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INTRODUCTION	
Topics,	sources,	outlines.	
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Topics	
•  Evolu\on	models,	popula\on,	recombina\on.	
•  Gene\c	algorithms.	encoding,	operators,	selec\on,	crossover,	

muta\on.	
•  Natural	selec\on,	simula\on,	objec\ve	func\on,	roule_e	wheel,	

tournament,	eli\sm.	
•  Representa\onal	schemata,	schemata	theorem,	building	blocks	

hypothesis.	
•  Prisonner‘s	dilemma,	strategies,	equilibria,	evolu\onary	stability.	
•  Evolu\on	strategies,	coopera\on,	meta-parameters.	
•  Differen\al	evolu\on,	CMA-ES.	
•  EA	and	combinatorial	problems,	NP-hard	tasks,	TSP,	...	
•  Machine	learning	and	data	mining,	evolu\on	of	rule-based	systems,	

Michigan	vs.	Pi_sburgh.	
•  Learning	classifier	systems,	bucket	brigade	algorithm,	Q-learning.	
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EVOLUTIONARY	ALGORITHMS	
Biological	mo\va\on,	basic	parts	
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Darwin	evolu\on	theory	
•  1859	–	On	the	origin	of	

species	
•  Limited	environment	

resources	
•  Reproduc\on	is	the	key	

to	life	
•  Be_er	fi_ed	(adapted)	

individuals	have	bigger	
chances	to	reproduce	

•  Successful	phenotype	
traits	are	reproduced,	
modified,	recombined	
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Mendel	gene\cs	
•  1856	-	Versuche	über	

Pflanzenhybriden	
•  Gene	as	a	basic	hereditary	unit	
•  Every	diploid	individual	has	

two	pairs	of	allels,	one	is	
transmi_ed	to	offspring	
independently	of	others.	

•  It‘s	complicated:	
–  Polygeny	–	more	genes	

influence	one	trait	
–  Pleiotropy	–	one	gene	

influences	more	traits	
–  Mitochondrial	DNA	
–  Epigene\cs		
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DNA	
•  1953	–	Watson&Crick	–	double	

helix	structure	of	DNA	
•  Molecular-biological	view:	

–  How	is	the	gene\c	informa\on	
stored	in	a	living	organism	

–  How	is	it	inheri_ed	
•  DNA	consists	of	4	nucleo\des/

bases	–	adenin,	guanin,	cytosin,	
thymin	

•  Codon	–	a	tripplet	of	nucleo\des	
encoding	1	out	of		23	aminoacids	
(redundancy)	

•  These	23	aminoacids	are	the	
basic	building	structure	of	
carbohydrates	in	all	living	
organisms	
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Molecular	gene\cs	
•  Crossover	
•  Muta\on	
•  Transcrip\on:	DNA->RNA	
•  Transla\on:	RNA->protein	
•  GENOTYPE->PHENOTYPE	
•  One-direc\on,	complex	

mapping	
•  Lamarckism:		

–  There	is	an	inverse	mapping	
from	phenotype	to	genotype	

–  Acquired	traits	can	be	
inherited	
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EA	-	summary	

•  Natural	evolu\on:	environment,	individuals,	
fitness	

•  Ar\ficial	evolu\on:	problem,	candidate	
solu\ons,	quality	of	a	solu\on	measure	

•  Eas	are	popula\on-based	stochas\c	search	
algorithms	

•  Recombina\on	and	muta\on	create	variability		
•  Selek\on	leads	the	search	in	the	right	
direc\on	
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General	EA	

•  EAs	are	robust	meta-
algorithms		

•  No	free	lunch	theorem	
–	there	is	no	one	best	
algorithm	

•  It	pays	to	create	
domain-specific	variants	
of	EAs		
–  Representa\on	
–  Operators	
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General	EA	
•  Create	ini\al	popula\on	

P(0)	at	random	
•  In	a	cycle	create	P(t+1)	

from	P(t):	
–  Parental	selec\on	
–  Recombina\on,	and	
muta\on	

–  New	individuals	P‘(t+1)	are	
created	

–  Environmental	selec\on	
chooses	P(t+1)	based	on	
P(t)	a	P‘(t+1)	
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Gene\c	algorithms	

•  1975	-	Holland	
•  Binary	encoded	individuals	
•  Roule_e-wheel	selec\on	
•  1-point	crossover		
•  Bitwise	muta\ons	
•  Inversion		
•  Schamata	theory	to	explain	the	mechanism	
how	GAs	work	
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Evolu\onary	programming	

•  1965	–	Fogel,	Owens	a	Walsh	
•  Evolu\on	of	finite	automata	
•  No	dis\nc\on	between	genotype	and	
phenotype	

•  Focus	on	muta\ons	
•  No	crossover,	usually	
•  Tournament	selec\on	
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Evolu\onaty	strategies	

•  1964	-	Rechenberg,	Schwefel	
•  Op\miza\on	of	real	number	vectors	in	
difficult	computa\onal	math	problems	

•  Floa\ng	point	encoding	of	individuals	
•  Muta\on	is	the	basic	operator	
•  The	muta\on	step	is	heuris\cally	controlled	or	
udergoes	an	adapta\on	(evolving)	

•  Determinis\c	environmental	selec\on	
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Gene\c	programming	

•  1992	–	Koza	
•  Evolu\on	of	individuals	represen\ng	(LISP)	
trees	

•  Used	(not	only)	to	evolve	computer	programs	
•  Specific	operators	of	crossover,	muta\on,	
ini\aliza\on	

•  Further	applica\ons	(neuroevolu\on,	evolving	
hw,	…)	
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SIMPLE	GENETIC	ALGORITHM	
Holland	SGA,	binary	reprezenta\on,	operators	and	their	variants	
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GA	

•  Gene\c	algorithms	–	70s	USA,	Holland,	DeJong,	
Goldberg,	…	

•  The	original	proposal	is	nowadays	called	SGA	
(simple	GA)	
– Minimal	set	of	operators,	the	simplest	individual	
encoding,	research	of	theore\cal	proper\es	

•  Gradually,	the	SGA	has	been	enriched	of	–	or	
transformed	to	–	further	operators,	encodings,	
ways	of	dealing	with	popula\ons,	etc.	
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SGA	-	basics	
•  t=0;	Generate	at	random	

ini\al	population	P(0)	of	n	l-bit	
genes	(individuals)	

•  Step	from	P(t)	to	P(t+1):	
–  	Compute	f(x)	for	each	x	
from	P(t)	

–  Repeat	n/2	times:	
•  Select	a	pair	x,	y	from	P(t)	
•  Cross	over	x,	y	with	
probability	pC	

•  Mutate	every	bit	of	x	and	y	
with	probability	pM	

•  Insert	x,	y	to	P(t+1)	
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Selec\on	

•  RouleGe	wheel	selec)on:	
– Selec\on	mechanism	is	based	on	the	individual		
fitness	value	

– Expected	number	of	individual	selec\ons	
očekávaný	should	be	propor\onal	on	the	ra\o	of	
its	fitness	and	an	average	fitness	of	the	popula\on	

– Roulette	wheel	selec\on:	each	individual	has	an	
allocated	slice	of	a	roule_e	wheel	corresponding	
to	its	fitness,	the	wheel	is	spun	n-times	
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Křížení	

•  V	GA	je	křížení	hlavním	operátorem		
•  Rekombinuje	vlastnos\	rodičů		
•  Doufáme,	že	rekombinace	povede	k	lepší	
fitness	

•  Jednobodové	křížení:	
– náhodně	zvolíme	bod	křížení,		
– vyměníme	odpovídající	čás\	jedinců	
– Pravděpodobnost	pC	typicky	v	rozsahu	dese\n		
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Muta\on	

•  In	simple	GA,	muta\on	operator	is	less	
important,	acts	as	a	mechanism	against	stuck	in	
local	extrema	

•  (On	the	contrary,	in	EP	nebo	early	ES,	muta\on	is	
the	only	source	of	variability)	

•  Bit-string	muta\on:	
– With	probability	pM,	every	bit	of	the	individual	is	
changed	

–  pM	is	small	(eg.	to	change	1	bit	in	individual	on	
average)	
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Inversion	and	other	

•  The	original	Holland’s	SGA	proposal	contains	
another	gene\c	operator	–	inversion	

•  Inversion		
– Reversing	a	part	of	the	bit	string	
– BUT	with	keeping	the	meaning	of	bits	
– More	complicated	technically	
–  Inspira\on	in	nature	
– Did	not	proven	to	be	beneficial	
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SCHEMA	THEORY	
Schema	theorem,	building	blocks	hypothesis,	implicit	paralelism,	k-arm	bandit	
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Schemata	
•  Individual	is	a	word	in	alphabet	{0,	1}	
•  Schema	is	a	word	in	alphabet	{0,	1,*}		
–  (*	=	don't	care)	

•  Schema	represents	a	set	of	individuals	
•  Schema	with	r	*	represents	2r	individuals	
•  Individual	with	length	m	is	represented	by	2m	
schemata	

•  There	is	3m	schemata	of	length	m	
•  In	popula\on	of	n	individuals	there	is	between	2m	
and	n.2m	schemata	represented	
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Proper\es	of	schemata	

•  Order	of	schema	S:	o(S)	
– Number	of	0	and	1	(fixed	posi\ons)	

•  Defininig	length	of	schema	S:	d(S)	
– Distance	between	the	first	and	the	last	fixed	posi\on	

•  Fitness	of	the	schema	S:	F(S)	
– Average	fitness	of	the	individuals	in	a	popula\on	that	
correspond	to	the	schema	S	

– Note	that	fitness	of	S	depends	on	the	context	of	a	
popula\on.	
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The	schema	theorem	
•  Short	(w.r.t.	defining	length),	above-average	
(w.r.t.	fitness),		low-order	schemata	increase	
exponen)ally	in	successive	genera)ons	of	GA.	
(Holland)	

•  Building	blocs	hypothesis:	
– GA	seeks	subop\mal	solu\on	of	the	given	problem	by	
recombina\on	of	short,	low-order	above-average	
schemata	(called	building	blocks).	

–  “just	as	a	child	creates	magnificent	fortress	through	
arrangement	of	simple	blocks	of	wood,	so	does	a	GA	
seek	near	op\mal	performance	...”	
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Proof	of	TST		

•  Popula\on	P(t),	P(t+1),	...	n	individuals	of	length	
m	

•  What	happens	to	a	par\cular	schema	S	during:	
–  Selection	
–  Crossover	
– Muta\on	

•  C(S,t)	...	Number	of	individuals	represen\ng	
schema	S	in	population	P(t)	

•  We	will	es\mate	C(S,t+1)	in	three	steps	
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Proof	of	TST		

•  Selec\on:	
– An	individual	probability	of	selec\on	is:		
ps(v)	=	F(v)	/	F(t),	where	F(t)	=	Σ	F(u),		{u	in	P(t)}	
– Probability	of	selec\on	od	schema	S:		
ps(S)	=	F(S)	/	F(t)	
– Thus:	C(S,t+1)	=	C(S,t)	n	ps(S)	
– Or	equivalently:	C(S,t+1)=C(S,t)	F(S)/Fprum(t)	
Where	Fprum(t)=F(t)/n	…	is	average	fitness	in	P(t)	
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Proof	of	TST		

•  ...	S\ll	selec\on:	
– So,	we	have:	C(S,t+1)=C(S,t)	F(S)/Fprum(t)	
–  If	the	schema	were	“above-average”	of	e%:	
– F(S,t)=Fprum(t)	+	e	Fprum(t),	for	t=0,	...	
– C(S,t+1)=C(S,t)	(1+e)	
– C(S,t+1)=C(S,0)	(1+e)t	
–  I.e.	the	number	of	above-average	schemata	grows	
exponen\ally	(in	consecu\ve	popula\ons	(and	
with	selec\on	only)).		

ROMAN	NERUDA:	EVA1	-	2013/14	 30	



Proof	of	TST		

•  Crossover:	
– Probability	that	a	schema	will	be	destroyed	/	
survive	a	crossover:	

– pd(S)	=	d(S)/(m-1)	 		
– ps(S)	=	1	–	d(S)/(m-1)	
– Crossing	over	with	probability	pc:	
– ps	(S)	>=		1	–	pc	.	d(S)	/	(m-1)	

•  Selec\on	and	crossover	together:	
– C(S,t+1)	>=	C(S,t)	.	F(S)/Fprum(t)	[1-	pc	.	d(S)	/	(m-1)]	
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Proof	of	TST		
•  Muta\on:	
–  1	bit	will	not	survive:	pm			
–  1	bit	will	survive:	1	–	pm	
– A	Schema	will	survive	(pm<<1):	
–  ps(S)	=	(1	–	pm)o(S)		
–  ps(S)	=	…	roughly	…	=	1	–	pm.o(S),	for	small	pm	

•  Selec\on,	crossover	and	muta\on	together:	
•  C(S,t+1)>=C(S,t).F(S)/Fprum(t)	[1-pc.d(S)/(m-1)-
pm.o(S)]	

•  QED.	
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Consequences	of	TST	and	BBH	

•  Encoding	ma_ers	
•  Size	ma_ers	
•  Premature	convergence	harms	
•  When	GA	sucks:	
–  (111*******),	(********11)	are	above-average	
– But	F(111*****11)	<<	F(000*****00)	
–  Ideal	is	(1111111111);	GA	has	hard	\mes	finding	it		
– The	selec\on	condi\on	might	be	improved	
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Implicit	paralelism	

•  GA	works	with	individuals,	but	implicitly	it	
evolves	much	more	schemata:	2m	to	n.2m.	

•  But	how	many	schemata	is	processed	efficiently:	
– Holland	(and	others):	(Under	certain	circumstances,	
such	as	n	=	2m	,	schemata	stay	above-average,	...	)	
Number	of	schemata	that	really	grow	exponen\ally	is	
in	the	order	of	n3.			

•  It	was	jokingly	commented	as	the	only	case	
where	combinatorial	explosion	is	on	our	side.	
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Explora\on	vs.	Exploita\on	

•  Original	Holland	mo\vace:	GA	is	“adap\ve	
plan”	looking	for	equilibrium	between:	
– explora)on	(finding	new	areas	for	search)	
– exploita)on	(u\lizing	current	knowledge)	

•  Just	explora\on:	random	walks,	not	u\lizing	
previous	knowledge	

•  Just	exploita\on:	stucking	in	local	op\ma,	
rigidity	
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1-armed	bandit	
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2-armed	bandit	

•  N	coins,	2-armed	bandit	(arms	payoffs	have	
expected	values	m1,	m2	and	variances	s1,	s2).	N-n	
coins	is	allocated	to	the	be_er	arm,	n	coins	to	the	
worse	one.	

•  Goal:	to	maximize	outcome	/	to	minimalize	loss.	
•  Analy\cal	solu\on:	to	allocate	exponen\ally	
more	trials	to	the	currently	winning	arm		

•  N-n*	=	O(exp(c	n*));		
–  c	depends	on	m1,	m2,	s1,	s2;	and	n*	is	the	op\mal	
value	

	
ROMAN	NERUDA:	EVA1	-	2013/14	 37	



Bandit	and	SGA	

•  GA	also	allocates	exponen\ally	more	trials	(slots	
in	popula\on)	to	the	more	successful	schemata	

•  It	thus	solves	the	explora\on	vs.	exploita\on	
problem	in	the	op\mal	way	

•  Schemata	plays	many	mul\-armed	bandit	games	
–  The	winning	prize	is	number	of	slots	in	popupla\on	
–  It	is	hard	to	es\mate	the	fitness	of	a	scheme	
–  First	people	thought	that	SGA	plays	3m	–armed	bandit,	
– Where	all	schemata	are	compe\ng	arms	…	
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…	but	it’s	complicated	
•  Actually,	much	more	games	is	played	in	parallel	
•  Schemata	“compete”	for	“conflic\ng”	fixed	
posi\ons	in	a	gene	

•  Schemata	of	order	k	always	compete	for	those	k	
fixed	posi\ons	–	they	play	2k	–armed	bandit	

•  So,	the	best	of	those	games	get	the	exponen\al	
slots	in	popula\on		

•  But,	it	depends	if	we	can	es\mate	the	fitness	of	a	
scheme	in	a	par\cular	popula\on	well	(which	can	
be	a	problem)	
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Thus,	a	bad	task	for	SGA	is	...	
•  	 	=	2;	for	x	~	111*...	*	
•  f(x)	=	1;	for	x	~	0*...*	
•  							=	0;	otherwise.	
•  For	schemata	we	now	have:	
–  F(1*...*)	=	1/2	;		
–  F(0*...*)	=	1	

•  But,	the	SGA	es\mates	F(1*...*)	~	2,		
•  Because	schemata	111*...*	will	be	much	more	
common	in	a	popula\on	

•  SGA	here	does	not	sample	schemata	independently,	so	
it	does	not	es\mate	their	real	fitness.	
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Problems	

•  The	arms	in	bandit	are	independent,	but	the	SGA	
does	not	sample	schemata	independently	

•  Selec\on	does	not	work	ideally,	as	in	the	TST,	it	is	
dynamic	and	it	has	sta\s\cal	errors.	

•  SGA	maximizes	its	on-line	performance,	they	
should	be	suitable	for	adap\ve	tasks	(It	is	a	pi_y	
to	stop	a	running	SGA	;-)	

•  (Paradoxically,	maybe)	the	most	common	
applica\on	of	GA	is	to	let	them	“only”	find	the	
one	best	solu\on.	
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Sta\c	BBH	

•  GrafensteGe,	91:	People	consider	that	GA	
converges	to	solu)ons	with	actual	sta)s)c	
average	fitness;	and	not	(as	it	really	happens)	
to	those	that	exist	in	popula)ons,	i.e.	with	the	
best	observed	fitness	

•  Then,	people	can	be	disappointed:		
– Collateral	convergence	
– Large	fitness	variance	
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Collateral	convergence	

•  When	GA	converges	somewhere,	the	schemata	
are	no	longer	sampled	uniformly,	but	with	a	bias	

•  If,	e.g.	a	sheme	111***...*	is	good,	it	will	spread	
in	a	popula\on	a�er	few	genera\ons,	i.e.	almost	
all	individuals	will	have	this	prefix.	

•  But	then,	almost	every	sample	of	a	scheme	
***000...*	are	also	samples	of	a	scheme	
111000*...*.	

•  Thus,	the	GA	will	not	es\mate	F(***000*...*)	
correctly.		
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Large	fitness	variance	

•  GA	will	not	es\mate	fitness	of	a	scheme	well	in	
the	case	if	the	sta\c	average	fitness	has	a	large	
variance.	

•  Such	as	the	scheme	1*...*	from	our	evil	example.	
•  The	variance	of	its	fitness	is	large,	so	the	GA	will	
probably	converge	to	those	parts	of	a	search	
space	where	the	fitness	is	big.	

•  Which	in	turn	will	bias	further	sampling	of	the	
scheme.	So,	the	sta\c	fitness	is	not	es\mated	
well,	again.	

	
ROMAN	NERUDA:	EVA1	-	2013/14	 44	



REPRESENTATION	AND	OPERATORS	
Integer	and	floa\ng	point	representa\ons	operators,	selec\on	
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Encoding	
•  Binary	
–  Classic	(Holland)	
–  There	are	nice	theore\cal	results	(be_er	than	
schemata	theory,	we	will	see	next	semestr)	

– Holland	argumen:	binary	strings	of	length	100	are	
beGer	than	decimal	of	leghth	30	because	they	encode	
roughly	the	same	informa)on	but	have	more	schemta	
(2100>230).		

–  But	we	know	schemata	are	not	that	important	as	
Holland	thought	

–  The	important	factor	is	that	binarz	encoding	is	
some\mes	unnatural	for	a	given	problem.	
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Other	encodings		
•  Alphabets	with	more	symbols	
•  Integers	
•  Floa\ng	point	

•  Yet	another	examples:	
–  Permuta\ons,		
–  Trees	(programs),		
–  Matrices,		
–  Neural	networks	(different	ways),		
–  Finite	automata		
–  Graphs,		
–  A-life	agents	…	
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Selec\on	-	overview	
•  Roule>e-wheel	selecDon		
–  tradi\onal,	fitness-propor\onal	

•  SUS	(stochasDc	universal	sampling)	
–  Just	one	random	posi\on	in	a	roule_e	wheel,	other	
posi\ons	are	shi�s	over	angle	1/n		

–  „more	fair	roule_e“	–	why?	
•  Turnament	
–  k-tournament	– comparing	k	randomly	selected	
individuals,	the	winner	is	chosen	by	selec\on	

–  Typically,	k	is	a	small	number,	like	2,	3,	5		
–  Can	be	used	in	cases	where	fitness	is	not	explicitly	given	(a	
game	is	played,	or	a	simula\on	is	involved)	
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Integer	encoding	
•  Muta\on:	
–  „unbiased“	–	new	random	value	from	the	whole	
domain	

–  „biased“	–	new	value	represents	a	random	shi�	
(normal	distribu\on)	from	the	original	value	

•  Crossover:	
– One-point,	mul\pe-point,	…	
– Uniform	–	in	every	gene	we	throw	a	coin	from	which	
parent	the	value	is	chosen	

–  Beware	of	ordinal	representa\ons	in	cases	where	the	
order	does	not	make	sense	(then,	probably,	the	
biased	muta\on	does	not	make	sense)	
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Floa\ng	point	encoding	

•  Historically,	the	first	a_empts	were	encoding	real	
numbers	into	bit-string	representa\ons	

•  Not	used	o�en	today,	except	for	the	cases	when	
a	limited	precision	makes	good	sense	
(compression	of	a	search	space,	explicit	control	
over	the	accuracy	of	the	representa\on)		

•  Common	prac\ce	today	is	to	encode	real	values	
as	floa\ng	point	representa\on,	and	the	
operators	take	this	into	account	
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Floa\ng	point	operators	

•  Muta\on	
– biased		
– Unbiased	

•  Crossover	
– Structural		

•  One-point,	uniform,	...	

– Arithme\c	
•  Combina\on	of	values			
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Arithme\c	crossover	

•  Simple	average	of	parents‘	values	
•  Variants:	
– Some	other	convex	combina\on:	

•  z	=	a*x	+	(1-a)*y,	where		0<a<1	
– How	many	values	from	an	individual	to	cross:	

•  Typically	all	of	them	
•  Some\mes	just	one	chosen	at	random	
•  Some\mes	a	combina\on	with	1-point	crossover	
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EVOLUTION	OF	COOPERATION	
Prisoners	and	their	dilemma,	Nash,	von	Neumann,	Axelrod,	Dawkins	
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Altruism	vs.	darwinism	?	
•  Darwinism	is	inherently	compe\\v	–	survival	of	the	fi_est	

–  social	darwinism	– backing	the	laissez-faire	(„let	it	be“)	capitalism	
–  Andrew	Carnegie,	The	Gospel	of	Wealth,	1900	While	the	law	of	compe))on	

may	be	some)mes	hard	for	the	individual,	it	is	best	for	the	race,	because	it	
ensures	the	survival	of	the	fiGest	in	every	department.	We	accept	and	
welcome,	therefore,	as	condi)ons	to	which	we	must	accommodate	ourselves,	
great	inequality	of	environment;	the	concentra)on	of	business,	industrial	and	
commercial,	in	the	hands	of	the	few;	and	the	law	of	compe))on	between	
these,	as	being	not	only	beneficial,	but	essen)al	to	the	future	progress	of	the	
race.			

•  But	there	is	a	lot	of	coopera\on	both	in	nature	and	society		
•  The	main	problem	of	evolu\onary	(social)	biology:		
•  How	can	altruisDc	behavior	be	evolved,	when	it	(by	

definiDon)	decreases	a	fitness	of	a	n	individual?	
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Theories	of	evolu\on	of	altruism	
•  Group	selec\on	

–  Evolu\on	can	work	on	groups	of	individuals	(Darwin)	
–  How	to	explain	individuals	who	cheat	and	do	not	help	

•  Kin	selec\on		
–  Preserva\on	of	almost	iden\cal	genes	in	close	rela\ves	
–  How	to	explain	altruism	of	strangers,	even	other	species	

•  Dawkins,	selfish	gene			
–  The	unit	of	evolu\on	is	a	gene,	not	an	individual	
– Wilson:	„the	organism	is	only	DNA's	way	of	making	more	DNA.“	

•  Trivers,	1971:	reciprocal	altruism	
– Mutual	benefits	for	both	organisms	(even	different	species)	
–  Shadow	of	the	future,	paralell	with	iterated	prisoners	dilemma	
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Prisoner’s	dilema	
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i/j	 D	 C	

D	 2	/	2	 0	/	5	

C	 5	/	0	 3	/	3	

i/j	 D	 C	

D	 P	/	P	 S	/	T	

C	 T	/	S	 R	/	R	

• Tempta)on	>	Reward	>	Penalty	
>	Suckers	payoff	
• 	R>P:	mutual	coopera)on	is	
beGer	than	mutual	decep)on	
• 	T>R	a	P>S:	decep)on	is	a	
dominant	strategy	for	both	
players	
• 	(50s-	RAND	corp.)		



Nash	

•  A	strategy	s	is	dominant	for	agent	i,	if	it	gives	be_er	or	
the	same	result	than	any	other	strategy	of	an	agent	i	
against	all	strategies	of	agent	j	

•  Strategies	si	and	sj	are	in	Nash	equilibrium,	if:	
–  If	agent	i	plays	strategy	si,	agent	j	does	best	with	strategy	sj	
–  If	j	plays	sj,	i	does	best	with	si	

•  Or,	si	and	sj	are	the	best	mutual	answers	to	each	other	
•  This	is	Nash	equilibrium	of	pure	strategies	

•  But	not	every	game	has	a	Nash	equilibrium	in	pure	strategies	
•  And	some	games	have	more	Nash	equilibria	
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Nash	and	Pareto	
•  Mixed	strategies	–	random	

selec\on	among	pure	strategies	
–  Nash	theorem:	Every	game	with	

finite	number	of	strategies	have	
Nash	equilibrium	in	mixed	
strategies.	

•  The	solu\on	is	Pareto-op)mal/
efficient	
–  If	there	is	no	other	strategy	which	

would	improve	agent	outcome	
without	worsening	some	other	
agent	outcome	

–  The	solu\on	is	not	Pareto-efficinet:	
if	an	outcome	of	one	agent	cen	be	
improved	without	decreasing	other	
agent‘s	outcome	
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Thus	…	

•  For	ra\onal	agents	there	is	no	dilemma/or	is	
there?	
– DD	is	Nash	equiilibrium	
– DD	is	the	only	solu\on	that	is	not	Pareto-op\mal	
– CC	is	a	solu\on	maximizing	common	outcome	

•  Tragedy	of	the	commons	
•  What	is	ra\onal,	and	are	people	ra\onal?	
•  Shadow	of	future	–	iterated	version	–	Axelrod	
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Iterated	prisoner‘s	dilemma	
•  Players	play	more	games,	

they	remember	the	results/
acitons	of	the	oponent,	and	
can	modify	their	strategies	
according	to	the	history	

•  T>R>P>S,		
•  2R>T+S	–	it	does	not	pay	off	

to	alternate	C	and	D	
•  If	the	game	is	played	N-

\mes	(and	the	players	know	
the	N)	it	can	be	proved	by	
induc\on,	the	best	strategy	
is	„deceive	all	the	\me“.	
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Axelrod	tournaments		
•  The	first	tournament:	

–  14	strategies	plus	RANDOM,	200	games,	everybody	played	with	
everybody	(ncludit	itself),	5x	repeat	

•  TFT	=	Tit	For	Tat	strategy	
–  Start	cooperate,	then	copy	oponent‘s	moves	

•  The	second	tournament:		
–  62	strategiíes–	everybody	knew	the	results	of	previous	tournament	–TFT	

wins	again	

•  The	third	„ecological“	tournament		
–  Resembling	the	genera\ons	of	GA,	ini\al	popula\on	was	the	second	

tournament	strategies,	there	were	1000	genera\ons		
–  The	number	of	individuals	in	the	next	genera\on	was	propor\onal	to	

number	of	victories	in	the	previous	genera\on	
–  Aaaaand,	the	TFT	wins	again!		
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What	does	it	mean	for	strategies?	
•  4	important	proper\es	of	successful	strategies:	
–  Niceness	–	do	not	deceive	first	
–  Provocability	–	quickly	punish	decep\on	
–  Forgiveness	–	but	quickly	calm	down		
–  Clarity	–	be	simple,	so	others	understand	you	

•  There	is	not	a	single	strategy	that	would	win	against	all	
strategies	

•  It	is	necessary	to	be	successful	against	very	diverse	
strategies	(ALL-D,	TFTT,	RANDOM,	TRIGGER)		

•  It	is	also	good	to	learn	play	well	against	itself	
•  A_empts	to	beat	TFT	by	more	decep\on	did	not	help	
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What	does	it	mean	for	coopera\on?	

•  In	environments	that	support	coopera\on	…	
–  Payoffs	favor	coopera\on,		
–  There	is	a	big	probability	of	iterated	PD	(shadow	of	the	future)	

•  …	the	coopera\on	is	usually	evolved	
–  But	not	always,	such	as	in	the	ALL-D	world	

•  Ra\onality,	intelligence,	consciousnes,	…	is	
not	necessary	for	coopera\on,	just	bigger	
fitness	values	

•  Ini\al	coopera\on	can	emerge	at	random,	and	
then	it	can	survive	
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Twenty	years	a�er	
•  In	environments	with	noise,	the	Pavlov	strategy	
(win-stay,	lose-shi�)	is	successfu	

•  If	the	payoff	R	or	P	=>	C,		
•  if	T	or	S	=>	D	

•  A�er	20	years	the	tournament	was	repeated	with	
more	strategies	from	each	team	

•  The	winning	strategies	were	coopera\ng	as	a	team	
•  Few	moves	(10)	tahů	to	recognize	the	oponent,	then	all	
strategies	helped	one	father	strategy	from	the	team	to	get	
be_er	score		

•  The	teams	were	even	figh\ng	the	organizers	(false	teams	to	
get	more	slots	in	the	tournament	…)		
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EVOLUTIONARY	STRATEGIES	
Mo\va\on,	popula\on	cycle,	floa\ng	point	muta\ons,	meta-evolu\on	
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Evolu\onaty	strategies	
•  Rechenberg,	Schwefel,	60s	
•  Op\miza\on	of	real	func\on	of	many	parameters	
•  'evolu\on	of	evolu\on'	
•  Evolved	individual:		
– Gene)c	parameters	-	affec\ng	the	behavior	
–  Strategic	parameters	-	affec\ng	evolu\on	

•  New	individual	is	accepted	only	if	it	is	be_er	
•  More	individuals	as	parents	
•  Todays	most	successful	(and	complex)	is	CMA-ES	
(correla\on	matrix	adapta\on-ES)		
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ES	nota\on	
•  Important	parameters:	
– M	number	individuals	in	popula\on	
–  L	number	of	new	individuals		
–  R	počet	'rodičů'	

•  Special	selec\on	related	nota\on:	
–  (M+L)	ES	–	M	individuals	to	a	new	genera\on	is	selected	
from	M+L	old	and	new	individuals	

–  (M,L)	ES	–	M	individuals	to	a	new	genera\on	is	selected	
only	from	L	new	individuals	
•  Usually,	the	(M,L)	strategies	are	more	robust	– less	prone	to	stuck	
in	local	op\ma	

•  The	individual:	C(i)=[Gn(i),Sk(i)],	k=1,	or	n,	or	2n	
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ES	popula\on	cycle	

•  n=0;	Ini\alize	at	random	a	popula\on	Pn	of	M	
individuals	

•  Evaluate	the	fitness	values	of	individuals	in	Pn		
•  Un\l	the	solu\on	is	not	good	enough:	
–  Repeat	L	\mes:	

•  choose	R	parents,		
•  Cross	them	over,	mutate,	evaluate	the	new	individual	

–  Choose	M	new	individuals	(depending	on	the	ES	type)	
–  ++n	
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ES	individual	and	muta\on	
•  C(i)=[Gn(i),Sk(i)]	
•  Sk	are	standard	devia\ons	of	biased	floa\ng	point	muta\ons	
•  k=1:		

–  One	common	std	dev	for	all	evolved	parameters	G’s	
•  k=n:	

–  Non-correlated	muta\ons,	n	individual	normal	distribu\ons	
–  Each	parameter	has	its	own	std	dev	
–  Geometricly,	the	muta\ons	are	within	an	ellipse	parallel	to	axes	

•  k=2n:	
–  Rota\ons	are	also	included,	the	ellipse	is	not	parallel	to	axes	
–  correlated	muta\ons,	they	correspond	to	muta\ons	from	n-

dimensional	normal	distribu\on	
–  n	parameters	for	rota\ons,	n	for	std	devs	2n	
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ES	muta\ons	
•  Gene\c	parameters:	

–  Adding	random	number	from	normal	distrbu\on	with	
corresponding	devia\on,	and	rota\on,	respec\velly	

•  Standard	devia\ons:		
–  Increase	or	decrease	according	to	the	success	of	the	muta\on	
–  Originally,	the	so-called	1/5	rule	(heuris\c,	„the	best	case	is	
when	the	muta\on	has	20%	success	rate“,	thus,	the	std	dev	is	
increased	for	lower	success	rates,	and	decreased	when	the	
success	rate	is	higher	

–  More	common	now	is	to	add	a	random	number	drawn	from	
N(0,1)	

•  Rota\on:	
–  Add	a	random	number	drawn	from	N(0,1)	
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ES	crossover	

•  Uniform	
•  „Gang	bang“	of	more	parents	
– Local	(R=2)	
– Global	(R=M)	

•  Two	versions:	
– Discrete	
– Arithme\c	(average)	
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DIFFERENTIAL	EVOLUTION	
Alterna\ve,	geometrically	mo\vated	EVA	
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DE	–	scheme	and	ini\aliza\on	

•  InicializaDon:	random	parameter	values	
•  MutaDon:	„shi�“	according	to	the	others	
•  Crossover:	uniform	„with	a	safeguard“	
•  SelecDon:	comparison	and	possible	
replacement	by	a	be_er	offspring	
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DE – schéma a inicializace

• Inicializace: náhodné hodnoty parametrů
• Mutace: „posun“ podle ostatních
• Křížení: uniformní „s pojistkou“
• Selekece: porovnání a případné nahrazení 

lepším potomkem
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Muta\on	

•  Every	individual	in	a	popula\on	undergoes	
muta\on,	crossover,	and	selec\on	

•  For	an	individual	xi,p	we	choose	three	different	
individuals	xa,p,	xb,p,	xc,p		at	random	

•  Define	a	donor	v:	vi,p+1	=	xa,p	+	F.(xb,p-xc,p)	
•  F	is	a	muta\on	parameter,	a	value	from	
interval	<0;2>	
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Crossover	

•  Uniform	crowwover	of	original	individual	with	a	
donor	

•  Parameter	C	controls	the	probability	of	a	change	
•  At	least	one	element	must	come	from	a	donor	
•  Probe	vector	ui,p+1	:	
•  uj,i,p+1	=	vj,i,p+1	;	iff	randji	<=	C	or	j=Irand		
•  uj,i,p+1	=	xj,i,p+1	;	iff	randji	>	C	and	jǂIrand		
•  randji	is	pseudorandom	number	from	<0;1>	
•  Irand	pseudorandom	integer	from	<1;2;	...	;	D>	
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Selec\on	

•  Compare	fitness	of	x	and	v,	select	the	be_er:	
– xi,p+1	=	ui,p+1	;	iff	f(ui,p+1)	<=	f(xi,p)	
– xi,p+1	=	xi,p	;	otherwise		
–  for	i=1,2,	...	,	N	

•  Muta\on,	crossover,	and	selec\on	is	repeated	
un\l	some	termina\on	criterion	is	sa\sfied	
(typically,	the	fitness	of	the	best	individual	is	
good	enough)	

ROMAN	NERUDA:	EVA1	-	2014/15	



PARTICLE	SWARM	OPTIMIZATION	
Individual	is	a	par\cle	floa\ng	in	a	swarm	in	the	fitness	landscape	
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PSO	
•  Popula\on-based	search	heuris\c	
•  Eberhart,	Kennedy,	1995	
•  Inspira\on	of	swarms	of	insect/fish	
•  Individual	is	typically	a	floa\ng	point	vector	
•  It	is	called	a	par/cle		
•  No	crossover			
•  No	muta\on	as	we	know	it	
•  Individuals	are	moving	in	a	swarm	through	their	parameter	

space	
•  The	algorithm	is	using	local	and	global	memory:	

–  pBest	– each	par\cle	remembers	a	posi\on	with	the	best	fitness	
–  gBest	– best	pBest	among	all	par\cles	
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PSO	algorithm	
•  Ini\alize	each	par\cle	
•  Do	
•  				Foreach	par\cle	
•  								Compute	fitness	of	par\cle	
•  								If	the	fitness	is	be_er	than	the	best	fitness	seen	so	far	(pBest)	
•  												pBest	:=	fitness;	
•  				End	

•  	Set	gBest	to	the	best	pBest	
•  				Foreach	par\cle	
•  								compute	the	speed	of	par\cle	by	equa\on	(a)	
•  								update	posi\on	of	par\cle	by	equa\on	(b)	
•  				End	
•  While	maximum	itera\ons	or	minimum	error	not	sa\sfied	
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PSO	movement	equa\ons	

•  v	:	=	v	+		
						+	c1	*	rand()	*	(pbest	-	present)	+		
						+	c2	*	rand()	*	(gbest	-	present)																											(a)	

•  present	=	persent	+	v																																									(b)	
•  v	is	par\cle	speed,	present	is	par\cle	posi\on		
•  pbest	best	posi\on	of	a	par\cle	in	history	
•  gbest	best	global	posi\on	in	history	
•  rand()	random	number	from	(0,1).		
•  c1,	c2	constants	(learning	rates)	o�en	c1	=	c2	=	2.		
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PSO	discussion	

•  Common	with	GA:	
– Start	with	random	configura\on,	have	a	fitness,	
use	stochas\c	update	methods	

•  Different	from	GA:	
– No	gene\c	operators	
– Par\cles	have	memories	
– The	exchange	of	informa\on	goes	only	from	the	
be_er	par\cles	to	the	rest	
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EVOLUTIONARY	MACHINE	LEARNING	
Michigan	vs.	Pi_sburg,	machine	learning,	reinforcment	learning			
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Machine	learning	–	a	subset	
•  Learn	rules	based	on	the	training	examples	
– Data	mining	
– Expert	systems	
– Agent,	robots	learning	(reinforcement	learning)	

•  Basic	evolu\onary	approaches:	
– Michigan	(Holland):	individual	is	one	rule	

•  Holland	LCS:	learning	classifier	systems	

– Pi>sburgh:	individual	is	a	set	of	rules	
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Michigan	
•  Holland	in	80s:	learning	classifier	systems	
•  The	individual	is	a	rule	
•  The	whole	popula\on	works	as	an	expert	or	
control	system	

•  The	rules	are	simple:	
–  Le�-hand	side:	feature	is	true/not/don‘t	care	(0/1/*)	
–  Right-hand	side:	ac\on	code	or	classifica\on	category	

•  Rules	have	weights	(reflec\ng	their	success)		
•  The	weight	makes	their	fitness	
•  The	evolu\on	does	not	have	to	be	genera\onal	
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Michigan	-	LCS	
•  Evolu\on	happens	only	from	\me	to	\me	and/or	
on	part	of	popula\on	

•  The	problem	of	reac\vness	(lack	of	inner	
memory)	
–  The	right-hand	side	of	the	rule	contains	–	besides	the	
ac\on/classifica\on	code	–	other	inner	features,	
called	„messages“		

–  The	le�-hand	side	of	the	rule	has	special	features	to	
intercept	the	messages,	called	„receptors“		

–  The	system	has	a	buffer	of	messages	and	it	has	to	
realize	an	algorithm	to	distribute	a	reward	among	
chains	of	rules	
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LCS	–	bucket	brigade	
•  Only	some	rules	lead	to	ac\ons	

that	trigger	reward	from	the	
environment,		

•  The	reward	should	be	distributed	
to	the	chain	of	successful	rules	
leading	to	the	reward	

•  Rules	have	to	give	up	part	of	their	
strenght	(like	paying	money	to	
take	part	in	the	ac\on)	if	they	
compete	for	a	chance	to	be	
applied	

•  The	technical	way	it	is	done	is	
called	Bucket	brigade	algoritm	

•  In	prac\ce	it	is	difficult	to	
ballance	the	economy	of	rules,	
hardly	used	today	
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LCS – bucket brigade
• Jen některá pravidla vedou 

k akci, za kterou následuje  
odměna/trest od prostředí, 

• Rozdělění odměny – pro 
celý řetěz úspěšných 
pravidel

• Pravidla musejí dát část své 
síly (jakoby peněz), když 
chtějí soupeřit o možnost 
být v cestě k řešení

• Bucket brigade algoritm, v 
praxi komplikované a 
těžkopádné, ekonomika 
odměn se těžko vyvažuje
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Z(ero)CS	

•  (Wilson,	1994)	simplify	LCS	
– No	internal	messages	
– No	complicated	mechanism	of	reward	redistribu\on	

•  Rules	are	just	bitmap	(and	*)	representa\ons:	
–  IF(inputs)	THEN	(outputs)	

•  Cover	operator:	
–  If	there	is	no	rule	for	current	situa\on/example,	it	is	
generated	ad	hoc	

–  Randomly	some	*	are	added	and	a	random	output	is	
selected	
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ZCS	contd.	

•  How	the	reward	is	disr\buted	/	the	strength	of	rules	is	
modified:	
–  Rules	not	applicable	to	given	situa\on:	nothing	
–  Rules	applicable	to	input	but	with	different	output:	
decrese	the	strenght	by	mul\plying	by	constant	0<T<1	

–  All	rules’	strenghts	are	decreased	by	a	small	constant	B	
–  This	amount	id	distributed	uniformly	among	the	rules	that	
answered	correctly	in	the	previous	step	(decreased	by	a	
factor	0<G<1)	

–  Finally,	the	answer	of	the	system	is	decreased	by	B	and	
uniformely	distributed	among	rules	that	answerd	correctly	
in	this	step	
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XCS	–	improved	ZCS	

•  Cons	of	ZCS:	
–  ZCS	does	not	tend	to	evolve	a	complete	rule	system	
covering	all	cases	

–  Rules	at	the	beginning	of	the	chains	are	seldom	
rewarded	and	they	are	not	surviving	

–  Rules	leading	to	ac\ons	with	small	rewards	can	die	off	
too,	although	they	are	important	

•  XCS:	
–  Separate	fitness	from	expected	outcome/reward	of	
the	rule	

–  Base	fitness	on	the	specificity	of	the	rule	
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Pi_	

•  Individuals	are	sets	of	rules,	complete	systems	
•  The	evalua\on	is	more	compicated	
– Rule	priori\es,	conflicts	
– False	posi\ves,	false	nega\ves	

•  Gene\c	operators	are	more	complicated	
– Typically,	dozen	or	more	operators	working	os	
sets	of	rules,	individual	rules,	terms	in	the	rules,	...	

•  Emphasis	on	rich	domain	representa\on	(sets,	
enumera\ons,	intervals,	...)	
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GIL,	example	of	Pi_	aproach	
•  Binary	classifica\on	tasks	
•  The	individual	classifies	implicitly	to	one	class	(no	
right-hand	side	of	the	rules)		

•  Each	individual	is	a	disjunc\on	of	complexes	
•  Complex	is	conjunc\on	of	selectors	(from	1	
variable)	

•  Selector	is	a	disjunc\on	of	values	from	the	
variable	domain	

•  Representa\on	by	a	bitmap:	
•  ((X=A1)AND(Z=C3))	OR((X=A2)AND(Y=B2))	
•  [001|11|0011	OR	010|10|1111]	
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GIL	contd.	
•  Operators	on	the	individual	level:		
–  Swap	of	rules,	copy	of	rules,	generaliza\on	of	rule,	
dele\on	of	rule,	specializa\on	of	rule,	inclusion	of	one	
posi\ve	example	to	the	rule	

•  Operators	on	the	complex	level:		
–  Split	of	complex	on	1	selector,	generaliza\on	of	
selector	(replacing	by	11...1),	specializa\on	of	
generalized	selector,	inclusion	of	one	nega\ve	
example	

•  Operators	on	selectors:	
– Muta\on	0<->1,	extension	0->1,	reduc\on	1->0,		
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MULTI-OBJECTIVE	OPTIMIZATION	
Mul\-Objec\ve	Evolu\onary	Algorithms	(MOEA),	Paretova	fronta,	NSGA	II	
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Problem	
•  Instead	of	one	fitness	(objec\ve	func\on),	there	is	a	vector	

of	them	fi,	i=1...n	
•  For	the	sake	of	simplicity,	we	consider	minimiza\on	case,	

so	we	try	to	achieve	minimal	values	of	all	fi,	which	is	
difficult	

•  Defini\ons	of	dominance	(of	individual,	or	a	solu\on):	
–  Individual	x	weakly	dominates	individual	y,	iff	fi(x)<=fi(y),	pro	
i=1..n	

–  x	dominates	y,	iff	it	weakly	dominates	him,	and	there	exists	j:	
n(x)	<	n(y)	

–  x	and	y	are	uncomparable,	when	neither	x	dominates	y,	nor	y	
dominates	x	

–  x	does	not	dominate	y,	if	either	weakly	dominates	x,	or	they	are	
uncomparable	
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Pareto	front	

•  Pareto	front	is	a	set	of	individuals	not	
dominated	by	any	other	idividual	
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The	simple	way	

•  How	to	solve	MOEA	in	a	simple	(simplis\c?)	way:	
•  Aggregate	the	fitness:	
–  i.e.	weighted	sum	of	all	fi,	resul\ng	in	one	value	of	f		
– And	solve	it	as	a	standard	one-objec\ve	op\miza\on	
–  This	one	is	some\mes,	in	the	context	of	MOEA,	called	
SOEA	(single	objec\ve	EA),	but	is	is	nothing	new	to	us,	
actually	we	were	doing	only	SOEA	so	far	

•  Nevertheless,	we	do	not	know	how	to	set	
weights	for	individual	fi‘s.	
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VEGA	(Vector	Evaluated	GA)	
•  One	of	the	first	MOEAs,	1985	
•  Idea:		
–  Popula\on	of	N	individuals	is	sorted	according	to	each	
of	the	n	objec\ve	func\ons	

–  For	each	i	we	select	N/n	best	individuals	w.r.t.	fi	
–  These	are	crossed	over,	mutated	and	selected	to	next	
genera\on	

•  This	approach	in	fact,	has	lots	of	disadvantages:		
–  It	is	difficult	to	preserve	a	diversity	of	the	popula\on	
–  It	tends	to	converge	to	op\mal	solu\ons	for	individual	
objec\ves	fi		
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NSGA	(non-dominated	sor\ng	GA)	
•  1994,	an	idea	of	dominance	is	used	for	fitness	
•  This	s\ll	does	not	guarantee	sufficient	spred	of	
popula\on,	it	must	be	dealt	with	some	other	way		
(niching)		

•  Algorhitm:	
–  Popula\on	P	is	divided	into	consequently	contructed	
fronts	F1,	F2,	...	
•  F1	is	a	set	of	all	non-dominated	individuals	from	P	
•  F2	is	a	set	of	all	non-dominated	individuals	from	P-F1	
•  F3	…	from	P-(F1	disjuncted	with	F2)		
•  ...	
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NSGA	contd.	
•  For	each	individual	we	compute	a	niching	faktor,	as	a	sum	

of	sh(i,j)	over	all	individuals	j	from	the	same	front,	where:	
–  sh(i,j)	=	1-[d(i,j)/dshare]^2,	for	d(i,j)<dshare	
–  sh(i,j)	=	0	otherwise	

•  d(i,j)	is	distance	i	from	j	
•  dshare	is	a	parameter	of	the	algorithm	

•  Individuals	from	the	first	front	receive	some„dummy“	
fitness,	that	is	divided	by	a	niching	factor	

•  Individuals	from	the	second	front	recieve	a	dummy	fitness	
smaller	that	the	fitness	of	the	worst	individual	from	the	
first	front,	and	it	is	again	divided	by	their	niching	factor	

•  ...	For	all	fronts	

ROMAN	NERUDA:	EVA1	-	2014/15	



NSGA	II	

•  2000,	repairing	some	drawbacks	of	NSGA:	
–  Necessity	to	set	the	right	dshare	value	
–  Non-existence	of	eli\sm	

•  Niching	
–  Dshare	a	niche	count	is	replaced	by	a	crowding	distance:	
–  This	is	a	sum	of	distances	to	the	nearest	neighbours	
–  The	best	individuals	w.r.t.	each	fi‘s	have	crowding	distance	
set	to	infinity	

•  EliDsmus	
–  Old	and	new	popula\ons	are	joined,	sorted,	the	be_er	
part	goes	to	next	genera\on	
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NSGA	II	contd.	

•  Fitness:		
–  Each	individual	has	a	number	of	non-dominated	front	
it	is	in,	and	a	crowding	distance	

– When	comparing	two	individuals,	first	a	front	is	
considered	(smaller	is	be_er),	and	in	case	of	the	same	
front,	their	crowding	distance	is	considered	(bigger	is	
be_er)	

– And	in	fact,	no	fitness	is	really	computed,	just	these	
two	numbers	are	compared	in	a	tournament	selec\on	

•  And	now	we	have	an	improvement	–	NSGA	III	
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COMBINATORIAL	OPTIMIZATION	
EVA	solves	NP-hard	problems,	TSP,	permutaion	representa\ons	
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EVA	solves	hard	tasks	

•  0-1	knapsack	problem	
–  Simple	encoding	
–  Problema\c	fitness	
–  Standard	operators	

•  Travelling	Salesman	problem	(TSP)	
–  Simple	fitness	
–  Problema\c	encoding	and	opertators	(crowwover,	
really)	

•  Scheduling,	planning,	transporta\on	problems	...		
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Knapsack	

•  Given:	
– A	knapsack	of	capacity	CMAX		
– N	items,		
– each	have	a	price	v(i)	
– and	a	volume	c(i)	

•  The	task	is	to	choose	items	such	that:	
– Maximize	a	sum	v(i)	
– At	the	same	\me	we	squeeze	them	into	a	
knapsack,	i.e.	Sum	of	c(i)	<=	CMAX	
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Knapsack	

•  Encoding	–	a	bitmap:	
– 0110010	–	take	items	2,3	and	6	
– Trivial	almost	
– But	the	individuals	might	not	sa\sfy	the	CMAX	
condi\on	

•  Operators:		
– Simple	crossover,	muta\on,	selec\on	

•  Fitness:	has	two	parts:	
– max	[sum	of	v(i)]		vs.	min	[CMAX	–	sum	of	c(i)]	
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Knapsack	

•  So,	we	have	a	mul\-objec\ve	op\miza\on:	
– Either	weight	em	and	add	em		
– Or	use	your	favourite	MOEA	from	previous	
chapter	

– Or,	change	the	encoding	in	a	clever	way:	
•  1	means:	PUT	the	item	in	the	knapsack	UNLESS	the	
capacity	is	not	exceeded	
•  This	way	we	achieve	a	nice	property	that	with	such	a	
decoder	all	strings	in	fact	represent	a	valid	solu\on	
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Travelling	salesman	

•  N	ci\es,	tour	them	with	minimal	cost	
•  Fitness	is	clear	cost	of	the	trip	
•  Reprezenta\ons	are	many	
– Variants	of	vertex-based	
– Edge-based,	...	

•  Operators	are	heavily	dependent	on	
representa\on	
– Crossover	allows	to	use	heuris\cs	we	might	have	
to	solve	the	TSP	
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Adjacency	representa\on	
•  Path	is	a	list	of	ci\es,	city	j	is	at	posi\on	I	iff	there	is	an	
edge	from	i	to	j	

•  Ex:	
–  (248397156)	corresponds	to	1-2-4-3-8-5-9-6-7	

•  Each	path	has	1	representa\on,	some	lists	do	not	
generate	valid	paths	

•  Not	very	intui\ve	
•  Classical	crowwover	does	not	work	
•  But	schemata	do:		
–  E.g.	(*3*...)	means	all	paths	with	2-3	edge	

•  Do	not	use	it.	
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Ordinal	(or	buffer)	representa\on	

•  Mo\vova\on	was	to	use	the	standard	1-point	
crossover	
–  Let	us	have	a	buffer	of	ver\ces,	maybe	just	ordered,	
the	encoding	is	in	fact	a	posi\on	of	a	city	in	this	buffer	

– When	a	city	is	used,	it	is	deleted	from	a	buffer	

•  Ex:	
–  Buffer	(123456789),	and	path	1-2-4-3-8-5-9-6-7	is		
repesented	as	(112141311)	

•  Do	not	use	it	either.	
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Path	(or	permuta\on)	representa\on	

•  Probably	a	first	idea	of	most	people		
•  Permuta\on	representa\on	is	important	as	
natural	for	many	other	tasks,	as	well.	
–  path	5-1-7-8-9-4-6-2-3	is	represented	as	(517894623)		

•  The	crossover	does	not	work	
•  So,	the	main	problem	with	this	representa\on	is	
to	propose	a	crossover	operator	that	produces	
correct	individuals,	and	represents	some	idea	
about	how	a	good	solu\on	should	look	like.	
–  PMX,	CX,	OX,	...	
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PMX	
•  Par\ally	mapped	crossover	(Goldberg)	
•  Preserve	as	many	ci\es	on	their	posi\ons	from	
the	individuals	as	you	can.	

•  2-point	
•  (123|4567|89)	PMX	(452|1876|93)	:	
–  (...|1876|..)		(...|4567|..)		
–  and	a	mapping	1-4	8-5	7-6	6-7		
–  Can	be	addedd	(.23|1876|.9)		(..2|4567|93)	
– According	to	the	mapping		

•  (423|1876|59)		(182|4567|93)	
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OX	

•  Order	crossover	(Davis)	
•  Preserve	rela\ve	order	of	ci\es	in	the	individuals	
•  (123|4567|89)	OX	(452|1876|93)	:		
–  (...|1876|..)		(...|4567|..)	rearrange	the	path	from	the	
second	crossover	point	

–  9-3-4-5-2-1-8-7-6	
– Delete	crossed	over	ci\es	from		1,	remains:	9-3-2-1-8	
–  Fill	the	first	child:	(218|4567|93)	
–  Similarly,	the	second	child:	(345|1876|92)	
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CX	

•  Cyclic	crossover	(Oliver)	
•  Preserve	the	absolute	posi\on	in	the	path	
•  (123456789)	CX	(412876935)	
–  First	posi\on	at	random,	maybe	from	th	first	parent:	
P1=(1........),		

– Now	we	have	to	take	4,	P1=(1..4....),	then	8,	3	a	2	
–  P1=(1234...8.),	can’t	con\nue,	we	fill	from	the	second	
parent	

–  P1=(123476985)	
–  Similarly	P2=(412856739)	
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ER	

•  Edge	recombina\on	(Whitley	et	al)	
•  Observa\on:	all	previous	crossovers	preserve	
only	about	60%	of	edges	from	both	parents		

•  The	ER	tries	to	preserve	as	many	edges	as	
possible.	
–  For	each	city	make	a	list	of	edges	
–  Start	somewhere	(the	first	city),		
–  Choose	ci\es	with	less	edges,		
–  In	case	of	the	same	number	of	edges,	choose	
randomly	
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(123456789)	ER	(412876935)	

•  1:			9	2	4	
•  2:			1	3	8	
•  3:			2	4	9	5	
•  4:			3	5	1	
•  5:			4	6	3	
•  6:			5	7	9	
•  7:			6	8	
•  8:			7	9	2	
•  9:			8	1	6	3	

•  Start	in	1,	successors	are	9,	2,	4	
•  9	looses,	has	4	succ.,	from	2		and	4	

choosing	at	random	4	
•  succ.	of	4	are	3	and	5,	take	5,		
•  Now	we	have	(145......),		and	con\nue	
•  ...	(145678239)	
•  It	is	possible	that	we	cannot	choose	an	

edge	and	the	algorithm	fails,	but	it	is	
very	rare	(1-1.5%	případů)	
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(123456789)	ER2	(412876935)	

•  1:			9	#2	4	
•  2:			#1	3	8	
•  3:			2	4	9	5	
•  4:			3	#5	1	
•  5:			#4	6	3	
•  6:			5	#7	9	
•  7:			#6	#8	
•  8:			#7	9	2	
•  9:			8	1	6	3	

•  ER2	–	improving	ER	
•  Preserving	more	common	edges	
•  Mark	edges	that	exist	twice	by	-	#		
•  They	are	priori\zed	when	choosing	

where	to	go.	
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Ini\aliza\on	for	TSP	

•  Nearest	neighbours:	
–  Start	with	a	ranodm	city,		
–  Choose	next	as	the	closest	from	the	not	chosen	yet	

•  Edge	inser\on:	
–  To	a	path	T	(start	with	an	edge)	choose	the	nearest	
city	c	not	in	T	

–  Find	an	edge	k-j	in	T	so	it	minimizes	the	difference	
between	k-c-j	and	k-j	

– Delete	k-j,	insert	k-c	and	c-j	to	T	
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Muta\on	for	TSP	

•  Inversion	(!)	
•  Insert	a	city	into	a	path	
•  Shi�	subpath	
•  Swap	2	ci\es	
•  Swap	subpaths	
•  Heuris\cs	such	as	2-opt	etc.	

•  Take	two	edges,	four	ci\es,	choose	other	two	edges	
connec\ng	these	4	ci\es	

ROMAN	NERUDA:	EVA1	-	2014/15	



Other	approaches	

•  (Binary)	matrix	representa\on:	
•  Either	1	on	posi\on	(i,j)	means	an	edge	from	i	to	j	
•  Or	it	means	that	i	is	before	j	in	a	path	(more	common)	

–  Specific	operators	of	matrix	crossover:			
•  Conjunc\on	–	bitwise	AND	and	random	inser\on	of	edges		
•  Disjunc\on	–	dissect	into	quadrants,	2	of	them	delete,	
remove	contradic\ons,	insert	edges	at	random	

•  Combina\on	with	local	heuris\cs	
–  Evolu\onary	strategy	which	improves	paths	by	“smart	
muta\ons”	–	heuris\cs	like	2-opt,	3-opt	
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Other	tasks	-	scheduling	

•  Scheduling	is	NP-hard:	
–  Individual	is	a	sechedule,	direct	matrix	encoding	

•  Rows	are	teachers,	columns	classes,	values	are	codes	of	subjects	
•  Muta\on	–	mix	the	subjects	
•  Crossover	–	swap	be_er	rows	from	individuals	

–  Fitness		
•  Fitness	of	a	row	(how	a	teacher	is	sa\sfied)	
•  Other	so�	criteria	and	constrains	about	the	schedule	quality	

–  Hard	constrains	
•  Must	respect	in	operators,	otherwise	too	many	inadmissable	
solu\ons	are	generated	

•  Teachers	constrains,	when,	where	what	to	teach,	…	

ROMAN	NERUDA:	EVA1	-	2014/15	



Other	tasks	–	job	shop	scheduling	
•  Produc\on	planning	

•  products	o1…oN,	from	parts	p1…pK,	for	each	part	more	plans	how	
to	produce	it	on	machines	m1…mM,	machines	have	different	
\mes	for	setup	to	a	different	product	

•  Fitness	–	produc\on	\me	
•  Encoding	is	cri\cal:	
–  Permuta\on–	plan	is	just	a	permuta\n	of	products	order.	
Decoder	must	choose	plans	for	parts.	Simple	
representa\on,	can	use	TSP-inspired	crossovers.	But	
shows	not	very	efficient,	decoder	solves	the	complicated	
part,	TSP	operators	not	suitable.	

–  Direct	representa\on	of	individual	as	the	complete	plan	–	
specialized	and	complex	evolu\onary	operators.	
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NEUROEVOLUTION	
Just	an	introduc\on,	the	cool	approaches	are	in	the	EVA	II	
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Learn	neural	networks	by	EVA	

•  First	experiments	in	80s	
•  Learn	the	parameters	(weights)	
•  Learn	the	structure	(architecture,	connec\ons)	
•  Learn	weights	and	structure	together	
•  Reinforcement	learning	tasks	–	when	there	is	no	
supervised	algorithm(robo\cs)	

•  Hybrid	methods	–	combina\on	of	EVA	with	local	
search	etc	
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Learn	the	weights	
•  Direct:	
–  Encode	the	weights	to	a	(floa\ng	point)	vector,	
–  floa\ng	point	GA,	standard	operators	
–  Evolu\onary	strategies,	…	

•  Usually	slower	than	specialized	gradient	based	
local	algorithms,	but	can	be	robust	

•  Use	mini	batches	
•  Can	be	parallelized	easily	
•  Can	be	used	for	reinforcement	learning	where	
there	s	no	gradient	(robo\cs)	
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Learn	the	structure	

•  Fitness	=	build	the	network,	ini\alize	at	random,	train,	
several	\mes	

•  Direct	encoding	
–  Represent	the	structure	as	binary	matrix	
–  Linearize	the	relevant	part	of	the	matrix	into	a	binary	
vector	

•  Grama\cal	encoding,	Kitano	
–  Individual	is	a	representa\on	of	2D	formal	grammar	that	
are	a	program	to	create	the	binary	matrix	represen\ng	the	
strucrure	of	the	neural	net	

–  Bold	but	to	heavy-weight	solu\on,	not	used	in	prac\ce	
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