
Microcontroller

programming

Atmel AVRASM2

2

Quick Guide

#include <m128def.inc>

forever: RJMP forever ; and ever

http://onlinedocs.microchip.com AVR Assembler User Guide

AVRAS2 assembler

 Syntax

 Preprocessor

 Keywords

 Operators

 Directives

 Expressions

 Functions

 Known issues

3

4

Syntax

[label:] instruction [operands] [Comment]

[label:] directive [operands] [Comment]

Comment ; [Text]

(empty line)

5

Preprocessor

 Nearly as in C (with necessary differences)

 Directives start with #

 Operators # a ##

 Predefined macros _ _SOMETHING_ _

6

Preprocessor directives

#define #undef

#error #warning #message

#if #else #elif #endif

#ifdef #ifndef

#include

#pragma

(empty directive)

(stringification)

(concatenation)

7

#pragma - general

#pragma warning range byte option

integer / overflow / none

#pragma overlap option

ignore / warning / error / default

#pragma error instruction

#pragma warning instruction

8

#pragma – AVR part related

#pragma AVRPART ADMIN PART_NAME string

V0 / V0E / V1 / V2 / V2E

#pragma AVRPART CORE CORE_VERSION version_string

#pragma AVRPART CORE INSTRUCTIONS_NOT_SUPPORTED
mnemonic[operand[,operand]][: …]

#pragma AVRPART CORE NEW_INSTRUCTIONS
mnemonic[operand[,operand]][: …]

#pragma AVRPART MEMORY PROG_FLASH size

#pragma AVRPART MEMORY EEPROM size

#pragma AVRPART MEMORY INT_SRAM size

#pragma AVRPART MEMORY INT_SRAM START_ADDR address

0x60 / 0x100

#pragma partinclude num

0 / 1

Operands

 Label
 value of the location counter at that place

 Variable
 SET directive

 Constant
 user defined using EQU directive

 integer
decimal

hexadecimal (0x… $...)

binary (0b…)

octal (0)

 floating-point

 PC
 current value of the Program memory location counter

9

10

Operator Precedence OLD

1.

2.

3. ? : (conditional expression)

4. || (logical OR)

5. && (logical AND)

6. | (bitwise OR)

7. ^ (bitwise XOR)

8. & (bitwise AND)

9. == (equal) != (not equal)

10. < (less than) <= (less or equal) > (greater than) >= (greater or equal)

11. << (shift left) >> (shift right)

12. ! (unary logical NOT) ~ (unary bitwise NOT) + (addition) - (substraction)

13. * (multiplication) / (division) % (modulo)

14. - (unary minus)

11

Operator Precedence since AVRAS2.1

1.

2.

3. ? : (conditional expression)

4. || (logical OR)

5. && (logical AND)

6. | (bitwise OR)

7. ^ (bitwise XOR)

8. & (bitwise AND)

9. == (equal) != (not equal)

10. < (less than) <= (less or equal) > (greater than) >= (greater or equal)

11. << (shift left) >> (shift right)

12. + (addition) - (substraction)

13. * (multiplication) / (division) % (modulo)

14. - (unary minus) ! (unary logical NOT) ~ (unary bitwise NOT)

12

Assembler directives

 memory location

 macros

 memory initialization

 conditional compilation

 variables and constants

 output

 all directives start with .

 case-insensitive
(can be switched to sensitive, then keywords are lowercase)

13

Directives

 BYTE

 CSEG, DSEG, ESEG

 CSEGSIZE

 DB, DW, DD, DQ

 DEF, UNDEF, EQU, SET

 DEVICE

 EXIT

 ERROR, WARNING, MESSAGE

 IF, IFDEF, IFNDEF, ELSE, ELIF, ENDIF

 INCLUDE

 LIST, NOLIST, LISTMAC

 MACRO, ENDM, ENDMACRO

 ORG

 OVERLAP, NOOVERLAP

14

Pre-defined macros

_ _ARVASM_VERSION_ _

_ _CORE_VERSION_ _

_ _DATE_ _ _ _TIME_ _

_ _CENTURY_ _

_ _YEAR_ _ _ _MONTH_ _ _ _DATE_ _

_ _HOUR_ _ _ _MINUTE_ _ _ _SECOND_ _

_ _FILE_ _ _ _LINE_ _

_ _PART_NAME_ _ _ _partname_ _

_ _CORE_coreversion_ _

15

Expressions

 constant expressions

 internally 64bit

 operands

 labels, variables, constants; PC, int, float

 operators

 functions

16

Functions

 LOW, HIGH

 BYTE2, BYTE3, BYTE4

 LWRD, HWRD

 PAGE

 EXP2, LOG2

 INT, FRAC

 Q7, Q15

 ABS

 DEFINED

 STRLEN

Minimalistic design

.include "m128def.inc" ; optional – only if needed

.CSEG

.ORG 0
CLI

MAIN:
RJMP MAIN

17

Typical design

.include "m128def.inc"

.def TEMP = R19

.CSEG

.ORG 0
RJMP RESET ; Reset Handler
NOP ; (or only JMP RESET if too far)
JMP EXT_INT0
... ; + all other irq handlers
JMP SPM_RDY ; (this is the last one)

.ORG 0x46
RESET:

LDI TEMP,LOW(RAMEND) ; Initialize Stack Pointer
OUT SPL,TEMP
LDI TEMP,HIGH(RAMEND)
OUT SPH,TEMP
... ; Whatever else needs to be initialized

MAIN:
... ; Do whatever you want
RJMP MAIN ; repeat

~ or ~
HANG:

RJMP HANG ; Hang up when finished
18

Common design („C-like“)

.include "m128def.inc"

.def TEMP = R19

.CSEG

.ORG 0
RJMP RESET ; Reset Handler
NOP ; (or only JMP RESET if too far)
JMP __bad_irq
... ; + all other irq handlers
JMP __bad_irq ; (this is the last one)

.ORG 0x46

RESET:
EOR r1,r1
OUT SREG,r1
LDI TEMP,LOW(RAMEND) ; Initialize Stack Pointer
OUT SPL,TEMP
LDI TEMP,HIGH(RAMEND)
OUT SPH,TEMP
... ; Whatever else needs to be initialized
RCALL MAIN
RJMP exit

__bad_irq:
JMP 0

MAIN:
... ; Do whatever you want
RET

exit:
RJMP exit ; Hang 20

Known Issues
 Issue #4146: Line continuation doesn't work in macro calls

 Missing newline at end of file

 AVRASM2 has some issues if the last line in a source file is missing a newline: Error messages may refer to wrong filename/line

number if the error is in the last line of a included files, and in some cases syntax errors may result. Beware that the Atmel Studio

editor will not append a missing newline at the end of a source file automatically.

 Increment/decrement operators

 Increment/decrement operators (++/--) are recognized by the assembler and may cause surprises, e.g. symbol--1 will cause a

syntax error, write symbol - -1 if that is what is intended. This behaviour is consistent with C compilers. The ++/-- operators are

not useful in the current assembler, but are reserved for future use.

 Forward references in conditionals

 Using a forward reference in an assembler conditional may cause surprises, and in some cases is not allowed.

 Error messages

 Sometimes error messages may be hard to understand.

 Typically, a simple typo in some instances may produce error messages like this:
myfile.asm(30): error: syntax error, unexpected FOO

where FOO represents some incomprehensible gibberish. The referenced filename/line number is correct, however.

 defined incorrectly treated as an assembler keyword

 The keyword DEFINED(symbol) is recognized in all contexts, it should only be recognized in conditionals. This prevents

DEFINED(symbol) to be used as a user symbol like a label, etc. On the other hand, it allows for constructs like '.dw foo =

defined(bar)' which it shouldn't. Note that the preprocessor and assembler have separate implementations of DEFINED(symbol).

 Preprocessor issues

 The preprocessor will not detect invalid preprocessor directives inside a false conditional. This may lead to surprises with typos.

(nested #if)

 Issue #3361: The preprocessor incorrectly allows additional text after directives, which may cause surprises, e.g., #endif #endif will

be interpreted as a single #endif directive, without any error or warning message.

 Issue #4741: Assembler conditionals in preprocessor macros don't work. Use of the macro defined below will result in different

syntax error messages, depending on the value of the conditional val (true or false)
The reason for this is that assembler conditionals must appear on a separate line, and a preprocessor macro like the above is concatenated

into a single line. 21

#define TEST \
.IF val
\ .DW 0
\ .ELSE
\ .DW 1
\ .ENDIF

https://www.microchip.com/webdoc/avrassembler/avrassembler.wb_expressions.html#avrassembler.wb_expressions.DEFINED_symbol
https://www.microchip.com/webdoc/avrassembler/avrassembler.wb_expressions.html#avrassembler.wb_expressions.DEFINED_symbol
https://www.microchip.com/webdoc/avrassembler/avrassembler.wb_expressions.html#avrassembler.wb_expressions.DEFINED_symbol

