Randomized SAT algorithms

Martin Babka

March 16, 2011
History

Randomized algorithms

- Paturi, Pudlák, Saks and Zanez (PPSZ) algorithm solves unique 3-SAT in $\mathcal{O}(1.3071^n)$ time.
- Schöning proposed $\mathcal{O}(\text{poly}(n)(4/3)^n)$ algorithm for any satisfiable 3-SAT formula.
- Iwama and Tamaki improved it to $\mathcal{O}(1.3238^n)$. Refined analysis of PPSZ improved the bound to $\mathcal{O}(1.32266^n)$.
- The best known result, $\mathcal{O}(1.32216^n)$, is by Rolf from 2006.

Deterministic algorithms

- PPSZ has already been derandomized.
- In 2010 Moser and Scheder showed a full derandomization of Schöning’s k-SAT Algorithm.
Probability basics

Markov inequality
Let X be a non-negative random variable and $k > 0$. Then

$$
\Pr (X \geq kE[X]) \leq \frac{1}{k}.
$$

Geometric distribution
$X \approx \text{Ge}(p)$ if $\Pr (X = k) = (1 - p)^{k-1}p$. Hence $E[X] = \frac{1}{p}$.

Random walk

- We are given a digraph with the set of nodes being equal to all possible assignments of variables.
- Edges are determined by the algorithms.
- We calculate the probability of reaching a satisfiable assignment from a random one.
2-SAT, a simple example
Algorithm

Let $c \in \mathbb{N}$ be an arbitrary constant and n be the number of variables of the given formula.

Algorithm

- Repeat up to c times.
 - Start with an arbitrary assignment.
 - Repeat up to $2n^2$ times:
 - Choose an arbitrary clause C that is not satisfied.
 - Choose uniformly at random one of the literals in C and switch the value of its variable.
 - If a valid truth assignment has been found, return \textbf{YES}.
 - Return \textbf{NO}.

If the formula is satisfiable, then $\Pr(\text{YES}) \geq 1 - 2^{-c}$.
2-SAT, a simple example
Analysis of random walk

Fix a satisfiable solution S.

- State j represents the assignments having Hamming distance j from S, they differ in j variables when compared to S.
- Random walk around states $0, \ldots, n$.
- The value h_j denotes the expected number of steps to reach 0 when in j.

For our random walk we have that

- $h_0 = 0$,
- $h_n = 1 + h_{n-1}$,
- $h_j = 1 + \frac{1}{2} h_{j+1} + \frac{1}{2} h_{j-1}$ hence $h_{j+1} = 2h_j - h_{j-1} - 2$.

Solution of the system of linear equations is $h_j = 2nj - j^2 \leq n^2$.
What is the probability of finding a solution in $O(n^2)$ steps?

- We start in a state j, it is chosen at random.
- The expected number of steps to find S is at most n^2.
- We repeat the iteration $2n^2$ steps.
- By Markov inequality $\Pr(\text{not finding } S) \leq \frac{1}{2}$.
- Because of c independent restarts the overall probability of not finding a satisfying solution is at most 2^{-c}.

We have a randomized polynomial algorithm for 2-SAT with a negligible error. The situation changes dramatically for k-SAT, $k > 2$, why?
What is the expected number of steps to reach the state 0?

- $h_0 = 0$.
- $h_j = 1 + \frac{1}{3}h_{j-1} + \frac{2}{3}h_{j+1}$ hence $h_{j+1} = \frac{3}{2}h_j - \frac{1}{2}h_{j-1} - \frac{3}{2}$.
- $h_n = 1 + h_{n-1}$.

The unique solution is $h_j = 2^{n+2} - 2^{n-j+2} - 3j$.

- We are likely to run towards the state n than to the state 0.
- The expected number of steps is exponential and so is the expected running time of the algorithm.
- The complexity for the error probability 2^{-c} is $O(c \text{ poly}(n)2^n)$.
- We want a lower base.
k-SAT

Idea

- It is likely to run towards the state n during a random walk.
- Make the random walks shorter.
- Repeat random walks, do restarts, (exponentially) many times.
- The probability that the algorithm never finishes in the state 0 is exponentially low with respect to the number of restarts, t.

Notation

- We assume that we have a formula with n variables.
- Let t be a parameter – the number of restarts.
k-SAT

An improved algorithm

Algorithm

- Repeat up to t times.
 - Start with an arbitrary assignment.
 - If a valid truth assignment has been found, return **YES**.
 - Repeat up to $3n$ times:
 - Choose an arbitrary clause C that is not satisfied.
 - Choose uniformly at random one of the literals in C and switch the value of its variable.
 - If a valid truth assignment has been found, return **YES**.
- Return **NO**.

- We need to find a suitable t.
- The c loop from 2-SAT may be simulated by ct restarts.
k-SAT

Analysis

- Fix a satisfying solution S.
- States are the same as in case of 2-SAT; j denotes the number of variables having different values in S.
- Let q_j be the probability of reaching the state 0 when starting in the state j.

Estimating q_j

- Moreover we allow i steps backwards (towards n). Now we need $j + i$ step towards 0.
- Exact analysis using Catalan numbers. Simpler analysis permits „negative“ states.
Estimating q_j

- $q_j \geq \max_{i \in \{0, \ldots, j\}} \binom{j+2i}{i} \left(\frac{1}{k}\right)^j \left(\frac{k-1}{k}\right)^i$.
- The value $\binom{j+i}{i}$ equals the number of paths going $j + i$ steps towards 0 and i steps towards n.
- The above estimate is valid because we use maximum.
- Because $j \leq i$ we do not consider more than $3n$ steps.
- Choose $i \approx \frac{j}{k-2}$ and then $q_j \geq \Omega \left(j^{-2} \cdot \left(\frac{1}{k-1}\right)^j\right)$.
- For $k = 3$ using Stirling approximation it may be shown that $q_j = \Omega \left(\frac{1}{\sqrt{j}} \cdot 2^{-j}\right)$.
• Let p be the probability of reaching 0 in one restart.

$$p = \sum_{j=0}^{n} \Pr(\text{starting in } j) \cdot q_j.$$

• $\Pr(\text{starting in } j) = \binom{n}{j} \left(\frac{1}{2}\right)^n$.

• Thus $p = 2^{-n} \cdot \Omega(n^{-2}) \cdot \left(1 + \frac{1}{k-1}\right)^n$.

• In one restart we find a solution with probability at least p.

• From the expected value of geometric distribution we need at least $t = \frac{2}{p}$ restarts to find it with the probability at least 0.5.

• Another c repetitions lower the error rate to 2^{-c}.
k-SAT

Result for k-SAT

- We need $O(n^2 (1 - \frac{1}{k})^n)$ restarts for a constant error.
- For large values of k, $k = \Omega(n)$, we are not far from 2^n.

Result for 3-SAT

- We need $O(\sqrt{n} (\frac{4}{3})^n)$ restarts to have a constant error.
- The overall complexity of the algorithm is $O(poly(n) (\frac{4}{3})^n)$.

Other applications

- The same approach also works in CSP.
- The best algorithm is a simple combination of PPSZ and Schöning’s algorithms. Analysis is far more complicated.
• Schöning, U.: A Probabilistic Algorithm for k-SAT and Constraint Satisfaction Problems, 1999
• Rolf, D.: Improved Bound for the PPSZ/Schöning-Algorithm for 3-SAT, 2006
• Moser, A., R., Scheder, D.: A Full Derandomization of Schöning’s k-SAT Algorithm, 2010
• Rolf Wanka’s presentation
• Luca Trevisan lecture notes on Randomized Algorithms