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Katedra teoretické informatiky a matematické logiky
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Malostranské náměst́ı 25, 118 00 Praha 1
koubek@ktiml.mff.cuni.cz

V souladu se smlouvou o dvoj́ım vedeńı doktorské práce proběhla obhajoba dne
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1. Introduction

The presented thesis explores the potential of resolution-based reasoning methods
for automatically establishing properties of systems which evolve in time. Follow-
ing the automation of logic tradition, its main aim is to develop and analyze new
algorithms for automated reasoning and to establish experimentally whether they
can be successfully applied in practice. Relevant applications for the developed
algorithms are found successively in three independent but closely related fields:
theorem proving in linear temporal logic, verification of hardware circuits, and
automated planning. The corresponding reasoning tasks share a common notion
of time, which is modeled as a discrete linear sequence of time moments. They
also share a formalism for representing the individual moments, namely proposi-
tional logic. It is the second property which enables to approach the tasks using
resolution, a well understood rule of logical inference suitable for automation. It
is the temporal aspect of the mentioned tasks, on the other hand, which poses
the main challenge.

In this abstract, we first provide an overview of the three mentioned fields:
theorem proving in linear temporal logic (1.1), verification of hardware circuits
(1.2) and automated planning (1.3) and of the corresponding reasoning tasks. We
then review the resolution technology used in the thesis to approach these tasks
(1.4) and elaborate on the inherent challenges connected with reasoning about
time and on the adopted strategy to overcoming them (1.5). Then we provide a
summary of the main contributions of the thesis (2).

1.1 Theorem proving in linear temporal logic

Linear-time temporal logic (LTL) is a modal logic designed for specifying tem-
poral relations between events which occur over time. Originally conceived by
Kamp [18] to formally capture temporal relationships expressible in natural lan-
guage, LTL was introduced into computer science by Pnueli [29] as a specification
language for reactive systems, i.e. systems with non-terminating computations.
Nowadays, LTL is well established and widely used in practice.

LTL extends classical propositional logic by introducing temporal operators
which specify the way in which a formula ϕ should be interpreted with respect
to the flow of time. For example, the formula ✸ϕ stands for “ϕ holds eventually
in the future”, ✷ϕ means “ϕ holds always in the future”, and ©ϕ expresses that
“ϕ holds at the next moment of time”. Time is considered to be a linear discrete
sequence of time moments represented by propositional valuations, informally also
called worlds. Such a potentially infinite sequence forms an LTL interpretation.
To prove an LTL formula ϕ means to establish that it is valid, i.e., that all LTL
interpretations actually make ϕ true. For example, the LTL formula ✷ψ → ©ψ

is valid (a theorem), whereas the LTL formula ©ψ → ✷ψ is not, but is satisfiable,
i.e., there is an LTL interpretation in which it is true. Similarly to classical logic,
one can prove an LTL formula ϕ by showing that it does not have a counter-
example, i.e. that its negation ¬ϕ is not satisfiable. By this duality, LTL proving
and satisfiability checking are essentially two sides of the same coin.

The traditional use of LTL lies in formal verification of reactive systems where
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the logic serves as a specification language for expressing the system’s desired
behavior. Such a specification is subsequently checked against a model of the
system during the process of model checking [8]. More recently, the importance
of LTL satisfiability checking and thus also theorem proving is becoming rec-
ognized [31, 33]. This is, for instance, essential for assuring quality of formal
specifications [27]. In more detail, because specifications are ultimately written
by humans they may contain bugs. A priori excluding specifications which are
either valid or unsatisfiable represents a useful sanity check, because in the for-
mer case the specification would be trivially satisfied by any system and in the
latter by none. Another motivation comes from the fact that satisfiability is a
precondition for realizability and thus a satisfiability checking procedure can be
useful in debugging specifications for system synthesis [17].

The presented thesis approaches the problem of LTL theorem proving by
building on the work of Fisher [11] who showed how to transform any LTL for-
mula into a certain clausal normal form. The normal form reduces the formula
complexity in terms of temporal operator nestings and so removes one of the ob-
stacles on the way to applying resolution-based methods for automated reasoning
in LTL.

1.2 Verification of hardware circuits

With the growing reliance on hardware technology in our lives, ranging from the
use of personal computers and mobile phones to areas such as traffic control and
medicine, where human life is directly affected, the importance of the correct
behavior of the used devices is becoming more than obvious. Formal verification
provides methods to rigorously establish that a designed circuit meets its speci-
fication, thus greatly helping to increase our confidence in the correctness of the
final device.

In this work, we focus on a particular phase in the design process in which
the designed circuit obtains a representation referred to as gate-level netlist, an
abstraction not unrelated to that of the Boolean circuit from theoretical computer
science. Moreover, we will be interested in verifying sequential circuits, which
in addition to logic gates for computing Boolean functions also employ state-
holding elements called latches. Sequential circuits compute in cycles and in each
cycle externally supplied inputs together with the old values stored in the latches
participate in producing the circuit’s output and the new values to be stored.1

Simply put, sequential circuits have memory.
Let us have a look at Figure 1.1 for a small example. The figure depicts a

simple circuit storing a single bit of memory (latch l). If during a particular
cycle the value of the input bit i is zero, the stored value is preserved (l′ = l).
If the value of the input is one, the stored value is read (output o = l) and at
the same time toggled l′ = ¬l. This follows from the inner working of the two
employed gates, the AND gate computing logical conjunction (∧) and the XOR
gate computing the exclusive or operation (⊕). The semantics of a latch is to

1More precisely, this describes the behavior of a sequential circuit of a synchronous type.

There are also asynchronous circuits in which the state can change at any time in response to

changing inputs.
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Figure 1.1: A simple circuit (left) and its imperative interpretation (right).

take the value l′ computed at the end of one cycle and pass it back as l for the
computation of the following cycle. This defines the discrete flow of time in the
context of the circuit’s computation.

One verifies a sequential circuit with respect to a property expressing its
correct behavior. In the most common setting called the verification of invariance
properties, which we will consider in this work, the property is a propositional
formula ϕ over variables corresponding to the latches. Formula ϕ specifies an
invariant of the circuit which must be satisfied in all the states reachable from a
fixed initial state. Dually, the invariant is violated if there is a computation of the
circuit starting from the initial state, processing in cycles a particular sequence
of inputs and ending in a state where ϕ does not hold. Such a state is usually
called a bad state.

Sequential verification is a computationally hard problem. An intuition about
this can be drawn by realizing that the size of the circuit’s state space is expo-
nential in the number of its latches. Moreover, exponentially many states may
need to be traversed on the potential path from an initial state to a bad state.
One way to combat this well known state explosion problem is to avoid explicit
enumeration of the states and instead use and manipulate symbolic representa-
tion of whole sets of states. This approach was pioneered by McMillan [24] who
used Binary Decision Diagrams as such a representation.

By adapting the resolution-based methods to the problem of verification of
invariance properties, the theses naturally arrives to a symbolic algorithm where
the representation of sets of states is based on clausal propositional logic.

1.3 Automated planning

Automated planning is a classical discipline of artificial intelligence [32, 12]. Op-
erating with a given formal, high-level description of a world, its fundamental
task is to look for a sequence of actions that lead to achieving a specified goal.
Depending on the modeled scenario, the goal-achieving sequence, or simply the
plan, may describe anything from a route for a space rover collecting samples
on a remote planet, instructions for the preparation of a complex chemical from
individual simpler compounds, to a set of trajectories for conveyors loading crates
in a warehouse. This generality is enabled by the expressiveness of the language
used for describing the input task, which is traditionally based on first-order logic.

Figure 1.2 depicts an example situation from the emblematic blocks world
planning domain. The task in the domain is to plan the instructions of a robotic
arm to rearrange stacks of blocks. The domain description consists of a set
of predicates for defining the state of the world (here, on(X, Y ), clear(X), etc.)
and a set of operators defining the possible transformations (here, unstack(X, Y ),
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Operator unstack(X,Y )

pre : clear (X), on(X,Y ), arm-empty

add : holding(X), clear (Y )

del : clear (X), on(X,Y ), arm-empty

Figure 1.2: The initial and goal configurations of simple planning scenario (left)
and an example operator (right).

stack(X, Y ), . . . ). An instance of a planning task in the domain is then specified
by supplying a set of concrete objects (in our example, we have blocks a, b and c)
and their initial and goal configurations (for instance, the facts on(c, a), clear(c),
and arm-empty are part of the definition of the initial configuration, whereas
on(a, b) and on(b, c) would be part of the goal).

Operators are parametrized schemas for describing concrete actions. That
means that an action is obtained by substituting concrete objects for the opera-
tor’s parameters. In our example, we for instance obtain the action unstack(c, a)
by substituting c for X and a for Y in operator unstack(X, Y ). This action is
applicable in the initial configuration, because all its three preconditions (pre):
clear(c), on(c, a) and arm-empty are satisfied there. When this action is applied,
we arrive to a new configuration by adding (add) facts that are supposed to addi-
tionally hold (here holding(c) and clear(a)) and by deleting (del) facts that now
cease to hold (here the same three that were required as preconditions). Such
a transition from one configuration to the next via action application is what
defines a single time step within the planning semantics.

The blocks world domain is a very simple one and a specialized algorithm for
efficiently solving tasks in this domain can easily be devised. The key asset of
automated planning, however, lies in that it is domain independent. It aims to
provide methods for uniformly solving tasks in any domain that can be described
by its language. That is what makes automated planning versatile, but also chal-
lenging. Another interesting perspective on domain independence is to view the
planning formalism as a high-level declarative programming language decoupling
the problem from its solution [14].

Thanks to the connection of the standard planning formalism to first-order
logic, some of the historically first approaches to automated planning formulated
the task as first-order theorem proving [13, 23]. The later discovery of Kautz
and Selman [19], who proposed to restate the same problem in terms of proposi-
tional satisfiability, founded a new powerful approach to planning, which is still
actively studied today. This planning as satisfiability paradigm shows how to
encode a planning task into “propositional logic plus linear time” and provides
the necessary bridge to planning for the resolution-based methods developed in
the presented thesis.

1.4 Resolution-based reasoning

The presented thesis makes use of resolution in two main forms. Explicitly, as an
inference rule in the context of saturation-based theorem proving, and implicitly,
as a proof system underlying the computation of most of the modern propositional
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satisfiability (SAT) solvers. These two forms are, in fact, closely related.

Resolution and saturation

The history of resolution as a logical rule is at least as old as the history of the
automated theorem proving research field. One of the first appearances of resolu-
tion can be found in the work of Davis and Putnam [10], who used the principle
within their theorem proving procedure for eliminating ground atomic formu-
las. Subsequently, Robinson [30] showed how to use unification to lift resolution
from ground formulas to formulas with variables and established saturation-based
theorem proving with resolution as the main inference rule as one of the most
successful approaches to automatically proving theorems in first-order logic.

Resolution operates on a formula in clause normal form which consists of a
conjunctive set of clauses, each clause being a disjunction of literals. From two
clauses C∨a andD∨¬a containing complementary literals a and ¬a, respectively,
the resolution inference rule (or, more precisely, a propositional version thereof)
allows one to derive a resolvent C ∨D. Such an inference is typically summarized
as

I
C ∨ a D ∨ ¬a

C ∨D
.

Resolution forms the basis of a refutationally complete calculus, which means
that from any unsatisfiable set of clauses one can derive an obvious contradiction
in the form of the empty clause by a finite number of resolution inferences.2

Saturation is a process of performing all available inferences in a systematic
way until the empty clause is derived, or a set closed under the inferences and not
containing the empty clause is obtained which signifies that the original formula
was satisfiable. Because saturation typically produces a large number of claus-
es, techniques for controlling and restricting the process are of great practical
importance.

One of the most important achievements in this area was the development
of the superposition calculus [1, 2] and an associated set of saturation strategies
which 1) allow a restriction of considered inferences to only those satisfying cer-
tain ordering constraints on the participating literals, 2) introduce a powerful
notion of abstract redundancy to justify active removal of clauses that provably
cannot contribute to the derivation of the empty clause, 3) still guarantee overall
completeness. While the ideas of superposition were originally conceived in the
context of first-order theorem proving with equality, they can be restated and
successfully applied already on the level of propositional logic [3].

Resolution and SAT solving

By revising the already mentioned procedure of Davis and Putnam [10] and re-
placing the explicit application of resolution by a splitting rule for case analysis,
Davis at al. [9] introduced an algorithm nowadays known as the DPLL procedure
and started an extremely successful field of practical propositional satisfiability
(SAT) checking.

2Combined with the explicit or implicit use of the factoring rule, which takes care of con-

tracting multiple occurrences of the same literal in a clause to just a single occurrence.
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DPLL is best described as a backtrack search in the space of partial truth
assignments, supported by a unit propagation rule for early detection of conflicts.
The power of modern SAT solvers still originates from DPLL, but is extended
further by the use of efficient data structures and clever branching heuristics [26],
non-chronological backtracking with conflict driven clause learning [22] and many
other techniques [6].

Although procedurally DPLL and its extensions are very different from sat-
uration, the corresponding procedures can still be seen to implicitly generate a
resolution proof of the input formula. Results of this form are not always easy
to derive, but are important, for instance, for establishing the proof theoretic
strength of the individual extensions [4, 28].

The presented thesis exploits a particularly fine-grained connection [40] be-
tween CDCL, a version of DPLL enhanced with the conflict driven clause learning
technique, and the superposition framework [3]. The connection, in particular,
relates unit propagation and clause learning to the concept of a productive clause
from the completeness proof of superposition. It enables a transformation of a
proof method first developed in the saturation setting into an efficient SAT-based
LTL prover.

1.5 The temporal challenge

Although resolution is a well established method for automated reasoning in
general, the temporal dimension of the problems studied in the presented thesis
represents an extra challenge. On an abstract level, this challenge manifests itself
in at least two forms depending on whether we primarily focus on satisfiability
or unsatisfiability detection. From the perspective of satisfiability detection, we
deal with the challenge of large models. As mentioned before, a path from an
initial state to a bad state of a circuit can be exponential in the size of the task
description and a similar observation holds for planning tasks. Models in LTL
are formally even infinite sequences and although they can be represented finitely,
one still faces a potential exponential blowup.

From the perspective of unsatisfiability detection, we face a challenge of the
discovery of an inductive argument. Indeed, it seems that a form of induction is
always needed to make the step from partial results of the form ”a short path
does not exists” to the ultimate claim ”no path (of any length) exists”. The
option to exhaust each of the exponentially many path lengths separately does
not seem to lead to a feasible solution.

The general idea of the presented approach to overcoming the respective chal-
lenges rests: 1) on assigning time indexes to signature symbols to deal with the
challenge of large models and 2) on a proof repetition detection and replaying
technique to deal with the challenge of the discovery of an inductive argument.

Concerning the former, the thesis takes inspiration in the way time is encoded
in the planning as satisfiability paradigm [20] or, equivalently, in the related
bounded model checking approach [5] known from verification. This solution
needs to be complemented by an additional idea in the case of LTL, where we
formally need infinitely many indexes to describe the whole model. We devise a
way to use labels in the spirit of Lev-Ami et al. [21] to finitely represent clauses
over the obtained infinite signature to overcome this obstacle.
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Concerning the latter, the thesis proposes a proof repetition detection and
replaying technique in a similar way to how the melting rule for loop detection
proposed by Horbach and Weidenbach [16] is used for inductive reasoning in the
context of superposition for fixed domains [15]. This is, however, only a high-
level analogy since the details of the respective studied problems are considerably
different.
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2. Main contributions

The presented thesis contains five collections of contributions structured into five
main chapters. The first three chapters deal with LTL theorem proving, in the
fourth the attention moves to the verification of hardware circuits and the final
chapter considers automated planning. Several new algorithms are developed and
analyzed, their performance is experimentally evaluated, and they are put into
the context of related work within the respective research fields.

Although the observation that the problems studied in the thesis are closely
related is not new, it is brought to a much more explicit level by devising a single
representation for the corresponding reasoning tasks. This enables to approach
the problems in a uniform way using resolution and thus to demonstrate how close
the problems can be put together and the corresponding tasks aligned on the right
level of abstraction. It also paves the way for further exchange of ideas between
the research fields. As such, it can be considered one of the main contribution
of this thesis. On a more fine-grained level, the five main chapters of the thesis
contain the following contributions.

2.1 Labelled superposition for LTL

The first main chapter of the thesis presents LPSup, a new calculus for proving
theorems in LTL and uses it as a basis for a new decision procedure for the logic.
The main idea is to treat temporal formulas as infinite sets of purely propositional
clauses over an extended signature in which symbols are indexed by time moments
and to represent these infinite sets by finite sets of labeled propositional clauses.
This new representation naturally leads to the replacement of a complex temporal
resolution rule, suggested by an existing resolution calculus for LTL, by a fine
grained repetition check of finitely saturated labeled clause sets followed by a
simple inference.

The developed completeness argument is based on the standard model build-
ing idea from superposition. It inherently justifies ordering restrictions, redun-
dancy elimination and effective partial model building. The last property can be
directly used to effectively generate counter-examples to non-valid LTL conjec-
tures out of saturated labeled clause sets in a straightforward way.

The computations of LPSup are studied further by interpreting the logic-
based, symbolic operations of the calculus on the semantic level of explicit valu-
ations. This perspective later enables to reveal interesting connections to related
approaches and to identify the strengths and potential weaknesses of the present-
ed method.

The material of this chapter is a revised and extended version of previously
published work [37, 38].

2.2 LTL proving with partial model guidance

Building on the understanding acquired in the previous chapter, chapter two ap-
proaches the problem of LTL theorem proving from a different angle. Abandoning
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the saturation paradigm and a new decision procedure is designed, based on the
observation that LPSup can build partial models on the fly. It is shown how
to use these models to drastically restrict the selection of inferences and thus to
effectively guide the proof search.

Relying on the previously mentioned connection between conflict driven clause
learning and superposition, the model guidance idea is implemented within the
SAT solving framework. In more detail, a new decision procedure called LS4 is
designed, by using an efficient SAT solver as a subroutine. A non-trivial book-
keeping is needed, however, to maintain the correspondence with the labeled
clauses of LPSup, a prerequisite for the discovery of full LTL models as well as
for the detection of overall unsatisfiability.

The chapter proves that LS4 is correct and terminating. On an extensive set
of LTL benchmarks, it is experimentally demonstrated that the implementation
of LS4 is one of the strongest available LTL provers. In a detailed comparison
with related work an attempt is then made to discover the key aspects behind
LS4’s success.

This chapter is based on an earlier publication [39], but has been thoroughly
revised and notably extended.

2.3 Variable and clause elimination for LTL

Chapter three studies preprocessing techniques for clause normal forms of LTL
formulas. For that purpose, the mechanism of labeled clauses introduced in
chapter one is further extended, which here allows to faithfully lift simplifica-
tion ideas from SAT to LTL. The chapter demonstrates this by adapting variable
and clause elimination, an effective preprocessing technique used by modern SAT
solvers. Presented experiments confirm that even in the temporal setting sub-
stantial reductions in formula size and subsequent decrease of solver runtime can
be achieved.

The results of this chapter have been published in [34, 36].

2.4 Reachability, model checking, and triggered

clause pushing for PDR

Chapter four returns to the model guidance idea. It first shows how to specialize
LS4, the algorithm previously developed for proving theorems in LTL, to decide
(non-)reachability in symbolically represented transition systems. The obtained
algorithm Reach can be immediately used to verify invariance (and safety) prop-
erties of hardware circuits.

It then proceeds to place the new algorithm within the context of related
work from the verification area. The fact that Reach builds on the SAT-solver
technology and, more specifically, the form of the logical formula it indirectly
evaluates make the algorithm related to the bounded model checking method
of Biere et al. [5]. On the other hand, the ability of Reach to efficiently detect
unsatisfiable instances can be attributed to the distinctive way, in which the
algorithm generates and utilizes interpolants [25].
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Ultimately, Reach is found closely related to Property Directed Reachability
(PDR), also known as IC3, an algorithm recently introduced by Bradley [7]. We
show how to transform Reach into PDR by a small change in the core of the
algorithm and by the addition of three independent enhancements. This enables
viewing PDR from the new perspective of the model guidance idea.

Chapter four continues by proposing triggered clause pushing, an additional
improvement of PDR, namely of the clause propagation phase of the algorithm.
The idea is to collect models computed by the SAT solver during clause prop-
agation and use them as witnesses for why the respective clauses could not be
pushed forward. Witnesses are then used as a pre-filter on the subsequent push
operations making them cheaper on average.

The chapter is closed by a detailed experimental evaluation of Reach, of the
several extensions of the algorithm leading to PDR, and of PDR improved by
triggered clause pushing. The relative utility of the individual improvements
is examined along with its dependance on other conditions, such as the chosen
search direction and the satisfiability status of the input problem.

2.5 Property Directed Reachability for Auto-

mated Planning

Given the exceptional success of PDR in hardware model checking, a natural
question arises whether the algorithm could be adapted and applied in the related
field of automated planning. Chapter five gives a positive answer to this question.

First, it is noticed that the commonly used encodings from the planning as
satisfiability paradigm [19] can be easily modified to yield an input for PDR.
However, the chapter also discovers a non-obvious alternative to such a direct
combination. It is shown that the SAT solver inside PDR can be replaced by a
planning-specific procedure implementing the same interface. This SAT-solver-
free variant of the algorithm is not only more efficient, but also offers additional
insights and opportunities for further improvements.

This claim is confirmed empirically in the experimental part of chapter five.
Then the chapter compares a new implementation of the proposed version of
PDR to the state-of-the-art planners to find it highly competitive, solving the
most problems on several benchmark domains. Moreover, in a separate set of
experiments, PDR is also evaluated with respect to the quality of produced plans,
the detection of unsatisfiable planning problems, and in the context of optimal
planning.

The material of chapter five has been published in [35].

2.6 Conclusion

The thesis ends with a concluding chapter which provides a unifying perspective
on the presented results, summarizes the lessons learned and suggests directions
for future research.
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