Propositional and Predicate Logic - Homework on Propositional Logic

The deadline for this homework is November 18, 2024, at 10:40 (before the tutorials). You can submit your solution to my email Martin.Pilat@mff.cuni.cz (a scan on your handwriting is OK), or on paper before the tutorials.

You can get up to 5 points for the homework that count towards the credit requirements.

Let φ, ψ are two propositions over the set of variables $\mathbb{P} = \{p, q, r, s, t\}$:

$$\varphi: \quad (p \lor r) \land (\neg p \lor q) \land (\neg q \lor \neg r), \tag{1}$$

$$\psi: \quad (\neg s \lor \neg r) \land (\neg t \lor s) \land \neg p. \tag{2}$$

- 1. Using implication graph, decide if the proposition $\varphi \wedge \psi$ is satisfiable. If it is, find a satisfying assignment. (1 point)
- 2. Transform φ into DNF. (1 point)
- 3. Count the number of non-equivalent propositions θ over $\mathbb{P}' = \{p, q, r\}$ such that $\varphi \vDash \theta$. (1 point)
- 4. Let variables r, s, t represent (in this order) that "Rachel / Sarah / Tom is at school" and let $\mathbb{P} = \{r, s, t\}$. We know that
 - (i) If Tom is not at school, Sarah is also not there.
 - (ii) Rachel does not go to school without Sarah.
 - (iii) If Rachel is not at school, Tom is there.

We want to use the tableau method to show that these facts imply that Tom is at school. Therefore:

- (a) Write propositions $\varphi_1, \varphi_2, \varphi_3$ over \mathbb{P} expressing the facts (i)-(iii). (1 point)
- (b) Use the tableau method to show that $T = \{\varphi_1, \varphi_2, \varphi_3\}$ implies that Tom is at school, i.e. $T \vDash t$. (1 point)