data mining

The basic Genetic Algorithm

- **Step 1:**Create an initial population of individuals
- Step 2: Evaluate the fitness of all individuals in the population
- Step 3: Select candidates for the next generation
- Step 4: Create new individuals (use genetic operators crossover and mutation)
- Step 5: Form a new population by replacing (some) old individuals by new ones
- GOTO Step 2

ANTARES

STUDENT SOFTWARE PROJECT

supervised by I. Mrázová, F. Mráz

participating students: D. Bělonožník, D. J. Květoň, M. Šubert, J. Tomaštík, J. Tupý

http://www.ms.mff.cuni.cz/~mraz/antares

Project ANTARES

- Generate melodies with genetic algorithms
 - the fitness of candidate solutions is evaluated by the cooperating feed-forward neural network
- Parallel implementation of genetic algorithms
 - open system for the design and testing of genetic algorithms and neural networks
 - supports mutual cooperation between neural networks and genetic algorithms

Fitness evaluation with neural networks

- For some problems, it might be difficult to define explicitly the fitness function
 - e.g. "evaluate" the beauty of generated melodies
- Fitness of candidate melodies (generated by GA) is evaluated by the pre-trained NN:
 - provide a set of positive and negative examples (supervised learning)
 - train a feed-forward network to approximate the ,,unknown" fitness function (on the training set)

Generating melodies: positive training samples

Generating melodies

Positive training samples **4**4 Negative training samples **(**) [-- **4** Test samples (with a high fitness value) **1 1** - **4**4 **1 (**) Generated melodies **4 (**) **(**) **4**4

()

A

()

Thank you for your attention!