Microcontroller programming

AVR

Watchdog

(ATmega128 but very similar to others)

General info

- Peripheral features
 - • •
 - Programmable Watchdog Timer with On-Chip Oscillator

• ...

- Reset sources
 - ...
 - Watchdog Reset. The MCU is reset when the Watchdog Timer period expires and the Watchdog is enabled.

• • • •

General info

- If enabled, Watchdog is active in all sleep modes
 - ... and draws current, which contributes significantly to the total power consumption in deep sleep modes.

AVR Clock System

Figure 18. Clock Distribution

Watchdog Oscillator

Table 7. Number of Watchdog Oscillator Cycles

Typical Time-out (V _{CC} = 5.0V)	Typical Time-Out (V _{CC} = 3.0V)	Number of Cycles	
4.1ms	4.3ms	4K (4,096)	
65ms	69ms	64K (65,536)	

Figure 192. Watchdog Oscillator Frequency vs. V_{CC}

MCU Control and Status Register

MCU	CSR ₇	6	5	4	3	2	1	0
	JTD	-	-	JTRF	WDRF	BORF	EXTRF	PORF
	R/W	R	R	R/W	R/W	R/W	R/W	R/W
	0	0	0					

- JTD JTAG Interface Disable
- JTRF JTAG Reset Flag
- WDRF Watchdog Reset Flag
- BORF Brown-out Reset Flag
- EXTRF External Reset Flag
- PORF Power-on Reset Flag

WDTCR Watchdog Timer Control Register

Table 22. Watchdog Timer Prescale Select

WDP2	WDP1	WDP0	Number of WDT Oscillator Cycles
0	0	0	16K (16,384)
0	0	1	32K (32,768)
0	1	0	64K (65,536)
0	1	1	128K (131,072)
1	0	0	256K (262,144)
1	0	1	512K (524,288)
1	1	0	1,024K (1,048,576)
1	1	1	2,048K (2,097,152)

Figure 28. Watchdog Timer

Extended Fuse

7	6	5	4	3	2	1	0
-	-	-	-	-	-	M103C	WDTON

M103C ATmega103 compatibility mode

<u>**0**</u> ... ON 1 ... OFF

WDTON Watchdog control

0 ... WDT always on WDT Table 21. WDT Config

1	 WD7	ΓCR	contro	S
				_

M103C	WDTON	Safety Level	WDT Initial State	How to Disable the WDT	How to Change Time-out
Unprogrammed	Unprogrammed	1	Disabled	Timed sequence	Timed sequence
Unprogrammed	Programmed	2	Enabled	Always enabled	Timed sequence
Programmed	Unprogrammed	0	Disabled	Timed sequence	No restriction
Programmed	Programmed	2	Enabled	Always enabled	Timed sequence

Table 21. WDT Configuration as a Function of the Fuse Settings of M103C and WDTON.

Timed Sequence

- In the same operation, write a logic one to WDCE and WDE. A logic one must be written to WDE regardless of the previous value of the WDE bit.
- Within the next four clock cycles, in the same operation, write the WDE and WDP bits as desired, but with the WDCE bit cleared.

Examples:

- To enable watchdog with prescaler 512k (ca. 0.5s)
 WDTCR = (1 << WDCE) | (1 << WDE) ;
 WDTCR = (1 << WDE) | (1 << WDP2) | (1 << WDPØ);
- To disable watchdog:
 WDTCR = (1 << WDCE) | (1 << WDE);
 WDTCR = Ø;

Safety Levels

• SL0

- WDT initially disabled, can be enabled without restriction
- Timeout can be changed without restriction
- Disabled using *the* timed sequence
- SL1
 - WDT initially disabled, can be enabled without restriction
 - Timeout changed and/or WDT disabled using the timed sequence
- SL2
 - WDT always enabled, WDE always read 1
 - Timeout changed using *the* timed sequence

WDR – Watchdog Reset

Description:

This instruction resets the Watchdog Timer. This instruction must be executed within a limited time given by the WD prescaler. See the Watchdog Timer hardware specification.

Operation:

(i) WD timer restart.

	Syntax:	Operands:	Program Counter:
(i)	WDR	None	$PC \leftarrow PC + 1$

16-bit Opcode:

1001	0101	1010	1000

Status Register and Boolean Formula:

- 1	т	н	S	V	Ν	Z	С
-	_	_	-	_	_	_	_

Example:

	wdr

; Reset watchdog timer

Words: 1 (2 bytes) Cycles: 1