
Roman Neruda, Martin Pilát
MFF UK Praha, 2018

MULTIAGENT SYSTEMS
NAIL106

• M. Wooldridge: An Introduction to Multiagent
Systems, (2nd ed), 2009.

• S. Russell, P. Norvig: Artificial Intelligence: A Modern
Approach, (3rd ed), 2009.

• G. Weiss (ed): Multiagent Systems (2nd ed), 2013.
• Y. Shoham, K. Leyton-Brown: Multiagent systems:

Algorithmic, Game-Theoretic, and Logical
Foundations, 2009. [online]

• David Ensley, Jon Kleinberg: Networks, Crowds, and
Markets: Reasoning about a highly connected word
[online]

Bibliography:

• Agents, environments, abstract architectures.
• Reactive a planning agents, hybrid architectures.
• Logic and reasoning based agents, BDI.
• Communication, speech acts, ACL.
• Ontologies, OWL, KIF.
• Distributed problem solving, cooperation.
• Multiagent interactions, Nash equilibria, Pareto

efficiency.
• Resource alloacation, auctions, negotiation.
• MAS design methodologies, Gaia, roles.
• MAS languages and environments, JADE.

Topics

• What exactly is an agent in different contexts
• Agent learning and MAS learning
• Modal, temporal logics and similar interesting math-

logical issues
• Robotics
• Planning
• Artificial life simmulations
• ABM - Agent Based Model and applications in

sociology, economy, …

What is not (much) covered

• BattleCode
• The Battlecode programming competition is a unique

challenge that combines battle strategy, software
engineering and artificial intelligence.

• JADE
• JADE (Java Agent DEvelopment Framework) is a software

Framework fully implemented in Java language. It simplifies
the implementation of multi-agent systems through a
middle-ware that complies with the FIPA specifications and
through a set of graphical tools that supports the debugging
and deployment phases.

• AgentSpeak & Jason
• AgentSpeak is an agent-oriented programming language. It is

based on logic programming and the BDI architecture for
(cognitive) autonomous agents.

The seminars

Visions, specifics, libels of related fields, basic notions

1. Introduction

• Ubiquity
– From computer halls to tables, to pockets and fridges

• Connectivity and distributivity
– Internet, clouds
– Computing as interaction(s)

• Intelligence
– Complexity of problems to solve is rising

• Delegation
– Web searches, fly-by-wire

• Ease of use for humans
– GUI, personalization

Propaganda or trends of informatics

• A new computer science field has risen in 90s
• Agent is a (computer) system capable to work

independently on behalf of its user
• Multiagent system consists of agents that are

communicating with each other, most often by
exchanging messages over a computer network

• How to create such independent agents able to
perform delegated tasks?

• How to create a system of agents with cooperation,
coordination and negotionation?

Multiagent systems

• Agents as one of possible paradigms of programming:
– Machine code/assembler
– Structured programs
– Objects
– CORBA – distributed objects
– …

• Mastering complex distributed systems of
communicating components

• Objects do it for free, agents because they want to.

Software engineering

• In distributed systems area the research (for decades)
deals with theory, programming languages and methods
for description and design of systems with multiple
components. Many problems have been successfully
identified and solved
– Mutex, deadlock, …

• Agents are automous, the coordination mechanisms are
not fully defined beforehand, everything is happening –
and must be solved – in run time.

• Agenti have their own interests, they do not have to share
a common goal. It is necessary to study mechanisms of
negotiations and dynamic coordination.

Distributed, concurrent systems

• Traditional view:
– MAS are part of AI.

• Russell, Norvig (AIMA):
– The goal of AI is the design of intelligent agents.

• Bold view:
– AI is part of MAS.

• Hardcore view (Etzioni):
– MAS is 1% AI, 99% computer science.

• MAS use AI techniques (knowledge representation,
planning)

• MAS emphasize social aspects (cooperation, negotiation),
which were overlooked by traditional AI.

Artificial intelligence

• Already von Neumann and Turing in 40s …
• Game theory is an important theoretical approach to

study MAS
– Nash equilibrium, …

• MAS question (will question?) the notion of rational
agent, which is a key concept of game theory.

• Mathematical foundations of game theory deal
mostly with existence questions, MAS emphasize
computational aspects (complexity, practical usage).

Game theory, economics

• The key concept for MAS are agent societies.
• Sociology studies human societies.
• Similarly to AI and human intelligence, MAS can seek

inspirations in sociology.
• But not necessarily (cf. e.g. many areas of AI not-

really related to human intelligence, game theory,
airplanes vs birds, …).

• Sociology (but also ecology and other science
disciplines) like to use agents for their simulation
models (Agent Based Model).

Sociology

Better definitions (many of them), methodologies, models

2. Inteligent agents

• To know how to create at least one agent
• The key problem of agent design is … action selection:

– What the agent should do in a given moment based on
information from environment.

• Agent architecture is then a software architecture that
enables the process of decision – action selection.

– … a particular methodology for building [agents]. It specifies how…the agent
can be decomposed into the construction of a set of component modules and
how these modules should be made to interact. The total set of modules and
their interactions has to provide an answer to the question of how the sensor
data and the current internal state of the agent determine the actions…and
future internal state of the agent. An architecture encompasses techniques
and algorithms that support this methodology. (Maes, 1991)

How to stars a MAS?

• MuBot (mobile agent Crystaliz, Inc)
– "The term agent is used to represent two orthogonal concepts.

The first is the agent's ability for autonomous execution. The
second is the agent's ability to perform domain oriented
reasoning.”

• AIMA (Russell and Norvig)
– "An agent is anything that can be viewed as perceiving its

environment through sensors and acting upon that environment
through effectors.”

• Pattie Maes, MIT Media Lab
– "Autonomous agents are computational systems that inhabit

some complex dynamic environment, sense and act
autonomously in this environment, and by doing so realize a set
of goals or tasks for which they are designed.”

OK, but what is an agent?
(Franklin, Graesser, 1996 – Is it an agent or just a program?)

• KidSim, Apple
– "Let us define an agent as a persistent software entity dedicated

to a specific purpose. 'Persistent' distinguishes agents from
subroutines; agents have their own ideas about how to
accomplish tasks, their own agendas. 'Special purpose'
distinguishes them from entire multifunction applications; agents
are typically much smaller.”

• Barbara Hayes-Roth, Stanford Knowledge system lab
– “Intelligent agents continuously perform three functions:

perception of dynamic conditions in the environment; action to
affect conditions in the environment; and reasoning to interpret
perceptions, solve problems, draw inferences, and determine
actions.”

… or?

• IBM, Intelligent Agent strategy white paper
– "Intelligent agents are software entities that carry out some set

of operations on behalf of a user or another program with some
degree of independence or autonomy, and in so doing, employ
some knowledge or representation of the user's goals or
desires.”

• SodaBot , MIT AI Lab
– "Software agents are programs that engage in dialogs [and]

negotiate and coordinate transfer of information.”
• Brustoloni

– "Autonomous agents are systems capable of autonomous,
purposeful action in the real world.”

• Software agents mailing list FAQ
– "This FAQ will not attempt to provide an authoritative definition

..."

… or more …

• Franklin:
– An autonomous agent is a system situated within and a part

of an environment that senses that environment and acts
on it, over time, in pursuit of its own agenda and so as to
effect what it senses in the future.

• Wooldridge, Jennings:
– An agent is a computer system that is situated in some

environment, and that is capable of autonomous action in
this environment in order to meet its delegated objectives.

Let us summarize

• Fully/Partially observable
– Agent can fully observe a complete environment state via its sensors.
– Can not.

• Static / Dynamic
– Environment is changing only as a result of agent actions.
– Also in other ways.

• Deterministic / Nondeterministic
– Each action has one and only one result.
– Has not.

• Discrete / Continuous
– An environment has a fixed number of states.
– More than that.

• Unfortunately, most interesting environments, like real world
or internet, are continuous, non-deterministic, dynamic and
partially observable.

Environment

• Autonomy:
– Human vs. Java method
– Agent is somewhere in between – should be able to choose

autonomously the way how to solve an assigned problem, i.e.
choice of subgoals, not of the main goal (delegation).

• Deliberation:
– Agent has a repertoire of available actions, not all can be

executed always, not all makes sense always
– The key problem for an agent is to select the best action in order

to fulfill its goals.
• Agent architecture is then an architecture of a software

system embedded in the environment, that serves to
action selection (embeded decision-making system).

Notes to an agent

• Not-so-intelligent agent
• Situated in environment

(room)
• 2 perceptions: cold, OK
• 2 actions: off, on
• Decision unit:

– cold => on
– OK => off

• Non-deterministic
environment (open
doors, …)

Example: Thermostat

• Such as unix xbiff
• Situated in an

environment of operating
system

• Senses through executing
commands and signals …

• Has software actions –
run an email client,
change icon on a screen …

• Decision algorithm is on
the same level as
thermostat

Example: software demon

• Reactive
– Senses the environment, is able to react in real

(reasonable) time to its changes.
• Proactive

– Has its own goals, is able to fulfill them actively.
• Social

– Is able to communicate with other agents, or people.

• To achieve pure reactive or pure planning/goal-
oriented behavior is relatively simple. What is
difficult, is to achieve the balance between reactivity
and proactivity.

Intelligent agent

• Oftentimes, when speaking about agents, we assign the
so-called mental states to them (they believe something,
want something, desire something, hope for something,
…)

• Daniel Dennet defines intentional system as an entity
whose behavior can by predicted by assigning properties
as beliefs, desires, and rational wit.

• Hierarchy: I.S. of the first order, second order (beliefs
and desires about beliefs and desires, … third order …

• It is interesting to note that we in fact use intentional
systems (such as when arranging a meeting for given time
and space, and then meeting a friend there)

Intentional system

• Shoham: The electric switch in a room is a (very)
cooperating agent which by his own will can conduct
electric current, but doing it so only if it believes that we
actually want it. By switching the switch, we communicate
our wish to it.

• Consistent, elegant, concise, nicely describes the switch
actions.

• And yet, many people consider this chilidish or absurd.
• In this case it is because we (probably) have another, still

precise, but simpler way how to describe a switch.

Example: Electric switch as an intentional
system

• Physical stance:
– For description and functionality prediction only laws of physics

are sufficient (I throw a stone, no need to talk about its desires
to find out where it will land. I need only its weight, velocity, law
of gravity)

• Design stance:
– In more complex systems I may not know all exact physical laws,

but it is enough to understand why they were created, what is
their purpose. (teleological explanation)

– (I know how an alarm clock works, do not have to know all
related physical laws, still know how to set the alarm clock, and
predict when it will ring)

• Intentional stance:
– I use the intentional system view for prediction.

Intentional stance

• Sometimes the physical/design description is not available.
• Sometimes it is but it is not practical for description and

behavior prediction
– E.g. Even if I have an electronic scheme of a computer, it is difficult to

derive why a window on a screen opens after clicking on some desktop
icon.

• In many situations, the intentional stance is simpler than
alternatives.

• From the computer science point of view, it is an abstraction in
order to handle the complexity of the problem.

• For many programmers/computer scientists, the usage of
intentional systems to program agents, is the (most) important
feature of multi-agent systems.

Intentional stance

• The problem if there
exists an intentionality
of entities by itself, or if
the intentionality is
realized only in the
process of
interpretation.

• Dennett thinks that
there is no intentionality
by itself, without
interpretation.

And how about Daniel Dennet?

States, environment, agents

3. Abstract agent
architectures

• We try to formalize an abstract view on an agent and its
interactions with the environment.

• Environment can be in one of finite number of discrete
states

• E = {e, e’, … }
• Even if the environment were not really discrete, we

discretize it
• This is a standard presumption for diverse modeling

approaches, nothing unusual
• And, every continuous environment can be modelled by a

discrete environment with arbitrary precision, nice.

Environment

• Agent has at its disposal, a finite number of actions
• A = {a, a’, …}
• How does the agent interact with the environment:

– Environment is in some initial state
– Agent chooses an action
– Environment can respond by transition in several possible states
– Environment responds by changing its state into one particular

state from the set of possible states.
– We do not know which one in advance
– Based on the environment state, agent selects further action
– …

Agent

• Run of an agent in an environment is a sequence of
alternating environment states and actions

• r = e0, a0, e1, a1, e2, a2, … an-1, en

• Let:
• R be a set of all possible finite sequences on E and A
• RA is a subset of those sequences from R that end by

an action from A
• RE is a subset of those sequences from R that end by

a state of the environment

Run

• The influence of an agent to the environment is
modelled by a state transformer function:

• T: RA->2E

– T maps run of an agent (ending by an action) to the set of
environment states (those states that can be a result of the
final action)

• Environments have history
– The next environment state does not depend on the last

agent action only, but also on previous actions and states.
• Environments are non-deterministic

– We do not know in which state the environment will be
after the action execution.

A state transformer function

• If for some r in RA, the T(r) is an empty set, we say
that the system has finished a run.

• Thus, there are no more possible states after r
• From now on let us consider that all runs will allways

end.
• The Environment is a triple:
• Env = (E,e0,T)

– E is a set of environment states
– e0 is the initial state
– T is the state transformer function

Environment again

• Agent is a function mapping runs (ending by environment
states) to actions:

• Ag: RE -> A
– Thus, the agent is deciding which action to select based on the

complete history of the system
– Agent is deterministic

• Let AG be the set of all agents
• A System is a pair containing an agent and an

environment
• Each system has a corresponding set of possible runs
• R(Ag,Env) is a set of runs of an agent Ag in the

environment Env
– Consider only runs that end, i.e. T(r)=O

Agent again

• We say that a sequence (e0,a0,e1,a1,e2, …) is a run of agent
Ag in environment Env=(E,e0,T), iff:
1. e0 is the initial state of Env,
2. a0 = Ag(e0),
3. For each u>0:
– eu ϵ T((e0,a0,…,au-1)) and
– au = Ag ((e0,a0,…,eu))

• Ag1 and Ag2 are functionally equivalent with respect to
Env, if and only if the following holds:
– R(Ag1,Env) = R(Ag2,Env)

• Ag1 and Ag2 are simply functionally equivalent, if they are
functionally equivalent with respect to all Env.

Agent runs in environment

• Pure reactive (or tropist) agent:
• Ag: E -> A
• Reacts without taking history into account, the action

selection mechanism is based on current
environment state only.

• For every pure reactive agent, there exists a standard
agent which is functionally equivalent.

• (Of course,) the opposite does not hold.
• Thermostat:

Ag(e) = off, if e=temp OK

Ag(e) = on, elsewhere

Pure reactive agent

– Let us not define technicalities of the agent state
representation, consider a state to be a piece of
information, typically about environment state, and its
history, saved in some internal data structure that helps
the agent in action selection process.

• I – the set of all internal states of an agent
• Per – the set of all perceptions of an agent
• see – a function of agent perception see: E -> Per
• action: I -> A
• next: I x Per -> I
• Every agent with a state can be transformed into

functionally equivalent standard agent.

Agent with a state

• Agent starts in internal
initial state i0

• Percepts the environment
and generates a
perception
– see(e)

• Updates its inner state
according to
– next(i0,see(e))

• Selects an action akci
– action(next(i0,see(e)))

• Executes the action, and
starts another iteration

Agent with a state at work

Agent

Prostředí

see action

next state

• We do not want fixed and hard-wired agents
• The idea is to tell the agent what to do, but not how

to do it
• A popular way how to do it in AI/CS is to define the

problem/goal indirectly by means of some kind of
measure of success of an agent

• Utility – objective function evaluating environment
states

• u: E -> R
• Agent goal is to reach environment states with high

utility value

What should an agent do, and how to tell it

• Overall success of an agent can be based on:
– The utility of the worst state reached by an agent
– Average utility of states visited by an agent

• Not clear what is better, usually this is task dependent
• To evaluate individual states (of the environment) can

be short-sighted, but how to evaluate longer-term
utility to judge the success of an agent

• Utility of a run r:
• u: R -> R
• Better for agents running independently for a longer

time

Utility of a run

– Agents are on a checkboard, moving to 4 directions
– There are holes, obstacles and blocks on the checkboard
– Agent goal is to push blocks into holes
– The environment is dynamic – holes, obstacles and blocks are

appearing and disappearing at random
• u(r) = Nf/Na,

– Nf – number of holes filled by blocks by an agent during a run r
– Na – number of all holes in a run r

• And this is repeated several times
• Agent has to react to environment changes

– (the block I am pushing suddenly disappears)

• Agent should be able to make use of opportunities
– (new block appears next to me)

Example: Tileword

• If the function u(r) has an upper bound, we can talk about
maximization:

• Optimal agent should maximize its expected utility
• P(r|Ag,Env) – probability of a run r of agent Ag in

nevironment Env
• ∑ P(r|Ag,Env) = 1, for all r ϵ R(Ag,Env)
• Agopt optimal agent:

– Agopt = arg max {Ag ϵ AG} ∑ u(r) P(r|Ag,Env)
• Which is a nice definition, but it does not provide clues

how to design such an optimal agent
• And sometimes it can be complicated to define the utility

function as well

Maximization of expected utility

• Utility is a mapping to the set of {0,1}
– Run is successful if u(r)=1

• F is predicate specification (we do not exactly specify
how it looks for now):
– F(r) is true, if and only if u(r)=1

• The environment of a task is then (Env,F):
– Env is the environment
– F: a mapping R ->{0,1}

• TE is a set of all environments of a task
• The environment of a task then specifies:

– The properties of a system (via Env)
– Criteria if the agent fulfills the task (via F)

Predicate specification of a task

• RF(Ag,Env) is a set of runs of agent Ag in environment
Env, that satisfy F
– RF(Ag,Env) = {r|r ϵ R(Ag,Env) & F(r)}

• When does agent Ag solves the task (Env,F):
– Pessimist: RF(Ag,Env) = R(Ag,Env)

– I.e., all runs satisfy F

– Optimist: ∃ r ϵ R(Ag,Env) tak, že F(r)
– I.e., at least one run satisfies F

– Realist:
– Let us extend T such that it includes probability distribution

over all possible results (and so over all runs)
– The success of an agent can be then measured by a probability

of satisfying F:
– P(F|Ag,Env) = ∑ P(r|Ag,Env) for r ϵ RF(Ag,Env)

The environment of a task

• To find something(Achievment tasks)
– The goal is to reach any state from a goal set G
– G is a set of states from E takových such that F(r) is true if at

least one state from G appears in the run r
– Agent is successful if all his runs end in a state from G
– Example: Pretty much any task from AI (searching a solution)

• To keep something (Maintenance tasks)
– Agent must avoid some environment states
– B is a set of states, such that F(r) is false if any of states from B

appears in the run r
– Example: games, B are losing states, the environment is the

opponent
• Combination: for example achieve state from G but avoid

states from B

Types of tasks (from life)

Induction, deduction, agent as a theorem prover

4. Deductive reasoning
agent

• Classical way how AI creates an „inteligent system“:
– Symbolic representation of environment and behaviour

• We will focus on representation by means of logical formulae
– Syntactic manipulation with such a representation

• This corresponds to logical deduction or theorem proofs
– Thus, the theory about the agent behavior (cf. previous talk) is in

fact a program – an executable specification providing concrete
agent actions

• The transduction problem: How to represent the world
– "Grau, teurer Freund, ist alle Theorie, und Grün des Lebens

goldner Baum."
– Computer vision, natural language processing, learning, …

• The representation and reasoning problem:
– How to represent knowledge, theorem provers, planners …

Classical AI approach

• Deduction: derivation of conclusions that are true, based
on the fact that preconditions are true
– general -> specific

• Sylogisms: „All humans are mortal, Sokrates is human, thus,
Sokrates is mortal. “

• Induction: if the preconditions are true, then the
conclusion is more likely true than not.
– special case -> more general

• Police says that S. is a killer (/seen by two witnesses/left
fingerprints/confessed), then, S. is a killer.

• Sherlock Holmes is using induction, while saying it is
deduction.

• Mathematical induction is in fact deduction.

By the way

• L be a set of formulae in the first order logics,
• D=2L is a set of data-bases of formulae L,
• The inner state DB of an agent is then DB ϵ D.
• Deliberation is done by means of

deduction/derivation rules P in the underlying
mathematical logics
– DB ⱵP f – a formula f can be derived from DB (only by using

deduction) rules P
• see: S -> Per
• next: D x Per -> Per
• action: D -> A according to rules P

Agent as a theorem prover

Function action(DB:D) returns action A

begin

for each a ϵ A do
If DB ⱵP Do(a) then return a

for each a ϵ A do
If DB ! ⱵP ¬Do(a) return a

return null

end

• Returns action that can be proven via Do(a)
• Or, tries to find a consistent action (i.e. not in a

contradiction with DB)

Action selection as proving

• In(x,y) – agent is on (x,y)
• Dirt(x,y) – there is dirt
• Facing(d) – agent faces

direction d
• Action deduction:
• Vacuum clean:

– In(x,y)& Dirt(x,y) =>
Do(suck)

• And browse the world,
e.g., 00-01-02-12-11-
10-…

• In(0,0) & Facing(north) &
not Dirt(0,0) =>
Do(forward)

• In(0,1) & Facing(north) &
not Dirt(0,1) =>
Do(forward)

• In(0,2) & Facing(north) &
not Dirt(0,2) => Do(turn)

• In(0,2) & Facing(east) =>
Do(forward)

• …

Example: Vacuum world 3x3

• Elegant and with beautiful semantics
• Not really practical
• Takes a long time, if ends at all

– Computable rationality: agent derives someting, based on the
environment current state, but in the meantime, the
environment changes and the action may not be optimal any
more. That is bad for rapidly changing environments.

• Sometimes it is hard to find a good see() function
– How to translate picture into formulae
– How to represent temporal data

• Some elements of this approach have been used in other
architectures, as we will see, e.g. in the next talk about
Practical reasoning

Pros and cons

Beliefs-Desires-Intentions

5. Praktical reasoning
agent

• Inspired by human decision processes
• Theoretical reasoning (cf. Sokrates) results only in

what we think about the world
• Practical reasoning leads to actions
• Two phases:

– Deliberation
• What we want to achieve

– I want to graduate
– Means-Ends reasoning

• How to achieve the goal
– Have to create a plan how to graduate

• And all this should not take too long

Practical reasoning

• Intention is such a state of the world that the agent wants
to achieve

• Intentions in agent lead to actions (in order to achieve the
state of the world), then a reasoning follows which results
in a plan

• Intentions persist:
– Until the agent achieves them,
– Until the agent starts believing they cannot be achieved
– Until the reasons leading to the intention disappear

• Intentions constrain further deliberation
• Intentions influence what the agent will believe in the

future

Intentions

• Desire represents one of possible intentions
• My desire to play basketball this afternoon is merely a

potential influencer of my conduct this afternoon. It
must vie with my other relevant desires … before it is
settled what I will do. In contrast, once I intend to play
basketball this afternoon, the matter is settled: I
normally need not continue to weigh the pros and cons.
When the afternoon arrives, I will normally just proceed
to execute my intentions. (Bratman, 1990)

• Desires are motivational states of an agent
• Do you recall Daniel Dennett?

Desires

• Beliefs are agent’s knowledge, they represent its
information state.

• We do not call them knowledge in MAS, in order to
emphasize that:
– They are subjective from the point of view of the agent,
– They are not necessarily true,
– They can change in the future.

• Beliefs can contain inference rules allowing forward
chaining

Beliefs

• Consider some (any) explicit representation of the sets of
beliefs, desires, and intentions, such as symbolic, but for
now the technical details are not important.

• B
– Variable for agent current beliefs,
– Bel is then a set of all possible beliefs.

• D
– Variable for desires,
– Des is a set of all desires.

• I
– Variable for intentions,
– Int is a set of all intentions.

B … D … I

• Optins generating function:
– options: 2Bel x 2Int -> 2Des

• Filter function = selection from options:
– filter: 2Bel x 2Des x 2Int -> 2Int

• Belief refresh function:
– brf: 2Bel x Per -> 2Bel

Deliberation

• The process of deciding how to reach a goal
(intention) based on available means (actions).

• Input:
– Goal = intention
– Current environment state = agent beliefs
– Actions available for agent

• Output:
– Plan = sequence of actions,
– When the agent executes the actions, the goal is fulfilled

Means-Ends Reasoning, or Planning

• Nilsson, Fikes, 1971
• Model of the world = a set of first order logic formulae
• The set of action schemes:

– Preconditions
– Effects:

• Add – facts that will be (newly) true after the action
• Delete – facts no longer true

• Planning algorithm:
– Finds differences between the goal and current state of the

world
– Decreases the differences by application of suitable action
– …
– This is nice, but not very practical, the algorithms often iterates a

lot over low-level details

STRIPS

• Predicates:
– On(x,y) = x is on y
– OnTable(x,y) = x is on a table
– Clear(x) = nothing is on x
– Holding(x) = robot holds x in his robotic arm
– ArmEmpty = robot arm is empty

• Initial state:
– {Clear(A), On(A,B), OnTable(B), OnTable(C), Clear(C)}

• Goal:
– {OnTable(A), OnTable(B), OnTable(C)}

The block world

• Stack(x,y)
– Pre {Clear(y), Holding(x)}
– Del {Clear(y), Holding(x)}
– Add {ArmEmpty, On(x,y)}

• UnStack(x,y)
– Pre {On(x,y), Clear(x),

ArmEmpty)}
– Del {On(x,y), ArmEmpty)}
– Add {Holding(x), Clear(y)}

• Pickup(x)
– Pre {OnTable(x), Clear(x),

ArmEmpty)}
– Del {OnTable(x),

ArmEmpty)}
– Add {Holding(x)}

• PutDown(x)
– Pre {Holding(x)}
– Del {Holding(x)}
– Add {ArmEmpty,

OnTable(x)}

The block worls – actions

• Set of actions Ac = {a1, …, an}
• Descriptor of an action a is [Pa,Da,Aa]:

– Pa set of FOL formulae – precondition of action a
– Da the delete set of effects after action a (expressed in FOL)
– Aa the add set of effects after action a (in FOL),
– For simplicity, these sets contain only grounded atomic

formulae – no logical conjuctions, …, no variables

• The planning problem is then [B0,O,G]:
– B0 – initial beliefs of an agent
– O = {[Pa, Da, Aa]: a ϵ Ac} descriptors for all actions
– G = set of FOL formulae representing the goal

Definition of plans

• Plan p is a squence (a1,…,an), ai ϵAc
– Plan p for planning problem [B0,O,G] determins a sequence

of belief databases B0, B1, …, Bn:
• Bi = (Bi-1 \ Dai) U Aai; for i = 1, …, n

– Plan p is admissible for [B0,O,G]
• Di-1 |= Pai; for each i = 1, …, n

– Plan p is correct for [B0,O,G]
• p is admissible for [B0,O,G] and
• Di-1 |= G.

• Planning: for [B0,O,G] either find a correct plan, or say
it does not exist.

Definition of planning

• Plan = the set of plans (nad Ac)
• pre(p) = precondition of plan p
• body(p) = body of plan p, a sequence of actions
• empty(p) = Boolean function, is the plan p empty
• execute(p) = procedure executing the plan (all actions

sequentially)
• hd(p) = the first action in the plan p body
• tail(p) = actions of p from the second one to the last

one
• sound(p,I,B) = plan p is correct for sets of intentions

(goals) I and beliefs B

Few more defintions

• plan: 2Bel x 2Int x 2Ac -> Plan
• Agent does not have to construct plans on-line,

because it can be time consuming
• Oftentimes, the plan() is implemented by means of

library of plans
• Then, it is sufficient to iterate through the plan library

once, and check if:
• The preconditions of a plan correspond to agent

current beliefs
• The effects of a plan correspond to the goal

Agent planning function

• B:= B0; I:= I0
• while true do

– v:= see(); B:= brf(B,v); D:= options(B,I); I:= filter(B,D,I);
– p = plan(B,I,Ac);
– while not (empty(p) or succeed(I,B or impossible (I,B)) do

• a:= hd(p); execute(a); p:= tail(p);
• v:= see(); B = brf(B,v);
• if reconsider(I,B) then D:= options(B,I); I:= filter(B,D,I)

endif
• if not sound(p,I,B) then p = plan(B,I,Ac);

– endwhile
• endwhile

Implementation

• Mechanisms when to abandon the goal =
commitment strategies:

• Blind commitment
– Agent will continue to maintain an intention until it

believes it has achieved the intention.
• Single-minded commitment

– Agent will continue to maintain an intention until it
believes either the intention has been achieved, or it is no
longer possible to achieve it.

• Open minded
– The intention persists until the agent believes it is still

possible to achieve it.

Commitment of agents

• Agent is committed to one plan only, i.e.
– It will end if:

• Believes the goal has been achieved
• Believes the goal is not possible to achieve
• The plan is empty

• succeeded(I,B) = I holds under assumption of B
• impossible(I,B) = I cannot hold assuming B

Commitment to plans/intentions

• When should agent stop and reconsider the intention?
• Classical dilemma – deliberation takes time, and the

environment can change during the process
– Agent, who does not reconsider intentions, can happen to be be

committed to goals that are no longer possible to achieve.
– Agent, who reconsiders to often, can be too busy to actually

solve the current intention and might not achieve anything.
• meta-control (Wooldridge, Parsons, 1999)

– function reconsider(), which is computationally simpler than the
reconsidering itself

– Observation reconsider() is working well if every time it
proposes reconsidering, the agent actually changes the intention
after deliberation process

Commitment to goals

• Classical extreme solutions to the dilemma:
– Bold agent – reconsider intentions only after it ends execution of

the current plan (i.e. never stops the plan to reconsider)
– Cautious agent – reconsiders after every action of the plan

• Level of boldness – how many actions to execute
between reconsiderations

• Dynamism of the environment – rate of world change,
how many times the environment can change during one
agent cycle

• Agent efficiency = achieved intentions / all intentions
– When the world is changing slowly, bold agents are efficient
– When the world is changing rapidly, cautious agents outperform

bold agents

„To boldly go where no man has gone before.“

BDI architecture in practice

6. Procedural
Reasoning System

• (Georgeff et al, 80s), Stanford
• The first implementation of BDI architecture
• Maybe the most successful agent architecture,

reimplemented in many cases and environments
– AgentSpeak/Jason
– Jam
– Jack
– JADEX

• And also used in practice
– OASIS – Sydney air traffic control system
– SPOC (single point of contact) bussinness processes organization
– SWARMM – air force flight simmulator

PRS

PRS agent

Beliefs
Plans

library

Desires Intentions

interpreter

Sensor
data

Actions

• Agent has a library of ready plans, representing its
procedural knowledge

• No full planning, only choosing a plan from the library
• Plan

– Goal – condition holding after the execution
– Context – condition necessary to run
– Body – actions to execute

• Plan body:
– Not only linear sequence of actions
– Plan can contain goals

• Achive f,
• achieve f or g,
• keep achieving f until g

Plans in PRS

• Initialization:
– Beliefs B0 (prolog FOL atoms)
– top-level goal

• Stack of intentions
– The stack contains current goals in the state of partial

completion
– Interpreter takes an intention on top and searches the plan

library for matching goal
– Out of the matching plans, only some have their context

consistent with current beliefs
– These represent current options/desires

Planning in PRS

• Deliberation – selecting intention from desires
– The original PRS had meta-plans

• Plans about plans, they were modifying agent intentions
• But it was too complicated

– Utility
• Every plan is evaluated by number representing

expected utility
• The plan with biggest utility is selected

• The selected plan is executed, which can result in
adding more intentions on the stack …

• If a plan fails, agent chooses another intention from
options, and continues

Deliberation in PRS

Example: JAM

/* Initial beliefs */
// initially, I believe that there are some beers in the fridge
available(beer,fridge).
// my owner should not consume more than 10 beers a day
limit(beer,10).

/* Rules */
too_much(B) :-
.date(YY,MM,DD) &
.count(consumed(YY,MM,DD,_,_,_,B),QtdB) &
limit(B,Limit) &
QtdB > Limit.

/* Plans */
@h1
+!has(owner,beer)
: available(beer,fridge) & not too_much(beer)
<- !at(robot,fridge);
open(fridge);
get(beer);
close(fridge);
!at(robot,owner);
hand_in(beer);
// remember that another beer will be consumed
.date(YY,MM,DD); .time(HH,NN,SS);
+consumed(YY,MM,DD,HH,NN,SS,beer).

@h2
+!has(owner,beer)
: not available(beer,fridge)
<- .send(supermarket, achieve, order(beer,5));
!at(robot,fridge). // go to fridge and wait there.

@h3
+!has(owner,beer)
: too_much(beer) & limit(beer,L)
<- .concat("The Department of Health does not allow me ",
"to give you more than ", L,
" beers a day! I am very sorry about that!",M);
.send(owner,tell,msg(M)).

@m1
+!at(robot,P) : at(robot,P) <- true.3.4. EXAMPLE: A COMPLETE

AGENT PROGRAM 63

@m2
+!at(robot,P) : not at(robot,P)
<- move_towards(P);
!at(robot,P).
// when the supermarket finishes the order, try the ’has’
// goal again

@a1
+delivered(beer,Qtd,OrderId)[source(supermarket)] : true
<- +available(beer,fridge);
!has(owner,beer).
// when the fridge is openned, the beer stock is perceived
// and thus the available belief is updated
@a2
+stock(beer,0)
: available(beer,fridge)
<- -available(beer,fridge).
@a3
+stock(beer,N)
: N > 0 & not available(beer,fridge)
<- +available(beer,fridge).

Example: Jason

GOALS:
ACHIEVE PrepareLecture agents101 :PRIORITY 9 :DEADLINE 50;
ACHIEVE HaveLunch :PRIORITY 7 :DEADLINE 40;
ACHIEVE BorrowBook R&N :PRIORITY 2 :DEADLINE 30;
CONCLUDE LectureNotes agents101 myNotes;
PLAN: {NAME: ”Plan 1”; DOCUMENTATION: ”Prepare for lecture”;
CUE: ACHIEVE PrepareLecture $x, y;
PRECONDITION: TEST LectureNotes $x, y;
BODY:
EXECUTE revise-lecture $y :TIMEOUT 35;}

PLAN: {NAME: ”Plan 2”; DOCUMENTATION: ”Pickup a book from the
library”;

CUE: ACHIEVE BorrowBook $x;
BODY:
EXECUTE goto library :TIMEOUT 10;
ACHIEVE Pickup $x;}

PLAN: {NAME: ”Plan 3”; DOCUMENTATION: ”Pick up something”;
CUE: ACHIEVE Pickup $x;
BODY:
EXECUTE pickup $x :TIMEOUT 2;}

PLAN: {NAME: ”Plan 4”;DOCUMENTATION: ”Have lunch”;
CUE: ACHIEVE HaveLunch;
BODY:
EXECUTE eat-sandwich :TIMEOUT 20;}

Example: ARTS

Brooks subsumption architecture, horizontal and vertical
layered architectures, Stanley

7. Reactive and hybrid
architectures

• Problems with symbolic representation and reasoning
• 80s-90s – small changes of the symbolic approach are not

enough
• Alternative paradigms in AI
• Rejection of symbolic representation with deduction

based on syntactic manipulation
• Interakce - Intelligent behavior depends on the

environment where the agent is situated
• Embodiment - Intelligent behavior is not just the logic, it is

a product of embodied agent, agent with a body
• Emergence – intelligent behavior emerges by interaction

of (many) simple behaviors

Reactive approach

• Behavioral – emphasize evolution and combination of
individual behaviors

• Situated – agent is in environment, it is embodied
• Reactive

– Agent mainly (only) reacts on the environment
– Agent does not do deliberation

• Subsymbolic representation
– Connectionism
– Finite automata
– Simple reactive If-THEN rules

Reactive agents

• Probably the most successful from reactive
approaches

• Rodney Brooks, 1991
• Inteligent behavior can be generated without

symbolic representation
• Inteligent behavior can be generated without explicit

abstract reasoning
• Inteligence is an emergent property of certain

complex systems

Subsumption agenta architecture

• Agents intelligence is realized via simple goal-
oriented behaviors
– Each behavior is an action selection mechanism
– Each behavior receives perceptions and transforms them

into actions
– Each behavior is responsible for some goal
– Each behavior is a simple rule-like structure
– Each behavior competes with others for control over agent
– Each behavior works in parallel to others
– Behaviors are in the subsumption hierarchy defining their

priorities

Architecture

• Subsumption mechanism reacts on the inputs:
– Selecting rules corresponding to current situation
– For each behavior that is applicable to current sitation

(fires) it checks if there is a behavior with higher priority in
the hierarchy

– If not, the behavior is selected
– If nothing is selected, no action is executed

• It is simple (but not so simple to program in the case
of dozens of behaviors, the priorities can be tricky)

• It is fast (hw implementation, constant complexity)

Action selection

• The goal is to collect precious rock samples on distant
planet by a swarm of robotic explorers

• Means:
• The base transmits a navigation signal
• Communication is not necessary, it is sufficient to

detect a gradient of the signal
• Every robot has radioactive crumbles for indirect

communication with other robots

Example: Steels’ Mars explorer

• R1: if detect obstacle then change direction
• R2: if carying sample and at the base then drop

sample
• R3: if carying sample and not at the base then travel

up gradient
• R4: if detect a sample then pick sample up
• R5: if true the move randomly

• Priority!

First iteration – random walk and return of one
robot

• What to do if I carry a sample:
• R6: if carrying a sample and at the base drop sample
• R7: if carrying a sample and not the base then drop 2

crumbs and travel up gradient
• R8: if sense crumb then pickup 1 crumb and travel up

gradient

• Priority: R1 < R6 < R7 < R4 < R8 < R5

Second iteration: better exploration

• Maes, 1991
• Every agent is a set of competence modules (resembling

Brooks behaviors)
• Each module has

– Pre-conditions
– Post-conditions
– Activation threshold (defining how relevant the module is with respect

to current situation, works as a priority during action selection process)
• Modules are connected in a network based on their conditions
• Matching pre and post conditions represent oriented edges
• And there are further connections representing time

precedence or conflicts
• Modules in the network are activated, and the most activated

one is selected to determine the action

Agent network architecture

• Reactive agents do not create any kind of model of the
world, they have to derive everything from the
environment (thus, they sometimes have to change the
environment, e.g. by radioactive crumbles)

• Reactive agents have only short-term view on the world –
they act based on current state and local information
only, it is difficult to consider global conditions and long-
term goals

• Emergence of behaviors is not an ideal engineering
approach to programming

• Potentially many layers of reactive behavior is difficults to
design

Limitations of reactive architectures

• It seems neither completely reactive nor completely
deliberative architectures are ideal

• Hybrid architectures try to combine more
components into an agent wishing for best of both
worlds:
– Deliberative/planning component(s) working on symbolic

level, creates representations, plans
– Reactive component(s) for immediate actions without

complex computations
• These components are usually in a hierarchy where

the reactive ones are given precedence over the
deliberative ones

Hybrid architectures

• Horizontal
• Layers are connected to

sensors and effectors in
parallel

• Relatively simple, but
the layers can influence
each other

• mediator function –
resolves conflict
between layers
(potential bottleneck)

• Vertical
• Layers are connected to

sensors and effectors in
serial manner

• One-pass
– Natural ordering and

hierarchy of behaviors

• Two-pass
– Bottom-up go perceptions,

top-down go actions
– The flow resembles control

in real-world companies

Hybrid architectures

• Horizontal 3-layer architecture
• Modelling layer

– Models the agent and environment, resolves conflicts, sets
goals, sends the goals to the planning layer

• Planning layer
– Proactive behavior, selects from pre-programmed plans

similarly to the PRS approach

• Reactive layer
– Classical reactive rules, fast, immediate reaction (obstacle

avoidance, …)

Concrete Example: Touring Machines

• Vertical two-pass 3-layer architecture
• Cooperative planning layer

– Social interactions

• Lokální plánovací vrstva
– Day-to-day planning

• Behaviorální vrstva
– Reactive

• Each layer has its own knowledge base on different
abstraction level

Concrete Example: InteRRaP

• Volkswagen Touareg R5
• Autonomous car, the father of todays Google cars

and similar AUV
• Won DARPA Grand Challenge 2005 – 132 miles in

Mojave desert
– Sensor layer
– Abstract perception layer
– Planning and control layer (road plan and control of the

car)
– Vrstva rozhraní vozidla
– Vrstva uživatelského rozhraní (panel, start)
– Vrstva globálních služeb (filesystém, komunikace, hodiny)

Real wordl example: Stanley

• S. Franklin - “Intelligent distribution agent”
– Distribution relates to the application domain, which originally

was a navy personnel distribution on their assignments, although
the architecture is distributed itself as well

• Probably the most complicated agent architecture one
can see
– Which implies both pros and cons
– Inspired by (one of many) theory of consciousness

• Combines many approaches from MAS and other fields of
AI to achieve many complex tasks:
– Action selection, memory, deliberation, emotions, …
– Some choices were made ad hoc
– It is difficult to tune the collection of heterogenous models to

cooperate in an optimal way

Concrete example: IDA

• Inspired by global worskpace theory (Baars 88-97)
– Mind is a multi-agent system
– Consists of many simple (ofte subconscious) processes

realizing specialized operations
– They communicate seldom, and via a shared memory of

blackboard type, organized as associative array
– The processes dynamically create higher-order coalitions
– The coalition that is most applicable to current inputs will

get to the “consciousness” (and is executed)
– There is a hierarchy of “contexts” representing the world

on different levels – context of goals, perceptions, senses,
concepts, cultural context.

IDA - principles

IDA – moduly

How to understand each other, from dictionaries to is-a
hierachies, from Aristotle to programming

8. Ontologies

• We know how to design an agent in several different
ways

• How should agent communicate and cooperate in MAS:
– Knowledge representation
– Common dictionaries
– Standard messages
– Predictable behavior during communication – communication

protocols
– Semantics of communication
– Technical problems with communication

• Distributivity
• Mobility
• Asynchronnicity
• Unreliable communication channels

From agent to MAS

• Ontology (from Greek to óν being + λόγος, word) is part
of philosophy dealing with nature of being, becoming,
existence, or reality, and related basic philosophical
notions. Aristotle is calling it the first philosophy, it is part
of metaphysics, and dealing with the most general
questions.

• Ontologies in computer science means explicit and
formalized description of part of reality. It is usually a
formal and declarative description containing glossary
(definition of concepts) and thesaurus (definitions of
relations among concepts). Ontologies are kind of
dictionaries for storing and exchanging knowledge about
some domain in a standard way.

Ontologies

• "Toward Principles for the Design of Ontologies Used
for Knowledge Sharing”, T. Gruber, 1995
– An ontology is a description (like a formal specification of a

program) of the concepts and relationships that can
formally exist for an agent or a community of agents. This
definition is consistent with the usage of ontology as set of
concept definitions, but more general. And it is a different
sense of the word than its use in philosophy.

• "The Semantic Web”, T. Berners-Lee, Scientific
American Magazine, 2001.
– “… remains largely unrealized”, 2006

History of ontologies in AI

• Anna: Have you heard 7777?
• Boris: No, what is it?
• Anna: It’s a new CD from the band called SRPR, a kind of alt.rock

with some electronic music, and the lyrics are just great.
• Boris: Oh, I see.

• 7777 is an album
• 7777 music falls into alt.rock, as well as electronica
• 7777 has songs, the artists (SRPR), music and lyrics

authors …
• SRPR is a band, has members, they play instruments,

…
• …

Ontologies, real life example

• Classes – things with something in common
• Instances (objects) – concrete individuals from the classes
• Properties
• Relations between classes
• Sub-class

– Transitive relation

• Further properties and relations (background
knowledge?)

• Structural part – this is usually called ontology
• Facts about concrete items
• Together they form a knowledge base

Ontologies in general

• From weaker informal systems, to strong formal ones

– Dictionary (controlled vocabulary) – selected terms
– Glossary – definition of meanings by means of selected terms,

often in natural language
– Thesaurus – definition of synonyms
– Informal hierarchies – subclasses hieararchy more or less

defined, Amazon, wiki

– Formal is-a hierarchy – subsumption of classes in a formal way
– Classes with properties
– Value restrictions – every human has 1 mother
– Arbitrary logical constrains – leads to complex reasoning

algorithms

Ontology of ontologies

• Application
– Most common in practice, hardly re-usable

• Domain
– Favorite part of research and application of semantic web, …

• Upper
– Should be ultimate ontology describing everything

• Like Thing, Living thing, Proof, Vegan, …
– Serve as a base for domain ontologies
– BFO, GFO, UFO
– Wordnet, IDEAS – not suitable for formal reasoning and machine

usage
– Metodological objections – Wittgenstein, Tractatus logico-

philosphicus

Different ontology of ontologies

• Formal declarative languages for knowledge representation
• Contain facts and reasoning rules
• Most often based on first-order logic, or description logic
• Frames

– Historical predecessor of ontologies
– Proposed by Minsky, favorite in classical AI, expert systems, …
– Vizualization of human reasoning and language processing

Frame Terminology OO Terminology
Frame ObjectClass
Slot Object property or attribute
TriggerAccessor,
Mutator methods Method

Ontological languages

• XML
– Was not developed for ontology representation, but sometimes it is used so
– Coming from www
– Main advantage - new tag definition
– XML tags then naturally represent dictionaries

<catalog>
<product typ=“CD”>

<title>7777</title>
<artist>SRPR</artist>
<price currency=“CZK”>250</price>

</product>
<product typ=“CD”>

<title>Dlask</title>
<artist>SRPR</artist>
<price currency=“CZK”>200</price>

</product>
</catalog>

XML

• Standard knowledge representation tool (not only) for web
• Simple

– Not very expressive
– Simple (fast) reasoning algorithms

• Representing triples subject-predicate-object

MarriedTo(Karel,Jája), FatherOf(Karel,Péťa), FatherOf(Karel, Jíťa)

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:ns="http://www.example.org/#"> <ns:Person
rdf:about="http://www.example.org/#john"> <ns:hasMother
rdf:resource="http://www.example.org/#susan" /> <ns:hasFather>
<rdf:Description rdf:about="http://www.example.org/#richard">
<ns:hasBrother rdf:resource="http://www.example.org/#luke" />
</rdf:Description> </ns:hasFather> </ns:Person>

</rdf:RDF>

RDF (resource definition framework)

• Also coming from (semantic) web
• Ver 1 vs ver 2
• It is a collection of several formalisms to describe ontologies
• Syntax can be in XML (or RDF, or functional notation …)
• An attempt to have formal, yet practically useful approach
• Description logic – a decidable fragment of FOL

– In the beginning, IS-A was quite simple. Today, however, there are
almost as many meanings for this inheritance link as there are
knowledge-representation systems. (Ronald J. Brachman, What ISA is
and isn't)

• Open world assumption - OWA
– [The closed] world assumption implies that everything we don’t know is

false, while the open world assumption states that everything we don’t
know is undefined. (Stefano Mazzocchi, Closed World vs. Open World:
the First Semantic Web Battle)

OWL - Web Ontology Language

• Concepts (classes), roles (properties, predicates), and
individuals (objects)

• Axiom – logical expression about roles and concepts
– This is different to frames or object-oriented programming

(both frames and OO fully describe classes)
• It is in fact a family of logical systems, depending on

admissible rules/axioms
• For example:

– ACL – negation a class conjunction, limited existential quantifier,
contstrains

– Extensions: class disjunction, hierarchy of roles, transitivity of
roles, …

• Terminological T-Box, Axiom A-box

Description logics

• OWL-Lite (SHIF)
– The simplest, closer to RDF
– Many axiom constrains in order to maintain readability and

fast machine processing

• OWL-DL (SHOIN)
– Corresponds to DL
– Alllows to express things such as - Two classes are disjunct
– Complete, Decidable

• OWL-Full
– The strongest expressive power
– Many problems are undecidable for this subset, though

OWL 1

• OWL-EL
– Polynomial reasoning

time complexity

• OWL-QL
– Specialized to queries in

knowledge bases

• OWL-RL
– Special form of axioms -

rules

OWL 2 (SROIQ)

OWL2 Functional Syntax

Ontology(<http://example.org/tea.owl> Declaration(Class(

:Tea)))

OWL2 XML Syntax

<Ontology ontologyIRI="http://example.org/tea.owl" ...>

<Prefix name="owl"

IRI="http://www.w3.org/2002/07/owl#"/>

<Declaration> <Class IRI="Tea"/> </Declaration>

</Ontology>

Manchester Syntax

Ontology: <http://example.org/tea.owl> Class: Tea

RDF/XML syntax

<rdf:RDF ...> <owl:Ontology rdf:about=""/> <owl:Class

rdf:about="#Tea"/> </rdf:RDF>

RDF/Turtle

<http://example.org/tea.owl> rdf:type owl:Ontology . :Tea

rdf:type owl:Class .

https://en.wikipedia.org/wiki/Turtle_(syntax)

• Representation of knowledge in FOL
– (salary 015-46-3946 widgets 72000)
– (> (* (width chip1) (length chip1)) (* (width chip2) (length chip2)))
– (interested joe `(salary ,?x ,?y ,?z))
– (progn (fresh-line t) (print "Hello!") (fresh-line t))

– (forall (?F ?T)
(=>
(and
(instance ?F Farmer)
(instance ?T Tractor))
(likes ?F ?T)))

– (exists (?F ?T)
(and
(instance ?F Farmer)
(instance ?T Tractor)
(likes ?F ?T)))

KIF - Knowledge interface format

• DAML – Darpa agent markup language
• OIL – Ontology Interchange language
• Predecessor of OWL
• Abandoned in 2006

DAML+OIL

Speech acts, KQML, ACL, KIF, protocols

9. Agent communication

• In OOP, communication means calling object methods
with parameters

• Agents cannot directly make other agent to do
something, or to change its inner variables

• Agents have to communicate – perform a communication
act:
– In order to exchange information,
– In order to influence other agents to do something

• Other agents have their own agenda, goals, and it is up to
them how they handle all the information, requests,
queries from peers

• It is a beautiful day today

Agent communication

• Austin, 1962
– some parts of language usage have character of actions, because they change the

state of the world similarly to physical actions – they are speech acts
• I pronounce you man and wife
• I declare a war on Russia

– This is tha pragmatic language theory – how the speech is used to achieve goals
• Verbs as request, inform, promise
• Locutinary acts

– what was said,
– Utterances - small part of language usage, such as sentence

• Make me a tea
• Ilocutionary act

– What was meant
– Locution + perfomative meaing (query, request, …)

• Ha asked me for tea
• Perloctionary act

– What really happened
– The effect of the speech act

• She made me to make her a tea

Speech acts

• Example: SPEAKER request HEARER action
• standard I/O conditions

– H can hear, it is not happening in the movie …

• Pre-conditions
– What has to be true, so that S can choose this speech act:

– H must be capable to perform the action, S believes that H is
capable to perform the action, it is not clear that H would
perform the action without asking

• Honesty
– S really wants the action to be performed

Searle and his work on speech acts

• Older:
– Request, Advice, Statement, Promise, …

• Newer
– Assertives (Representatives) – informing the hearer
– Directives – requesting an action from the hearer
– Comissives – promise by a speaker
– Expressives – speaker expresses a mental state, emotions,

“thank you!”
– Declarations – change the state of things, war, marriage

• Speech act should have
– Performative verb – request, query, inform, …
– Propositional content – the window is closed

Searle speech acts categories

• Cohen, Perrault, 1979
– „… modelling [speech acts] in a planning system as operators

defined … in terms of speakers and hearers beliefs and goals.
Thus speech acts are treated in the same way as physical
actions.“

• STRIPS
– preconditions,
– postconditions

• Modal operators
– beliefs,
– abilities,
– wants

• Thus, the semantics of speech acts is defined by means of
precondition-delete-add approach from STRIPS

Planning theory of speech acts

• Request (S,H,A)
– Preconditions

• Cando:
– (S believe (H cando A))&(S believe(H believe (H cando A)))

• Want:
– (S believe (S want requestinstance))

– Effect:
– (H believe (S believe (S want A)))

• Inform(S,H,F)
– Preconditions

• Cando:
– (S believe F)

• Want:
– (S believe (S want informinstance))

– Effect:
• (H believe (S believe F))

Example: Request and Inform

• 1990s: DARPA – Knowledge sharing effort (KSE)
– KQML – knowledge query and manipulation language

• Outer communication language (envelope of a letter)
• Contains Ilocutionary part of the message

– KIF – knowlewdge interchange format
• Inner language,
• propositional contents of the message
• Knowledge representation

• FIPA ACL (foundation of physical agents, agent
communication language)
– Simplification of KQML, semantics, better system in

performatives,
– Practical implementation in JADE

Agent communication languages

• Perfomative
• Content
• Receiver
• Language
• Ontology

(ask-one

:content (PRICE IBM ?price)

:receiver stock-server

:language LPROLOG

:ontology NYSE-TICKS

)

KQML

• Content
• Force
• Reply-with
• In-reply-to
• Sender
• Receiver

• Achieve
• Advertise
• Ask-about, ask-one, ask-

all, ask-if
• Break, sorry, error
• Broadcast
• Forward
• Recruit-all, -one
• Reply
• Subscribe

Parameters and performatives of KQML

(inform

:sender agent1

:receiver agent2

:content (price good2 150)

:language sl

ontology: hpl-auction

)

ACL

• Request, request-when
• Inform, inform-if, inform-ref
• Subscribe
• Cfp
• Propose
• Proxy
• Refuse
• Reject-proposal
• Confirm, disconfirm
• Agree, cancel

ACL performatives

Contract net, BBS

10. Cooperation of agents

• Agents have different goals, are autonomous
• Agents work in time, not hard-wired, decisions made

at run-time, be capable of dynamic coordination

• Sharing tasks
• Sharing information

• Coherence – how well the system performs as a
whole

• Coordination – how well agents minimize overhead
activities related to synchronization, …

Working together …

• Cooperative distributed problem solving – CDPS
– Lesser et al, 80s
– Cooperation of individual agents when solving a problem

exceeding their individual capabilities (information,
sources)

– Agents implicitely share a common goal, there are no
conflicts – benevolence

– Overall system performance is the measure of success
– Agent helps the whole system even if it can be

disadvantageous for it
– Benevolence enormously simplifies the system design

CDPS

• CDPS differs from PPS (paralel problem solving, Bond,
Gasser, 80s)
– Focus on parallel solving,
– Homogenous and simple processors

• Generally, agents in MAS are more complicated:
– MAS is a society of agents with their own goals
– They do NOT share a common goal
– They should cooperate despite this

• Why and how
• How to identify and resolve conflicts
• How to negotiate and bargain

CDPS vs. PPS vs. MAS

• CDPS approach:
– Problem decomposition

• Hierarchical, recursive
• How to decompose, who does the decomposition
• ACTORS – for each sub-problem a new agent, till the

instruction level
– Sub-problem solutuion

• Agents typically share some information during this
• Agents might need to synchronize their actions

– Solution synthesis
• Hierarchical

• Task sharing – agreement of agents
• Result sharing – proactive or reactive

Task sharing and result sharing

• Contract Net protokol, Smith and Davis, 1977
• Metaphore for task sharing via the contract mechanism

– Recognition – agent recognizes it has a problem it cannot solve
on its own, need to involve other agents

– Announcement – agent broadcasts the announcement of the
task including specification – description of the task (maybe
executable), constraints (deadline, price, …)

– Bidding – receiving agents decide if they want to participate,
submit a tender

– Awarding, Expediting – the agent in need selects a winner
among bids and awards a contract

• Simple, can lead to hierarchical cascades of sub-
contracting, was extensively studied, most implemented

• Other types of auctions possible (cf. the Auctions talk)

CNET

FIPA ACL CNET protocol

• BBS – the first original scheme for cooperative problem
solving

• Results shared via the common data structure – the
blackboard BB
– Multiple agents (experts) sit around the BB, they can read and

write there
– The tasks are dynamically appearing on the BB
– When an expert sees it can solve some task, will write the partial

solution on BB
– Until the final solution appears on the BB

• Requires mutual exclusion over BB – bottleneck
• Typically contain several abstraction levels, the BB can be

structured into hierarchy
– “Blackboard Architectures,” AI Game Programming Wisdom, Volume 1, pp. 333 – 344)

BBS - Blackboard systems

• Arbiter
– Selects experts who can come to BB
– Reactive, or considering plans maximizing expected utility
– Responsible for higher-level problem solving (motivation)

• Experts
– Agents to solve the problem by cooperation
– React on the goals on BB
– Execute actions when selected

• BB
– Shared memory
– The formalism for information representation is important
– Typically for this paradigm, goals (and actions) are hierarchically

ordered

BBS cont.

• BB
– hash table – maps required capabilities to tasks
– Open missions – tasks are publicized on the BB

• Experts
– Solvers of various tasks in a hierarchy
– List of capabilities and efficiency

• Example:
– Commander agent seeks for ATTACK-CITY tasks, transforms

them into multiple ATTACK-LOCATION tasks
– Soldiers of various kinds seek for appropriate ATTACK-

LOCATION missions

Example – BBWar game

• Simple mechanism for agent coordination,
cooperation, task and results sharing

• Experts do not need to know about other experts and
still they can cooperate with them

• Messages on BB can (and typically are) rewritten –
delegate tasks, create subtasks, change experts …

• Sometimes the BBS architecture is used for general
communication of agents (every message is via BBS)

• Agents typically have to share the same architecture
(to access the BB), and it can get crowded around BB
(maybe distributed hash-tables can help)

BBS – pros and cons

• straightforward
• Besides trivial reasons, results sharing can help in solving

these aspects:
– Confidence

• Independent solutions of identical problems can be
compared

– Completeness
• Agents share their local views to create more global idea

about the problem
– Precision

• Sharing can improve overall precision of the solution
– Timely manner

• An Obvious advantage of distributed approach is the time
reduction

Results sharing

• Long time ago (before KQML or ACL), Wooldridge,
Jennings, 1990

• Distributed expert system
• Sharing of knowledge, distribution of sub-tasks
• Each agent is a rule-based system

– Skills – I can prove/contradict the following …
– Interests – I am interested if the following is true or false …

• Communication
– Sender, receiver, content (hypothesis + speech act)
– Request, response, inform

Example: FELINE

• Agents can help each other, or obstruct
– Robots can move a brick only by pushing from one side together
– Robots crowd the entrance and cannot open the door

• Agents affect the environment
• Agents can create societies, subordinates, enemies
• It is important to know the types of interactions among

agents in the particular MAS
• Otherwise, it is not possible to design efficient control

mechanisms
• The simplest case – interaction of two rational (selfish)

agents in an environment resembling a game

Interaction of agents

• Why should an agent be honest about its capabilities
• Why should agent finish an assigned task
• If the system is homogenous (such as completely

designed by us), benevolence is good strategy
• But most often, the system contains agents with various

interests
– Conflict between the common goal and the goals of individual

agents
– Consider, e.g. the air traffic control

• Sometimes, the system is complicated, it is not explicitly
clear what the common interest is

• Then it is better to consider selfish agents

Self-interested agents cooperate

• To maximize its expected utility
• There is game theory, and many AI techniques to

achieve this
• But other agents in the system want the same
• Each agent typically knows utilities fo its own actions
• Strategic thinking:

– Maximize your utility
– Considering everybody else (also) act rationally
– This does NOT maximize the common utility
– But it’s a robust strategy

What does a selfish agent want?

• Benevolence not supported
• The set of possible outcomes O={o1, o2, …},

– Common for all (both) agents

• And preferences on O – utility function u: O->R
– Different for each agent
– Utility function sorts outcomes

• Remarks:
– Money is not a good utility for humans
– Non-linear utility function on money – different utility for

rich/poor people
– Extremes are symmetric

Self-interested agent

Nashovo equilibrium, Pareto front, Prisoner’s dilemma

11. Agents interaction

• Both agents i and j influence the result
• – environment state change

– e: Ai x Aj -> O

• Agent has a strategy si (sj)
• Strategy si is dominant for agent i, if it provides better

or same result than any other strategy of agent i,
against all strategies of agent j

• Worst case scenario – opponent is rational, chooses
the best alternative

Decision process as a 2-player game

• Strategies s1 and s2 are in Nash equilibrium, if:
– If agent i plays s1, for agent j the best is to play s2

– If agent j plays s2, agent i is best playing s1

• I.e. s1 and s2 are mutually the best answer
• To find equilibria for n agents and m strategies takes

mn

• The definition is Nash equilibrium of pure strategies
– But not every game has a Nash equilibrium in pure

strategies
– And some games have more of them

Nash equilibrium

• Mixed strategy – random selection between pure
strategies

• Nash theorem: Every game with finite number of
strategies has a Nash equilibrium in mixed strategies

• How difficult it is to find such an equilibrium – total
search problem, since 2006 we know the problem is
PPAD complete
– PPAD-completness mean (oversimplified!) only a little bit

less intractable than NP-completness.

Nash theorem

• The strategy is Pareto-optimal/efficient, when no
other strategy exists which would improve agent
result without worsening the other agent result

• Non-Pareto-optimal solution can be improved
without making other agent outcome worse

Pareto optimality

• Why don’s actually agents maximize a common utility
– social welfare

• = sum of utilities of all agents in the system
• But this is good in the cooperation scenarios only
• Typically,

– when agents are from one team
– Have one owner
– Solve one task
– The more homogenous the system, the better

Social welfare

• DD is Nash equilibrium
• DD is the only NON Pareto-optimal solution
• CC is the solution maximizing social wellfare

– Tragedy of the commons
– What does it mean to be rational?
– Are people rational?
– Shadow of the future – iterated – Axelrod, TFT strategy

Prisoner’s dilemma?

i/j D C

D 2 / 2 0 / 5

C 5 / 0 3 / 3

• Common utility – social welfare – aggregation of
individual utilities

• Common candidate in elections – social choice –
choosing the best candidate / utility

• Example:
– A: o2>o1>o3,
– B: o3>o2>o1,
– C: o2>o3>o1
– Social welfare: o2>o3>01
– Social choice: o2

Decision as voting

• Combine individual preferences to derive a social outcome
– Each voter submits preferences
– Each candidate gets one point for every preference ranking them first
– Winner is the one with largest no. of points

• With two candidates, it is simple majority election
• With more candidates, it can happen that the winner is not a

preferred candidate for majority of voters
– Example o1 – 40%, o2 – 30%, o3 – 30%, winner is o1, but 60% did not

want him
• Condorcet paradox – there are situations in which no matter

which outcome we choose, a majority of voters will be
unhappy with the result

• Tactical voting (do not follow my preferences, but vote against
some candidate)

Voting shemes: Plurality

• V1: A > B > C
• V2: B > C > A
• V3: C > A > B

• No Condorcet winner

• Social welfare is cyclic, although individual
preferences are linear

Example: Condorcet paradox

• Sequntial majority elections
– Variant of plurality where players play pairwise „tournament

rounds“, the winner moves further
– Either linear or tree tournaments
– The order of tournaments influences the election

• Borda count
– Each voter submits its complete preferences, they are

aggregated by counting the orders of all candidates
– Used in real life sometimes: Slovenia, Nauru, Island

• Slater system
– Optimize the preference aggregation process
– Select a ranking of candidates to minimize the number of pairs

of candidates such that the ranking disagrees with the pairwise
majority vote on these two candidates

– NP-complete

Other voting schemes

• Pareto property
– If in everybody’s preferences X > Y, then it should hold that

X >sw Y
– Holds for majority and Borda
– Does not hold for sequential majority

• Condorcet winner
– Condorcet winner is the candidate that beats opponents in

pairwise comparisons, quite a strong thing.
– Condorcet winner condition: Condorcet winner will be the

overall voting
– Sounds reasonable but holds only for sequential majority

Properties of voting procedures

• Independence of irrelevant alternatives (IIA)
– Whether X >sw Y (i.e. X is ranked above Y in the social

outcome) should depend only on relative orderings of X
and Y in voters preferences.

– Thus, when all preferences remain the ordering of X and Y,
and maybe change something else, like preferences of
other candidates X, Z or Z W, the relation X >sw Y should
remain the same.

– Does not hold for majority, sequential majority, neither
Borda

Properties of voting procedures

• Unrestricted domain, or universality
– a property of social welfare functions in which all preferences of all voters

(but no other considerations) are allowed.
– With unrestricted domain, the social welfare function accounts for all

preferences among all voters to yield a unique and complete ranking of
societal choices.

– Thus, the voting mechanism must account for all individual preferences, it
must do so in a manner that results in a complete ranking of preferences
for society, and it must deterministically provide the same ranking each
time voters' preferences are presented the same way.

• Dictatorship
– The social outcome is determined by one of the voters – the dictator,

whose preferences are taken as the social outcome
– Non-dictatorship: No voter in the society is a dictator in the sense that,

there does not exist a single voter i in the society such that for every set of
orderings in the domain and every pair of distinct social states x and y, if
voter i strictly prefers x over y, x is socially selected over y.

Properties of voting procedures

• For 3 and more candidates, no ranked voting electoral
system can convert the ranked preferences of
individuals into a community-wide (complete and
transitive) ranking while also meeting a specified set
of criteria:
– unrestricted domain,
– non-dictatorship,
– Pareto efficiency, and
– independence of irrelevant alternatives.

Arrow’s theorem

• For elections with more than 2 candidates, the only
voting procedure satisfying the Pareto condition and
IIA is a dictatorship, in which the social outcome is in
fact simply selected by one of the voters.

• This is a negative result: there are fundamental limits
to democratic decision making.

• But the interpretation that only working system is the
dictatorship is totally wrong.

Arrow’s theorem simpler version

English, Dutch, sealed-bid, Vickrey

12. Auctions

• Mechanism, how to allocate (sparse) resources to
agents

• Life:
– eBay, Sothesby, …
– Mining permits, mobile phone radio frequencies, …
– Some games

• Computer science
– Processor time, …

• Efficiency of auction:
– Allocate the resources to agents that want them the most

Auction

• An auction is a market institution in which messages from
traders include some price information—this information may
be an offer to buy at a given price, in the case of a bid, or an
offer to sell at a given price, in the case of an ask—and which
gives priority to higher bids and lower asks.

• Seller
– maximize the price

• Buyer
– minimize the price
– Has its own utility function

• Auction protocols
– Winner – first price, second price, …
– Open cry vs. sealed-bid
– One or more rounds

Auction

• One round, closed offers
• Highest bid wins, the offered price is paid
• Market price not estimated
• Other participants preferences not estimated
• Used for selling properties, treasury bonds, …
• Dominant strategy is to go epsilon bellow your utility

First-price sealed bid

• Sealed bid, one round, second-price
• Highest bid is the winner, pays the second highest bid

price
• Dominant strategy for the buyer is to offer its true

value – why?
• Google AdWords, stamps, …

Vickrey

• Open cry, increasing price, first-price
• The most common one – antiques, artwork, internet,

95% of auctions are English
• Most common case where the buyer overshoots the

price
• Dominant strategy – increase epsilons until the utility

English

• Open cry, decreasing price, first-price
• Often used for perishable items – flowers, fish
• Sellers like it
• Not possible to estimate the market price
• Not possible to estimate other buyers preferences
• Dominant strategy – wait till utility minus epsilon is

reached

Dutch

• Buyers utilities:
– A – 80 Kč
– B – 60 Kč
– C – 30 Kč

• Different auctions:

• English – 61
• Dutch – 80 or 79ish
• FP Sealed bid – 80
• Vickrey – 60

• Ideal scenario with zero additional information and no
cheating, …

Example

• Combinatorial:
– More items, subsets of them
– Favourite for theory

• Paying all the bids:
– Popular as tool for lobbing and bribes research, sport events

(pay to run a marathon)
• Quiet:

– Version of English on paper, cfp?
• Amsterdam:

– Start English, when two buyers remain, switch to Dutch with
double the price

• Tsukiji Tokyo fish market
– Offers at once, conflicts by scissors-stone-paper

Further auctions

