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Universidad Nacional Autónoma de México. During the stay I was supported by the Instituto de Ma-
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sémantiky. Most of the text was written during my stay at the Kurt Gödel Research Center for Mathe-
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pramen̊u, literatury a daľśıch odborných zdroj̊u.
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Abstrakt: Práce podává přehled r̊uzných konstrukćı ultrafiltr̊u. V prvńı části uvád́ı konstrukce, které nepotřebuj́ı dodatečné
axiomy teorie množin. Je předvedena metoda nezávislých systémů pocházej́ıćı od K. Kunena. Dále je předvedeno jej́ı použit́ı
v topologickém zkoumáńı prostoru ω∗ (d̊ukaz existence šestnácti topologických typ̊u J. van Milla). Tato část je zakončena
předvedeńım nové konstrukce a d̊ukazem autorovy věty o existenci ultrafiltr̊u, které maj́ı speciálńı topologické vlastnosti
(d̊ukaz existence 17 typu): V ω∗ existuje bod, který neńı hromadným bodem spočetné diskrétńı množiny, je hromadným
bodem spočetné množiny a spočetné množiny, v jejichž je hromadným bodem tvoř́ı filtr.

Druhá část se zabývá konstrukcemi ultrafiltr̊u vyžaduj́ıćımi dodatečné množinové axiomy, resp. teorii forcingu. Je
předvedena klasická konstrukce P-bod̊u, pocházej́ıćı od J. Ketonena, a konstrukce Q-bodu, pocházej́ıćı od A. R. D. Mathiase.
Daľśı dvě kapitoly se zabývaj́ı silnými P-body, které zavedl C. Laflamme. V prvńı z těchto kapitol je dokázána nová
charakterizačńı věta (výsledek autora společně s A. Blassem a M. Hrušákem): Ultrafiltr je Canjar̊uv právě když je silný
P-bod. Je též uveden nový d̊ukaz věty M. Canjara o existenci non-dominating filtr̊u (Canjarovy ultrafiltry), který využ́ıvá
zmı́něnou charakterizačńı větu a dále je dokázána charakterizačńı věta pro Canjarovy ultrafiltry M. Hrušáka a H. Minamiho.
Druhá z těchto kapitol se zabývá generickými ultrafiltry na P(ω)/I, kde I je definovatelný ideál. Je ukázáno, jak lze tyto
ideály charakterizovat pomoćı vlastnost́ı jejich generických ultrafiltr̊u. Kapitola zároveň obsahuje odpověd’ na Laflammovu
otázku o Canjarových ultrafiltrech (výsledek autora společně s A. Blassem a M. Hrušákem): Existence ultrafiltru který neńı
silným P-bodem, je P-bodem a nemá rapid předch̊udce v Rudin-Keislerově uspořádáńı je konzistentńı s teoríı množin.
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Abstract: This work presents an overview of several different methods for constructing ultrafilters. The first part contains
constructions not needing additional assumptions beyond the usual axioms of Set Theory. K. Kunen’s method using inde-
pendent systems for constructing weak P-points is presented. This is followed by a presentation of its application in topology
(the proof of the existence of sixteen topological types due to J. van Mill). Finally a new construction due to the author is
presented together with a proof of his result, the existence of a seventeenth topological type: ω∗ contains a point which is
discretely untouchable, is a limit point of a countable set and the countable sets having it as its limit point form a filter.

The second part looks at constructions which use additional combinatorial axioms and/or forcing. J. Ketonen’s con-
struction of a P-point and A. R. D. Mathias’s construction of a Q-point are presented in the first two sections. The next
sections concentrate on strong P-points introduced by C. Laflamme. The first of these contains a proof of a new characteriza-
tion theorem due jointly to the author, A. Blass and M. Hrušák: An ultrafilter is Canjar if and only if it is a strong P-point.
A new proof of Canjar’s theorem on the existence of non-dominating filters (Canjar filters) which uses the characterization
is presented as is a new theorem characterizing Canjar filters (due to M. Hrušák and H. Minami). The second section
investigates generic ultrafilters on P(ω)/I where I is a definable ideal on ω. It is shown how these ideals may be classified
according to the properties of the generic ultrafilter. Several examples are presented including an example which answers a
question of Laflamme about Canjar ultrafilters (due jointly to the author, A. Blass and M. Hrušák): It is consistent with
ZFC that there is a P-point with no rapid Rudin-Keisler predecessors which is, nevertheless, not a strong P-point.
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xi INTRODUCTION

Introduction

T
HE starting point for the study of the nonhomogeneity of ω∗ — the space of nonprincipal ultra-
filters on ω — was W. Rudin’s proof ([Rud56]) that, under CH, there are P-points in ω∗. Since
there are obviously points in ω∗ which are not P-points this shows, supposing CH, that ω∗ is

not homogeneous. The continuum hypothesis in his proof can be weakened to Martin’s axiom (and in
fact, much less is needed, see theorem 3.8) but, by a deep and hard result of S. Shelah ([Wim82]), it is
consistent with ZFC that there are no P-points. This leads to a split in the study of ultrafilters.

One branch of inquiry asks what can be proven in ZFC. Following this line of research, in 1967
Z. Froĺık was able to show in ZFC, using an ingenious combinatorial argument, that ω∗ is not homoge-
neous ([Fro67a], [Fro67b]). In fact, there are 2c pairwise “topologically different” points (i.e. there is no
homeomorphism taking one to another) in ω∗. In his paper he actually showed even more.

Theorem (Froĺık). If X is non-pseudocompact then X∗ is not homogeneous.

From the point of view of topology the problem with his proof was that it was based on cardinality
arguments and did not yield a “topological” description of even two different ultrafilters. The next major
step forward was K. Kunen’s proof of the existence of weak P-points in ZFC ([Kun80]):

Theorem (Kunen). There is a weak P-point ultrafilter on ω.

Weak P-points are points in ω∗ which are not limit points of any countable set. Obviously not every
point of ω∗ is a weak P-point, so this also gives a proof of the nonhomogeneity of ω∗. And it actually
shows two concrete topologically distinct points (a weak P-point and a non-weak P-point) witnessing the
nonhomogeneity. Hence it is an “effective” proof in the sense of E. van Douwen [vD81]. The next result
was J. van Mill’s description of sixteen distinct topological “types” in ω∗ ([vMill82a]). Continuing in this
direction, we were able to find a seventeenth topological “type” in ω∗.

One of the points van Mill constructed had the property that it was in the closure of a countable
set without isolated points but not in the closure of any discrete set. What happens if you add the
requirement, that the countable set is in some sense unique, e.g. that the countable sets having it as a
limit point must form a filter?

Definition (Simon). A point p ∈ ω∗ is lonely if it is discretely untouchable, a limit point of some countable
subset of ω∗ and all countable subsets whose limit point it is form a filter.

These points are called lonely since there is essentially only one way they can be accessed (see
also [VD93] for a somewhat related concept). I was able to prove ([Ver08]) that large subspaces of ω∗

contain lonely points. However I was unable to show their existence in ω∗ because of the difficulty of
constructing weak P-points in ccc remainders of countable spaces. Later A. Dow suggested an elegant
way of overcoming this difficulty and based on some of his work I was able to prove a theorem.

Theorem. ω∗ contains a lonely point.

The proof of the theorem is contained in section 2.3. The main idea is to start with a countable
zerodimensional space having an ℵ0-bounded remainder, then refine the topology to get an irresolvable
topology and finally embed this into ω∗.

The other branch of inquiry about ultrafilters looks beyond ZFC. The oldest result is probably Rudin’s
already mentioned construction of a P-point under CH. This was later significantly extended by J. Keto-
nen. Other other combinatorial properties (selective ultrafilters, Q-points, rapid ultrafilters, etc.) going
beyond ZFC were also considered. One particular class of ultrafilters was motivated by considerations
coming from the theory of forcing. A natural way one can “destroy” an ultrafilter using forcing is to
force a pseudointersection. This is typically done using a version of Mathias forcing with an ultrafilter
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parameter. Standard Mathias forcing adds a dominating real and most of the time this is also the case
with the ultrafilter version. M. Canjar showed that, consistently, this is not always the case:

Theorem (Canjar). Assume d = c. There is an ultrafilter such that MU does not add a dominating real.

Later C. Laflamme in [Laf89] introduced the notion of a strong P-point and noted, without proof,
that if MU does not add dominating reals, then U must be a strong P-point.

Together with A. Blass and M. Hrušák we were able to show ([BlHrVe11]) that being a strong P-
point actually characterizes the situation when MU does not add dominating real. The proof of this is
presented in section 3.3. We also constructed a consistent counterexample to a conjecture of Laflamme
about a possible characterization of strong P-points.

Example. Assume cov(M) = c. Then there is a P-point which has no Rudin-Keisler rapid predecessor
but which is, nevertheless, not a strong P-point.

In section 3.4 we present another construction of such an example which is based on [HrVer11].

The thesis is split into three chapters. The first chapter contains some preliminary material and
standard definitions and theorems. It may be safely skipped and used only as a reference for notions
which the reader is unfamiliar with.

The second chapter concentrates on ZFC constructions of ultrafilters. First, Froĺık’s constructions are
given, then a section is devoted to an exposition of Kunen’s method for constructing ultrafilters using
independent matrices. After that van Mill’s proof of the existence of sixteen topological types is presented
in some detail and finally I prove the existence of lonely points in ω∗.

The third chapter is devoted to constructions with additional assumptions. First Ketonen’s result
is given and related questions are mentioned. Then we look at selective ultrafilters and Q-points and
present A. R. D. Mathias’s proof of the existence of a Q-point from d = ω1. The next section presents a
combinatorial characterization of Canjar ultrafilters via strong P-points and the last section contains a
study of the forcings P(ω)/I for definable I together with some interesting examples.

Chapters are mostly independent. Chapter two assumes the reader is comfortable with general topol-
ogy while chapter three requires some acquaintance with forcing. It is not unlikely that the reader, if
there will be one, will feel intimidated by intricacies of the techniques presented, especially those in the
second chapter. The authors presentation style will probably not help her either. She is advised to find
an edition of some tabloid magazine and be comforted in the fact, that — intellectually — she could be
much worse off. If it is of any consolation, in moments of utter despair, the author himself resorted to
[Ter08] which offered at least some reassurance of his mental abilities.

Proofs are ended with , proofs of claims inside other proofs are ended with the � symbol. The
statement of theorems whose proofs are not given and trivial observations will be closed with the to
indicate this. The numbering of statements and definitions consists of the number of the chapter followed
by a dot and a number which grows in increments of one starting from one in each chapter.

The main results of this thesis are theorems 2.33, 3.39 and example 3.61.
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Chapter 1

Preliminaries

T
HE reader should be familiar with basic topological and set-theoretical concepts and language
(including forcing). In this chapter we include some of the ones we will be using but its purpose
is rather to fix notation then to introduce the reader into the subject. A reader looking for

introduction to topology is referred to [Eng]. A standard reference work in topology is [TopEnc]. An
excellent introduction to set theory is [BŠ] or [Kun80] which also includes a lot of material concerning
independence and Martin’s axiom, [Jech] can serve as a reference for more advanced results. The standard
reference for ultrafilters is [ComNeg74].

Another purpose of this chapter is to state some theorems so that we may refer to them in later
chapters. We do not provide references as all results (unless otherwise stated) are standard. In the cases
where we do not provide proofs they may be found in the cited works. Parts of this chapter are taken
from my masters thesis [Ver07] and from the unpublished notes [BPV09].

1.1 Topology

For a topological space X, denote by τ(X) the topology of X. Let A
X

be the closure of A in X and
intXA the interior of A (the largest open set contained in A). If X is clear from the context, we will drop
it. Clopen(X) consists of subsets of X which are both closed and open. A set G is functionally open (also
co-zero) in X if it is the preimage of (0, 1) by some continuous map f : X → R. It is functionally closed
(also zero) if it is the preimage of {0} by such a map. It is regular open if it is equal to the interior of its
closure. A subset of a topological space is dense if its closure is the whole space or, equivalently, if it meets
any nonempty open set. It is called nowhere dense (n.w.d. for short) if its closure has empty interior (or,
equivalently, if the complement of its closure is dense), and it is called somewhere dense otherwise.

All topological spaces we will consider will be (at least) Hausdorff (i.e. T2). Recall that other separation
properties are commonly used: T0, T1, regularity (T3) and complete regularity (T3 1

2
). The following holds.

discrete⇒ T3 1
2
⇒ T3 ⇒ T2 ⇒ T1 ⇒ T0

A space is compact if any cover of the space by open sets contains a finite subcover or, equivalently,
if any centered system of closed sets has nonempty intersection. It is locally compact if any point has
an (open) neighbourhood with compact closure and it is nowhere locally compact if the closure of any
nonempty open set is not compact. Note that a subset of a compact, T2 space is compact if and only if it
is closed and any compact subset of a T2 space is closed. A space X is pseudocompact if every continuous
real-valued function on X is bounded.

The weight of a space (denoted by w(X)) is the minimal cardinality of a base for the space (i.e.,
a system of open sets of X such that any open set is a union of sets from the system). A π-base for
a space is a family of nonempty open sets such that any nonempty open set of the space contains a set
from the π-base. The π-weight of a space (denoted πw(X)) is the minimal cardinality of a π-base. A
local base at a point x is a system of open sets containing x such that any open set containing x contains
a set from the local base. A local π-base at x is a system of nonempty open sets such that any open
neighbourhood of x contains a set from the π-base. Define the character (χ(x)) and π-character (πχ(x))
of a point x ∈ X as the minimal cardinality of a base and π-base respectively at x. The pseudocharacter
of a point in p is the minimal cardinality of a system of neighbourhoods of p which contain only p in their
intersection. It is denoted by ψ(p).
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1.1 Observation. If p ∈ X then ψ(p) ≤ |X|.

1.2 Fact. If X is T2 and compact then ψ(p) = χ(p).

A space is zero-dimensional if it has a base consisting of closed-and-open sets, clopen for short. It is
extremally disconnected, ED for short, if the closure of any open set is open. A space is discrete if each
one-point set is open. A discrete space is zero-dimensional, ED and satisfies all of the above separation
properties. One may view zero-dimensionality (and ED) as a separation property, e.g. the following holds

1.3 Lemma. A T0 zero-dimensional space satisfies T3 1
2

A point p in a topological space X is isolated, provided that {p} is open in X. A topological space is
crowded, also dense in itself, if it has no isolated points. Note that a dense subset of X must contain all
its isolated points. We say that a space X is extremally disconnected at p ∈ X if p is not in the closure
of two disjoint open sets.

A space is said to be κ-cc if every family of disjoint open sets has cardinality strictly less than κ.
Instead of ω1-cc it is customary to say just ccc.

A homeomorphism between two topological spaces is a continuous bijection which has a continuous
inverse. A continuous map (function) is open, if the images of open sets are open. It is closed if the images
of closed sets are closed and it is irreducible, if the image of a proper closed subspace of the domain is
never onto. A closed map is perfect if the preimages of points are compact. For a space X we say that
EX is its projective cover if and only if it is extremally disconnected and admits an irreducible perfect
map onto X. EX (sometimes called the absolute of X) can be shown to exist for any completely regular
space X (e.g. by taking the Gleason space, the space of ultrafilters on RO(X))

A topological space is homogeneous if, for any two points x, y, there is a homeomorphism fx,y from
the space onto itself such that f(x) = y. A topological type is a subset T of X such that

(i) For any two x, y ∈ T there is a homeomorphism fx,y from X onto X such that fx,y(x) = y and

(ii) For any x ∈ T , y 6∈ T there is no homeomorphism of X onto X taking x to y.

Note that if X contains distinct topological types then it is not homogeneous.

1.1.1 The Čech-Stone compactification

For any completely regular space X there is a compact space βX, such that X embeds densely into
βX and any continuous function from X into [0, 1] can be continuously extended to βX. (The Stone
theorem says that this is equivalent to requiring that a continuous function into any compact space can
be continuously extended.) The space βX is called the Čech-Stone compactification of X. The book
[Wal74] is a standard reference for Čech-Stone compactifications. We refer the reader to this book for
the proofs in this section which we omit. The Čech-Stone compactification can be constructed as a space
of maximal filters. The idea is to add a point into the intersection of each closed filter (as required by
compactness). First we need to be more precise about which filters we will take:

1.4 Definition. A z-filter in a topological space X is a filter which consists of functionally closed sets. If
F is a functionally closed set, by F̂ we denote the set of maximal z-filters containing F .

1.5 Theorem. If X is completely regular. Then the set of all maximal z-filters on X with the topology
generated by {F̂ : F is functionally closed} (as a closed subbase) is isomorphic to βX.

1.6 Note. In the case of zerodimensional spaces maximal z-filters coincide with ultrafilters on the algebra
of clopen sets. In the case of discrete spaces, maximal z-filters are just ordinary set filters.

1.7 Note. In section 2.2 we will be dealing with closed filters (centered systems, etc.) on general topolog-
ical spaces where closed sets need not form an algebra since they need not be closed under complements
in a reasonable way. However the complement operation is only needed for ultrafilters. The definition of
a filter (centered system, etc.) only needs the order structure of the closed sets (i.e. w.r.t. inclusion), so
our usage will be safe.

Dealing with Čech-Stone compactifications, it is customary that X∗ stands for the (Čech-Stone)
remainder of X, i.e. X∗ = βX \X. We will now list some facts about Čech-Stone compactifications.

1.8 Fact ([Wal74],21.3). A space X is extremally disconnected if and only if βX is.

1.9 Fact. Any countable subset of ω∗ is extremally disconnected.
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1.10 Theorem. For F ⊆ X∗ we have F ≈ βF if and only if F is C∗-embedded in X∗.

Proof. F is certainly dense in the compact set F . We only need to show that any function from F into
[0, 1] can be extended to F , but that immediately follows from the fact that F is C∗-embedded in X∗.

1.11 Theorem ([vMill84], 1.5.2). Any countable subset of ω∗ is C∗-embedded in ω∗.

Proof. The proof is an adaptation of the proof of the Tietze extension theorem. Suppose C ∈ [ω∗]ω

is countable and f : C → [−1, 1] is continuous. Fix some small 1/4 > ε > 0. Since C is countable, the
complement of the image of f is dense in all subintervals of [−1, 1]. Thus we can find r0 ∈ (1/2−ε, 1/2+ε)
such that both r0 and −r0 are not in the range of f . Then Let A0

−1 := f−1′′[−1,−r0], A0
0 := f−1′′[−r0, r0]

and A0
1 := f−1′′[r0, 1].

We shall use the following claim to find B0
i ∈ P(ω) such that B0∗

i = B0
βω
\B0 = A0

i :

Claim. For any countable C ∈ [ω∗]ω and a clopen disjoint A−1, AO, A1 partition of C, there are pairwise
almost disjoint B−1, B0, B1 in [ω]ω such that B∗i ∩ C ⊆ Ai.
Proof of claim. Enumerate A−1∪A0∪A1 as {xn : n < ω}. By induction construct disjoint Bin, i = −1, 0, 1
subsets of ω such that xn ∈

⋃
j≤n,i=−1,0,1B

i∗
j and Bi∗n ∩ C ⊆ Ai. If xn is already covered, let Bin = ∅.

Otherwise suppose (without loss of generality) xn ∈ A−1. There is a closed subset of ω∗ such that
A0 ∪ A1 = F ∩ C. Because xn 6∈ F ∪

⋃
j<n,i=−1,0,1B

i∗
j there is an open (in ω∗!) U disjoint from F ∪⋃

j<n,i=−1,0,1B
i∗
j and containing xn. Because ω∗ is zerodimensional there is a clopen (in ω∗) U ′ subset of U

containing xn which misses F ∪
⋃
j<n,i=−1,0,1B

i∗
j . Choose B0

n ⊆ ω disjoint with Bij , j < n, i = −1, 0, 1 and

B0∗
n = U ′. This is possible because U ′ is disjoint from each Bi∗j , j < n, i = −1, 0, 1. Since U ′ ∩ C ⊆ A−1,

B−1n ∩ C ⊆ A−1. Let B0
n = B1

n = ∅. Now Bi =
⋃
n<ω B

i
n are as required. �

Now the (continuous) function f0 : (B0
−1 ∪ B0

0 ∪ B0
1) → [−1, 1] having value −1/2 on B0

−1, 0 on B0
0

and 1/2 on B0
1 can be extended to some F0 : βω → [−1, 1]. Necessarily F0 � A0

−1 ≡ −1/2, F0 � A0
0 ≡ 0,

F0 � A0
1 ≡ 1/2. Then the supremum of {|F0(x)−f(x)| : x ∈ C} is less than 1/2+ε. By the same reasoning

looking at g = F0−f : C → [−1/2−ε, 1/2+ε] we can inductively construct Fn : βω → [−(1/2+ε)n, (1/2+

ε)n] such that the supremum of {|Fn(x)− (f(x)−
∑n−1
i=0 Fi(x))|} is less than (1/2 + ε)n+1. Then the sum

of the functions Fn converges uniformly on ω∗ so their sum F is the required continuous extension.

1.12 Definition. A space X is an F-space if each bounded continuous real-valued function on a co-zero
set can be extended to a continuous function on X.

1.13 Theorem. Suppose X is a locally compact σ-compact space. Then X∗ is an F-space.

1.14 Proposition. If X a ccc F-space then X is extremally disconnected.

1.15 Definition. The projective cover EX of a space X is the unique extremally disconnected space which
admits an irreducible perfect map onto X.

1.2 Set Theory
Our Set Theory notation is standard. The Greek letters κ, λ, θ denote infinite cardinal numbers, α, β
denote ordinal numbers, and k, n,m, i, j denote natural numbers. The first infinite cardinal is denoted by
ω and c is the cardinality of the powerset of ω. For two sets X,Y their symmetric difference is denoted
by X∆Y = (X \Y )∪ (Y \X). If X is a set let its powerset be denoted by P(X). The symbols [X]κ, [X]<κ

denote the set of all subsets of X of cardinality κ and less than κ respectively. XY denotes the set of all
functions from X to Y . Occasionally, in particular if X = Y = ω, we shall write Y X for the same set, if
there is no danger of confusion. The cardinality of a set X is denoted by |X| and 2|X| is the cardinality
of X2. For subsets A,B ⊆ ω of ω and functions f, g : ω → ω we write A ⊆∗ B if |A \B| < ω and f ≤∗ g
if |{n : f(n) > g(n)}| < ω.

1.2.1 Infinite Combinatorics
1.16 Definition. A family of sets X is almost disjoint (AD for short) if any two members of X have
finite intersections. It is called a maximal almost disjoint family (MAD for short) on Y if it consists of
subsets of Y and any larger family of subsets of Y is not AD. Usually the ambient Y will be clear from
the context and will not be mentioned.

1.17 Theorem. There is a MAD family of subsets of ω of size c.
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1.18 Definition. A family {Xα : α ∈ A} of subsets of Y is called independent if for each disjoint finite
sets B,C ⊆ A the following intersection is infinite⋂

α∈B
Xα ∩

⋂
α∈C

(Y \Xα).

1.19 Definition. A system of MAD families {Mα : α ∈ A} is independent if for each n, distinct α0, . . . , αn
and each choice A0 ∈Mα0

, . . . , An ∈Mαn the intersection

n⋂
i=0

Ai

is infinite.

1.20 Theorem. There is an independent family of subsets of ω. In fact there is even an independent
system of size c of MAD families each of which has size c.

1.2.2 Ultrafilters and Definable Ideals
Unless otherwise stated, we shall always assume that ideals contain the ideal Fin of finite subsets of ω
(and filters contain the filter of cofinite subsets of ω). Let ∅ be the empty ideal. An ideal is tall if each
infinite A ∈ [ω]ω contains an infinite B ⊆ A from the ideal. It is Fréchet (or locally Fin) if for each infinite
A ∈ [ω]ω there is an infinite B ⊆ A such that B contains no infinite subset from the ideal.

1.21 Definition. Suppose I, J are ideals on ω, define an ideal I× J on ω × ω as follows

I× J = {A ⊆ ω × ω : {x : Ax 6∈ J} ∈ I},

where Ax = {y : (x, y) ∈ A}.
Several orders may be defined on the ideals (or filters) on ω.

1.22 Definition. Let I, J be ideals (or filters) on ω. Recall that

(i) (Rudin-Keisler ordering, [Kat68]) I ≤RK J if there is a function f : ω → ω such that

I = f∗(J) = {A ⊆ ω : f−1[A] ∈ J}.

(ii) (Rudin-Blass ordering, [Laf89]) I ≤RB J if I ≤RK J and the function witnessing this can be chosen
to be finite-to-one.

(iii) (Katětov ordering, [Kat68]) I ≤K J if there is a function f : ω → ω such that preimages of I-small
sets are J-small.

(iv) (Katětov-Blass ordering, [HrHe07]) I ≤KB J if I ≤K J and the witnessing function can be chosen
to be finite-to-one.

1.23 Definition (Rudin). An ultrafilter U on ω is a P-point if any countable sequence of sets from U has
a pseudointersection in U.

1.24 Note. Compare this with the topological notion of a P-point: A point x ∈ X is a P-point if the
intersection of countably many neighbourhoods of x is again a neighbourhood of x. In the case of ω∗

these notions coincide.

1.25 Fact. An ultrafilter U on ω is a P-point if and only if each function f : ω → ω is either finite-to-one
on a set in U or constant on a set in U.

1.26 Corollary. Any RK-predecessor of a P-point is its RB-predecessor.

1.27 Definition. An ideal I on ω is a P-ideal if for any countable sequence 〈An : n < ω〉 ⊆ I there is a
set A ∈ I such that An ⊆∗ A for each n < ω.

Recall that ideals are subsets of P(ω) which can be identified with the Cantor space and thus we may
consider their descriptive complexity. The following definition of a summable ideal motivates the further
definition of a lower semicontinuous submeasure:

1.28 Definition. Given a function g : ω → R+
0 and A ⊆ ω we let ϕg(A) =

∑
n∈A g(n) and define the

summable ideal Ig = {A ⊆ ω : ϕg(A) <∞}.
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1.29 Definition. A lower semicontinuous submeasure (lscsm. for short) on ω is a function ϕ : P(ω)→ R∪
{∞} such that

(i) ϕ(∅) = 0

(ii) ϕ(A ∪B) ≤ ϕ(A) + ϕ(B)

(iii) For each infinite A ⊆ ω we have ϕ(A) = sup{ϕ(a) : a ∈ [A]<ω}.
These submeasures give rise to two naturally defined ideals, the ideal Fin(ϕ) = {A ⊆ ω : ϕ(A) <∞} of
sets of ϕ-finite submeasure and Exh(ϕ) = {A ⊆ ω : limn→∞ ϕ(A \ n) = 0} the ideal of sets on which ϕ
is exhaustive. It is easy to verify that Fin(ϕ) is Fσ and that Exh(ϕ) is Fσδ. The fact that each Fσ-ideal
is of this form is due to K. Mazur.

1.30 Theorem ([Maz91]). An ideal I on ω is Fσ if and only if there is a lscsm. ϕ on ω such that
I = Fin(ϕ).

The theorem has a generalization due to S. Solecki.

1.31 Theorem ([Sol96]). Suppose I is an analytic ideal. Then precisely one of the following happens

(i) Fin× ∅ ≤RB I or

(ii) Fin× Fin ≤RB I and I = Exh(ϕ) for some lscsm ϕ or

(iii) I = Exh(ϕ) = Fin(ϕ) for some lscsm ϕ.

1.32 Corollary. Every analytic P-ideal is an Fσδ subset of P(ω).

Proof. No P-ideal can be RB-above Fin× ∅.

1.2.3 Cichoń’s diagram and cardinal characteristics
We shall now look at cardinal invariants of the continuum. Most of them are associated with some
properties of the real line. They are all greater or equal to ω1 and less or equal to c but in general their
value is not decided by the usual axioms of ZFC. Positing that some cardinal invariant is equal to c may
be seen as a weakening of the continuum hypothesis (the continuum hypothesis says that c = ω1, this
is abbreviated as CH) and in fact many constructions which work under CH may be carried out under
weaker assumptions of this form. For a beautiful exposition of the topic see [Bl09].

1.33 Definition. For any ideal I on a set X we define the following cardinal characteristics:

add(I) = min{|A| : A ⊆ I &
⋃

A 6∈ I}
non(I) = min{|A| : A ⊆ X & A 6∈ I}
cov(I) = min{|A| : A ⊆ I &

⋃
A =

⋃
I}

cof(I) = min{|A| : A ⊆ I & (∀I ∈ I)(∃A ∈ A)(I ⊆ A)}

1.34 Definition. Martin’s Axiom for κ (MAκ) says that if (P,≤) is a ccc partial order of size at most c
and 〈Dα : α < κ〉 is a sequence of dense subsets of P , then there is a filter G on P which meets each Dα.
Martin’s Axiom is MAω1

.

The following is a summary definition of some of the important cardinal characteristics.

1.35 Definition. We define the following cardinals

b = min{|A| : A ⊆ ωω & (∀f ∈ ωω)(∃g ∈ A)(g 6≤∗ f)}
d = min{|A| : A ⊆ ωω & (∀f ∈ ωω)(∃g ∈ A)(f ≤∗ g)}
a = min{|A| : A ⊆ [ω]ω & A is almost disjoint & ω ≤ |A| &(∀B ∈ [ω]ω)(∃A ∈ A)(|A ∩B| = ω)}
s = min{|A| : A ⊆ [ω]ω & (∀B ∈ [ω]ω)(∃A ∈ A)(|A ∩B| = |(ω \A) ∩B| = ω)}
r = min{|A| : A ⊆ [ω]ω & (∀B ∈ [ω]ω)(∃A ∈ A)(|A ∩B| < ω ∨ |A \B| < ω)}
u = min{|U| : U ⊆ [ω]ω & U is centered & ω ≤ |U| &(∀B ∈ [ω]ω)(∃A ∈ U)(|A ∩B| < ω ∨A ⊆∗ B))}
h = min{κ : P(ω)/F in is not (κ, ·, 2)-distributive}
p = min{|U| : U ⊆ [ω]ω & (∀V ∈ [U]<ω)(|

⋂
V| = ω) & (∀P ∈ [ω]ω)(∃U ∈ U)(P 6⊆∗ U)}

t = min{|U| : U ⊆ [ω]ω & U is linearly ordered by ⊆∗ & (∀P ∈ [ω]ω)(∃U ∈ U)(P 6⊆∗ U)}
i = min{|A| : A ⊆ [ω]ω & A is independent & (∀A′ ⊆ [ω]ω)(A ( A′ → A′ is not independent)}
m = min{κ : MAκ fails}
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1.36 Definition. A family G ⊆ [ω]ω is groupwise dense if it is closed under almost subsets and for any
infinite partition of ω into intervals there are infinitely many intervals from the partition whose union is
in G. The groupwise density number g is now defined to be the smallest cardinality of a set A of groupwise
dense families with

⋂
A = ∅.

It turns out that it is very useful to think of these definitions in the following way (introduced and
isolated explicitly in [Voj93], but implicitly appearing already in [Fre84] and in an unpublished work of
Miller).

1.37 Definition. Suppose we are given a triple A = (A−, A+, R) consisting of a set A− of challenges a
set A+ of responses and a relation R ⊆ A−×A+. We say that b ∈ A+ is a response to a challenge a ∈ A−
if aRb. We define the norm ||A|| = ||(A−, A+, R)|| of this triple to be:

||(A−, A+, R)|| = min{|B| : B ⊆ A+ & (∀a ∈ A−)(∃b ∈ B)(aRb)}.

In other words the norm is the cardinality of the smallest set of responses which are enough to an-
swer every challenge. We also define the dual A⊥ of A to be the triple (A+, A−,−(R−1)), where
(x, y) ∈ −(R−1) ≡ (y, x) 6∈ R.

Note that most of the cardinal invariants considered so far are norms of some triple. The usefulness
of this framework lies in the fact that the notion of duality gives a precise meaning to the intuition that
some of the cardinals defined (e.g. b, d) are intimately connected to each other.

1.38 Definition (Tukey’s connection). Given two triples A = (A−, A+, R),B = (B−, B+, Q) we say that
B ≤T A if there are functions φ− : B− → A− and φ+ : A+ → B+ which satisfy:

(∀b ∈ B−, a ∈ A+)(φ−(b)Ra→ bQφ+(a))

Following Blass we call the pair φ = (φ−, φ+) a morphism from A to B (Vojtáš calls φ a generalized
Galois-Tukey connection from B to A) and we shall write φ : A → B. Note that if φ : A → B then
φ⊥ = (φ+, φ−) is a morphism from B⊥ to A⊥.

It is instructive to think of A ≥T B as saying that meeting challenges in B is not harder then meeting
challenges in A, (cf. the notion of a Borel reduction of two Borel Equivalence relations or the notion of
Turing reducibility in Recursion theory).

1.39 Observation. If A ≤T B then ||A|| ≤ ||B||.

The following diagram (see [Fre84]) summarizes all that can be proved in ZFC concerning the relations
between cardinal invariants defined from the ideal of null and meager sets. The dashed boxes indicate,
respectively, that the top cardinal and bottom cardinal are the maximum and the minimum of the other
two cardinals.

Figure 1.1: Cichoń’s diagram

It is a direct consequence of the following reformulation of the cardinal invariants in terms of norms
of triples:

1.40 Theorem.

(R,N,∈) −→ (M,R, 63) −→ (M,M,⊂) −→ (N,N,⊂)
↑ ↑

↑ (ωω, ωω, 6≥∗) −→ (ωω, ωω,≤∗) ↑
↑ ↑

(N,N, 6⊃) −→ (M,M, 6⊃) −→ (R,M,∈) −→ (N,R, 63)
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Figure 1.2: Relations between cardinal invariants of the continuum (a fusion of Cichoń’s dia-
gram with van Douwen’s diagram, see [Bl09] and [Br06])

Figure 1.3: Separating cardinal invariants (the table is taken from [Bl09], the graphical ren-
dering was typeset by D. Chodounský from a picture of J. Flašková)
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Chapter 2

ZFC Constructions

This chapter will present some of the combinatorial methods used to construct special kinds of ultrafilters.
The easiest way to construct objects with special properties is to use induction. Take two classical
examples, Cantor’s back-and-forth construction of an isomorphism between two countable dense linear
orders without ends, and Hausdorff’s constructions of an (ω1, ω1)-gap. The first induction is of length ω,
while the second, which is more tricky, is of length ω1. The fact which allows the induction to keep going
is that at each step of the induction the object constructed so far is at most countable — dealing with
countable objects is much easier than dealing with uncountable ones. This also indicates that inductions of
longer length will usually be much more difficult. To illustrate this, suppose you would want to construct
a sequence 〈Aα : α < ω2〉 of infinite subsets of ω such that Aα ⊆∗ Aβ for each α < β ≤ ω2. There will
be no problem going up to ω1 since at each point below ω1 the sequence will be countable and hence
will have an infinite pseudointersection. However already at step ω1 we have a problem. For example if
t = ω1 it can happen that the sequence we have constructed at step ω1 cannot be extended further. The
problem with ultrafilters is that they are objects of size c. In general to construct them by induction from
smaller objects (filters) one will need an induction of length c and c may very well be bigger then ω1.
This already indicates that ZFC constructions will be very hard. Even disregarding this problem we will
have another problem. The objects constructed during the induction process will, from some point on,
not be countable anymore. One way to overcome these problems is to assume additional axioms which
will typically say that c behaves like ω1 in some suitable sense. This approach allows us to construct very
nice ultrafilters (see chapter 3), but unfortunately is not good at all if we want to work in ZFC only.

The current chapter presents an ingenious method invented by K. Kunen to overcome the problems
with long inductive constructions of filters. After that we will show how van Mill was able to use these
methods in a topological setting and finally we will present our construction of a special kind of ultrafilter.
First, as a warm-up exercise, we shall show two clever combinatorial arguments which imply that there
are many ultrafilters. The first is an old theorem of B. Posṕı̌sil.

2.1 Theorem ([Po37]). There are 2c ultrafilters on ω.

Proof. Fix an independent system {Aα : α < c} of subsets of ω (see 1.20) and for each f : c → 2 let Uf
be some ultrafilter extending {Aα : f(α) = 1} ∪ {ω \ Aα : f(α) = 0}. It is easy to see that for f 6= g,
Uf 6= Ug and this shows that 2c ≤ |βω|. |βω| ≤ |PP(ω)| = 2c is easy.

The next theorem of Z. Froĺık says that not only are there many ultrafilters, but there are many
different ultrafilters. Froĺık’s theorem was the first ZFC proof of the nonhomogeneity of ω∗.

2.2 Theorem ([Fro67a]). There are 2c ultrafilters none of which can be mapped to another via a homeo-
morphism of ω∗.

2.3 Note. In [Fro67b], Froĺık generalized the theorem to show that X∗ is not homogeneous for any
nonpseudocompact X.

To prove the theorem Froĺık introduced the following notion of a sum of ultrafilters:

2.4 Definition ([Fro67a],1.2). Suppose 〈pn : n < ω〉 is a sequence of ultrafilters on ω, and p is an ultrafilter
on ω. We define the sum of the pn’s relative to p as follows:

p−
∑
n<ω

pn = {A : {n ∈ ω : A ∈ pn} ∈ p}

Given two ultrafilters p, q we say that p ≤F q if q = p−
∑
n<ω pn for some discrete sequence of ultrafilters

pn ∈ ω∗.
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The main ingredient of Froĺık’s proof of theorem 2.2 is the following proposition:

2.5 Proposition (Froĺık). Any q ∈ ω∗ has at most c predecessors in the ≤F ordering.

Proof. We shall first prove a simple claim.

Claim. Suppose 〈An : n < ω〉 is a partition of ω, p 6= q, 〈pn, qn : n < ω〉 are ultrafilters with An ∈ pn∩ qn.
Then p−

∑
n<ω pn 6= q −

∑
n<ω qn.

Proof of claim. Pick some A ∈ p \ q and notice that

X =

(⋃
n∈A

An

)
∈ p−

∑
n<ω

pn

while

ω \X =

 ⋃
n∈ω\A

An

 ∈ q −∑
n<ω

qn.

�

For each p ≤F q, we have q = p −
∑
n<ω pn for some discrete sequence 〈pn : n < ω〉 of ultrafilters.

Let Ap = 〈An : n < ω〉 be a partition of ω witnessing the discreteness (i.e. An ∈ pn). By the previous
claim this is an injective map from {p : p ≤F q} into {A : A is a partition of ω} which has size c.

Froĺık’s theorem 2.2 now easily follows from the previous proposition, Posṕı̌sil’s theorem 2.1 and the
following observation.

2.6 Observation. For q ∈ ω∗ let Tq = {p : p ≤F q}. If f : ω∗ → ω∗ is a homeomorphism then
Tq = Tf(q).

Proof of theorem 2.2. Suppose X ⊆ ω∗ is of size < 2c and let X ′ =
⋃
p∈X Tp. Since each Tp is of size at

most c by proposition 2.5, |X ′| < 2c = |ω∗|, so we can find q′ ∈ ω∗ \X ′ and some q RF-above q′. Then
Tq 6= Tp for any p ∈ X so no p ∈ X can be mapped onto q by a homeomorphism. Froĺık’s theorem now
easily follows.

Froĺık proved that there must be many “topologically different” points in ω, but his proof doesn’t
give any concrete examples. The next section describes the work of K. Kunen who, almost 10 years later,
gave a first ZFC example of two types in ω∗ which differ in “natural topological properties”.

2.1 Independent Systems & Their Applications

2.7 Definition. A point x ∈ X is a weak P-point if it is not a limit point of a countable subset of X.

2.8 Fact. If X is T1 space then each P-point is a weak P-point.

This section is devoted to the techniques K. Kunen invented to prove the following theorem.

2.9 Theorem ([Kun80]). There is a weak P-point in ω∗.

The problem with proving the above theorem by directly constructing the point using induction lies
in the fact that there are too many countable subsets of ω∗ to take care of in an induction of length c.
Kunen’s first step was to introduce a stronger notion which, at first, seems unrelated weak P-points.

2.10 Definition (Kunen). A point p ∈ X is a κ-O.K. point of X if for any countable sequence 〈Un : n ∈ ω〉
of neighbourhoods of p there is a system {Vα : α < κ} of neighbourhoods of p such that for any nonempty
finite K ∈ [κ]<ω, the following is true: ⋂

α∈K
Vα ⊆ U|K|

Note that if κ < λ then any λ-O.K. point is also a κ-O.K. point and if B is a base for the topology
of X, then the definition is equivalent if we only consider sequences of neighbourhoods from the base.
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The relation with weak P-points is given in the following proposition

2.11 Proposition (Kunen). If X is a T1 space and p is an ω1-O.K. point of X, then p is a weak P-point
of X.

Proof. If {xn : n ∈ ω} ⊆ X \ {p}, then because X is T1 we can choose a descending sequence of neigh-
bourhoods Un of p such that Un misses xn. Then, because p is ω1-O.K., we can choose {Vα : α < ω1}
neighbourhoods of p, so that the intersection of any n of them is contained in Un. Then each xn is con-
tained in only finitely many of them, so there is an α < ω1 such that Vα misses all of them, so p is not
in the closure of {xn : n ∈ ω}.

Since ω∗ has a basis of size c (and since cω = c) there is some hope that O.K.-points could be
constructed inductively. However it is still not clear how to manage the induction. It might happen that
there are ultrafilters with character < c so another problem is to make sure that we do not construct an
ultrafilter before taking care of all the countable sequences of open subsets of ω∗ and that the induction
can keep going. To guarantee this K. Kunen came up with the following somewhat complicated notion
generalizing the concept of an independent family:

2.12 Definition (Kunen). Suppose F is a filter on ω. We say a family (or a matrix)

X = {Xn
α,β : n < ω, α ∈ κ, β ∈ λ}

of subsets of ω is a κ by λ independent linked family w.r.t. F if

(i) For each α, β, n we have Xn
α,β ⊆ X

n+1
α,β (i.e. the sets increase with n),

(ii) For each finite set of indices L ∈ [λ]<ω, for each function n : L→ ω and A ∈
∏
β∈L[κ]n(β) and for

each F ∈ F the intersection

F ∩
⋂
β∈L

⋂
α∈A(β)

X
n(β)
α,β

is infinite, while for each β ∈ λ, n < ω,A ∈ [κ]n+1 the intersection⋂
α∈A

Xn
α,β

is finite.

By a complicated argument using trees, he was able to show that such families exist. Here we present
a much simpler proof of this fact due to P. Simon.

2.13 Theorem ([Kun80]). There is a c by c independent linked family with respect to the Fréchet filter.

Proof. (due to P. Simon, see [Kun80] or [vMill82b] Lemma 2.4) We shall construct such a family consisting
of subsets of the countable set S = {(k, f) : k ∈ ω, f ∈ P(k)PP(k)}. Given A,B ⊆ ω and n < ω let

Xn
A,B = {(k, f) ∈ S : |f(B ∩ k)| ≤ n & A ∩ k ∈ f(B ∩ k)}.

It is routine, if perhaps somewhat involved, to check that {Xn
A,B : n < ω,A,B ⊆ ω} is a c by c independent

linked family w.r.t the Fréchet filter.

2.14 Note. To prove the above theorem one may also start with an independent family of MAD families
{Mα,β : α, β < c} (see theorem 1.20) and let

Xn
α,β =

⋃
i<n

Mω·α+i,β .

Kunen used such a matrix to keep the induction going. At each step he added new sets to the filter
to get rid of one countable sequence of open subsets of ω∗ while sacrificing a finite number of rows from
the matrix and keeping it independent with respect to the larger filter. The fact that at each step he had
a matrix independent with respect to the filter allowed him to proceed. The main ideas of his proof are
contained in the following two lemmas.
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2.15 Lemma (Kunen). Suppose X is an A by B independent linked family with respect to some filter F.
Suppose 〈Un : n < ω〉 is a ⊆∗-descending sequence of elements of F. Then there is a β ∈ B and a family
{Vα : α < c} of subsets of ω such that for each K ⊆ [c]<ω

(∗)
⋂
γ∈K

Vγ ⊆∗ U|K|

while X restricted to B \ {β} is an A by (B \ {β}) independent linked family with respect to the filter
generated by F ∪ {Vα : α < c}.

Proof. Fix any β ∈ B and for α < c let

Vα =
⋃
n<ω

Xn
α,β ∩ Un

The condition (*) follows from the fact that for any n + 1-many indices α0, . . . , αn the intersection⋂n
i=0X

n
αi,β

is finite by (ii), part 2 of the definition of an independent linked family. We need to check
that the matrix will be independent w.r.t. the larger filter if we drop the βth row. But this is clear since
the original matrix was independent w.r.t. F, Un ∈ F and Un ∩Xn

α,β ⊆ Vα for each n < ω.

2.16 Lemma (Kunen). Suppose X is an A by B independent linked family with respect to some filter F

and Y ⊆ ω. Then there is a finite L ⊆ B such that X restricted to B \ L is an A by (B \ L) independent
linked family with respect to the filter generated by either F ∪ {Y } or F ∪ {ω \ Y }

Proof. If X is independent linked w.r.t. the filter generated by F∪{Y } then we are done. Otherwise there
is some L ⊆ B, n : L→ ω, a ∈

∏
β∈L[A]n(β) and F ∈ F such that

(∗∗) Y ∩ F ∩
⋂
β∈L

⋂
α∈a(β)

X
n(β)
α,β

is finite. We will show that X restricted to B \ L is independent linked w.r.t. the filter generated by
F ∪ {ω \X}. So take some L′, n′, a′ and F ′ as above. Let

Z = F ′ ∩ F ∩
⋂
β∈L

⋂
α∈a(β)

X
n(β)
α,β ∩

⋂
β∈L′

⋂
α∈a′(β)

X
n′(β)
α,β .

Since the original matrix was independent w.r.t. F and since L∩L′ = ∅, Z is infinite. By (**) it is almost
disjoint from Y . So Z ∩ ω \ Y is infinite also which finishes the proof.

We are now ready to prove Kunen’s result about weak P-points:

Proof of theorem 2.9. It is instructive to compare this proof with the proof of theorem 3.2. The overall
inductive structure is the same, however whereas in the proof of 3.2 the induction process is kept going
by a very simple requirement (c.f. condition 3.2.iii) here the requirement is much more complicated
(conditions (i), (ii)).

By proposition 2.11 it is sufficient to show that there are c-O.K. points in ω∗. Enumerate all countable
⊆∗-descending sequences of infinite subsets of ω as 〈〈Uαn : n < ω〉 : α < c〉 such that each sequence appears
cofinally often. Also enumerate P(ω) as {Yα : α < c}. Let X be a c by c independent family w.r.t. the
Fréchet filter on ω. By recursion on c construct filters Fα, and sets Lα such that

(i) FR = F0 ⊆ Fα ⊆ Fβ and ∅ = L0 ⊆ Lα ⊆ Lβ for α < β and X restricted to c \ Lα is an c by
(c \ Lα)-independent linked family w.r.t. Fα,

(ii) |Lα| ≤ ω · |α|,

(iii) Lβ =
⋃
α<β Lα and Fβ =

⋃
α<β Fα for β < c limit,

(iv) If 〈Un : n < ω〉 ⊆ Fα then there are {Vα : α < c} ⊆ Fα+1 such that for each finite K ⊆ [c]<ω⋂
α∈K

Vα ⊆∗ U|K|

and
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(v) either Yα ∈ Fα+1 or ω \ Yα ∈ Fα+1.

The nontrivial steps (guaranteeing (iv) and (v) at successors) are taken care of by the previous two
lemmas. Finally let U =

⋃
α<c Fα. By (v) U will be an ultrafilter. By (iv) and the fact that cf(c) > ω and

hence each countable sequence of elements of U must be included in Fα from some α0 on we infer that
U is a c-O.K. point of ω∗. (This follows from the fact that the sets Â = {p ∈ ω∗ : A ∈ p} form a basis of
ω∗)

Kunen’s machinery for constructing O.K.-points was soon ingeniously put to good use by van Mill
to construct various kinds of points in different topological spaces. We will be looking at that in the
next section. Before we do that let us mention that K. Kunen together with his Ph.D. student J. Baker
later generalized the notion of an O.K.-point to the notion of a general hat-point. This general definition
encompassed O.K.-points and also the good ultrafilters defined by Keisler ([Kei64]). They have been able
to also extend the independent matrix method construction to construct these general points and get
some surprising new results (see [KuBa01] or the survey [KuBa02]).

2.2 16 Topological Types

This section is an exposition of the techniques developed in van Mill’s [vMill82a] which, in turn, relied
on results from [Kun80] and [CS80],[vD81]. The first two subsections show the techniques and the last
gives the original application.

2.2.1 Remote Filters

2.17 Definition ([FG62]). A closed filter on X (see note 1.7) is called remote if for any nowhere dense
D ⊆ X there is some F ∈ X disjoint with D.

Remote points were first defined by Fine and Gillman who were able to prove using CH that they exist
in βR. They were later studied by several authors. E. van Douwen ([vD81]), S. Chae and J. Smith ([CS80])
independently proved that they exists in the remainders of nonpseudocompact spaces of countable π-
weight. In the converse direction T. Terada ([Ter79]) was able to prove that pseudocompact spaces do
not have remote points.

Van Mill invented a combinatorial method for constructing remote filters via a sequence of n-linked
systems with increasing n. We illustrate this method proving the following theorem

2.18 Theorem ([vMill82a],1.3). If X =
∑
n<ωXn where each Xn is compact and a product of at most

ω1 spaces of countable π-weight, then there is a remote filter F on X such that each F ∈ F misses only
finitely many Xn’s.

Before giving the proof, we will introduce some notation and prove three technical lemmas.

2.19 Notation. Suppose π : X → Y is a mapping (usually a projection), and F0,F1 are systems of closed
sets on X and Y respectively. We will write

F1 v F0 ≡ π−1[F1] := {π−1[F ] : F ∈ F1} ⊆ F0,

and say that F0 extends the lift of F1 via π. Also, given a system F we define

c(F) = sup
{
n < ω :

(
∀F′ ∈ [F]n

) (⋂
F′ 6= ∅

)}
,

the maximal n (or ω) such that F is n-centered. Notice that if F1 v F0 then c(F0) ≤ c(F1).

2.20 Lemma ([vMill82a],1.1). Suppose that π : X → Y is open, X is compact and B is a π-base of X
closed under finite unions. If F is an n-centered remote system of closed sets on Y and N ⊆ X is nowhere
dense then there is a B ∈ B whose closure is disjoint from N such that π−1[F] ∪ {B} is n-centered.

Proof. For B ∈ B let U(B) = intf [B]. Define C = {U(B) : B ∈ B & B ∩ N = ∅}. Since f is open and
since

⋃
{B ∈ B : B ∩ N = ∅} is dense, Y \

⋃
C is nowhere dense. Since F is remote, there is F ∈ F

covered by C. Since F is compact, choose a finite subcover C′ ⊆ C. Then B =
⋃
{B ∈ B : U(B) ∈ C′} is

as required, since F is n-centered.
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2.21 Lemma ([vMill82a],1.2). Suppose π : X → Y is open, X compact of countable π-weight and F is an
n-centered remote system of closed sets on Y . Then there is an (n-1)-centered remote system F0 which
extends the lift of F, i.e. F v F0.

Proof. Let B be a countable π-base for X which is closed under finite unions. For 2 ≤ i ≤ n define

F(i) =
{
B ∈ B : {B} ∪ π−1[F0] is i-centered

}
By the previous lemma each F(i) is remote. Since the restriction of π to a regular closed set is still open,
we can use the previous lemma to show

Claim. For each E ∈ F(i), n ≥ i > 2 and for each nowhere dense N ⊆ X there is F ∈ F(i − 1) disjoint
from N with F ⊆ E.

Proof of claim. Enumerate F(i) as {Eik : k < ω} and for a nowhere dense set N ⊆ X and 2 ≤ i ≤ n
define

K(N, i) = {k < ω : Eik ∩N = ∅}

Now for m = n define k(N,m) = minK(N,m) and for 2 ≤ m < n

k(N,m) = min{k < ω : (∀k′ ≤ k(N,m+ 1))(∃j ≤ k)(j ∈ K(N,m) & Emj ⊆ Em+1
k′ )}.

Let

F (N) =

n⋃
i=2

⋃
{Eik : k ≤ k(N, i) & k ∈ K(N, i)}.

�

Claim. For each i ≤ n− 1 and N1, . . . , ni there is some k ≤ max{k(Nj , n− i+ 1) : j = 1, . . . , i} such that

En−i+1
k ⊆

⋂i
j=1 F (N).

Proof. The claim is proved by induction on i. �

Claim. The family F0 = {F (N) : N is nowhere dense} ∪ π−1[F] is (n-1)-centered.
�

Let n − 1 = i0 + i1. Choose nowhere dense sets N1, . . . , Ni0 and F1, . . . , Fi1 ∈ F0. The case i1 = 0

is taken care of by the previous claim. Also by the previous claim
⋂i0
j=1 F (N) contains some element of

F(n− i0 + 1) = F(i1 + 2) and this finishes the proof.

2.22 Lemma ([KuMi80], Lemma 2.1). Suppose X =
∏
α<ω1

Xα where each Xα has countable π-weight.
Let Yα =

∏
β<αXα and πω1α : X → Yα be the natural projection. Then for each nowhere dense set

N ⊆ X there is α < ω1 such that πω1α[N ] is nowhere dense in Yα.

proof of theorem 2.18. Let Xn =
∏
α<ω1

Xα
n , Y αn =

∏
β<αX

β
n and Y α =

∑
n<ω Y

α
n . For α < β and n < ω

let πnβα : Y βn → Y αn and πβα : Y β → Y α be the projections. By induction on α < ω1 we will construct
remote systems Fαn of closed sets on Y αn such that

(i) lim infn→∞ c(Fαn) =∞,

(ii) For each α < β there is an n < ω such that for each m ≥ n, Fαm v Fβm.

Assume for a moment that the induction can be carried out. Let

Fα = {F ⊆ Y α : F ∩ Y αn ∈ Fαn}

and finally

F =
⋃
α<ω1

π−1ω1α[Fα]

Claim. F is remote.

Proof of claim. Given a nowhere dense set N use theorem 2.22 to find α < ω1 such that Nn = πnω1α[N ]
is nowhere dense in Y αn for each n < ω. Then for n < ω choose Fn ∈ Fαn disjoint from Nn and let
Fα =

⋃
n<ω Fn. Clearly Fα ∈ Fα and π−1ω1α[Fα] ∈ F is disjoint from N . �
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Figure 2.1: Inductive construction of Fβn’s

Claim. F is centered.

Proof of claim. Take F0, . . . , Fk ∈ F. Then Fi = π−1ω1αi [F
αi ] for some Fαi ∈ Fαi . Fix α < ω1 bigger than

all the αi’s. Next, using (i) and (ii), find n < ω such that c(Fαn) > k and for each i ≤ k, Fαin v Fαn. Then
Hi := (πnααi)[F

αi ∩Y αin ] ∈ Fαn so, since c(Fαn) > k, F =
⋂
i≤kHi is nonempty and (πnω1α)−1[F ] ⊆

⋂
i≤k Fi.

�

Claim. If F′ is the closed filter generated by F then for each F ∈ F′ the set {n : F ∩Xn = ∅} is finite.

Proof of claim. This is proved in the same way as the previous claim. �

So it remains to be shown that the induction can indeed be carried out. To construct F0
n we need

only realize that Y 0 is a nonpseudocompact space of countable π-weight and use the results of Chae
and Smith ([CS80], theorems 1 and 3) or van Douwen ([vD81]) that there are remote points in βY 0. So
suppose we have constructed Fαn for α < β. If β is a successor, apply lemma 2.21.

If β is limit let {βn : n < ω} be a strictly increasing cofinal subset of β. We will construct the Fβn’s
by induction in consecutive blocks of n’s (see figure 2.1).

Choose k0 such that 1 ≤ c(Fβ0

k0
) and Fβ0

n v Fβ1
n for each n ≥ k0 . For i < k0 choose remote systems

F
β
i on Y βi arbitrarily.

Assume we have constructed ki and Fβn for n < ki. Choose ki+1 > ki such that i + 1 ≤ c(Fβin ) and
Fβin v Fβi+1

n for each n ≥ ki+1 and use lemma 2.21 to construct Fβn w Fβin with c(Fβn) ≥ i.
It is clear that in the end we will have constructed Fβn satisfying (i)-(ii). This finishes the proof.

2.2.2 Embedding Projective Covers
We now turn to another technique which uses K. Kunen’s method for constructing O.K.-points to embed
various spaces into ω∗ in a very special way. First we will state a generalization of proposition 2.11 due
to van Mill:

2.23 Definition. A closed set F ⊆ X is κ-O.K if for each sequence {Un : n < ω} of neighbourhoods of A
there are neighbourhoods {Vα : α < κ} of A such that for each finite A ⊆ κ.⋂

α∈A
Vα ⊆ U|A|

2.24 Proposition ([vMill82a],2.1). Suppose X is locally compact and σ-compact and A ⊆ X∗ is ω1-O.K.
Then the closure of any ccc subset of X∗ disjoint from A is also disjoint from A.

The following is the main embedding theorem.

2.25 Theorem ([vMill82a],2.6). If X is of the form ω × Z where Z is a compact space of weight at most
c, then the projective cover (see 1.15) of any continuous ccc image of ω∗ can be embedded into X∗ as a
c-O.K. set.
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2.26 Corollary. The projective cover of any continuous ccc image of ω∗ can be embedded into ω∗ as a
c-O.K. set.

The proof splits into two parts. First one has to prove the proposition:

2.27 Proposition ([vMill82a],2.4). If X is as above, F is a closed filter on X such that for each F ∈ F the
set {n : F∩{n}×Z = ∅} is finite and if Y is a continuous image of ω∗ then there is a continuous surjection
g : X∗ → Y and a closed c-O.K. set A ⊆ X∗ such that A ⊆

⋂
F∈F F

∗ and g � A is irreducible.

The proof of this proposition is a straightforward topological adaptation of the proof of theorem 2.9
and we do not include it. (During the induction one uses the fact that there are only c-many closed Gδ
sets in X and one also has to make sure that g is irreducible.)

proof of theorem 2.25. By the previous proposition, there is a closed c-O.K. set A ⊆ X∗ which admits an
irreducible map onto Y . Since X∗ is an F-space (see theorem 1.13) and since A is ccc (by irreducibility
and the fact that Y is ccc), A is extremally disconnected (see proposition 1.14). Hence A ' EY .

Another embedding theorem, which we shall use in section 2.3, is due to P. Simon:

2.28 Theorem ([Sim85]). The Čech-Stone compactification of any T3 ED space of weight ≤ c can be
embedded into ω∗ as a closed weak P -set.

2.2.3 The 16 types

In this section we will use the techniques developed above to construct sixteen types of points in ω∗.

2.29 Definition (van Mill).

(T1) x ∈ T0 if it is a limit point of a countable discrete subset.

(T2) x ∈ T1 if it is a limit point of a countable crowded π-homogeneous set of countable π-weight.

(T3) x ∈ T2 if it is a limit point of a countable crowded π-homogeneous set of π-weight ω1.

(T4) x ∈ T3 if it is a limit point of a locally compact ccc nowhere separable set.

2.30 Theorem (van Mill). Given A ⊆ {1, 2, 3, 4} there is x ∈ ω∗ which is of type Ti for each i ∈ A but
not of type Tj for j 6∈ A.

Proof.
1 Case A = ∅
Use theorem 2.9 to construct a c-O.K. point p in ω∗ and note that, by proposition 2.24, p 6∈ T4.
2 Case A = {1}
Notice that βω is a continuous image of ω∗ and, since βω is ED, Eβω ' βω. To construct the required
point, take a c-O.K. point in X = ω∗. As X ⊆ βω = Y we can use corollary 2.26 to embed Y in ω∗ as a
c-O.K. set. Then p ∈ X ⊆ Y ⊆ ω∗ will be the required point.
3 Case A = {2}
Since the Cantor space is a continuous image of ω∗, its projective cover E2ω embeds into ω∗ as a c-O.K.
subset X ⊆ ω∗. Let {Xn : n < ω} be a sequence of pairwise disjoint nonempty clopen subsets of X whose
union is dense in X while Xn ' X. Since X is E.D., β

(⋃
n<ωXn

)
' X. By proposition 2.27 and theorem

2.18 there is a remote c-O.K. point p ∈ X \
⋃
n<ωXn. This point is as required.

4 Case A = {3}
Take X = E2ω1 and continue as in the previous case.
5 Case A = {4}
By [Bell80, 2.1] and [vMill79, 5.1] there is a ccc nowhere separable continuous image X of ω∗. The one-
point compactification α(ω ×X) is also a continuous image of ω∗ so Eα(ω ×X) embeds as a c-O.K. set
Y ⊆ ω∗. Notice that Y ' β(ω × EX). Let π : ω × EX → EX be the projection and for each countable
A ⊆ ω × EX let {Un(A) : n < ω} be a maximal pairwise disjoint collection of nonempty clopen subsets
of EX disjoint from π[A]. Since EX is nowhere separable, the set DA =

⋃
n<ω Un(A) is dense for each

such A. Let

FA =
⋃
n<ω

{n} ×DA.
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Then FA ∩A = ∅ and the closed filter generated by {FA : A ∈ [ω ×EX]ω} satisfies the requirements
of theorem 2.27. Thus, by this theorem, there is x ∈ β(ω×EX) ' Y which is a c-O.K. point of (ω×EX)∗

disjoint from the closure of any countable A ⊆ ω×EX. As Y was a c-O.K. subset of ω∗, this finishes the
proof.
6–8 Case A = {1, 2}, {1, 3}, {1, 4}
Take p ∈ Ti (i = 2, 3, 4) and embed the ambient ω∗ into ω∗ ⊆ βω = X as a c-O.K. set. Then embed X
into ω∗ as a c-O.K. set.
9 Case A = {2, 3}
Let X = E2ω, Y = E2ω1 . Assume that β(ω × X) ⊆ ω∗ is c-O.K. Working in β(ω × X) assume β(ω ×
Y ) ⊆ (ω×X)∗ is c-O.K. and remote (by theorem 2.18). Finally choose a c-O.K. remote point x ∈ (ω×Y )∗.
10 Case A = {2, 4}
As in case 9, replace Y by the projective cover of a ccc nowhere separable image of ω∗ and use the point
constructed in case 5.
11 Case A = {3, 4}
As in case 10, replace X by E2ω1 .
12–16 Case A = {1, 2, 3}, {1, 2, 4}, {2, 3, 4}, {1, 2, 3, 4}
Use the same techniques as before.

2.3 Seventeenth Topological Type
The motivation for the seventeenth type comes from van Mill’s second type:

2.31 Theorem (van Mill). There is a point p ∈ ω∗ which is a limit point of a countable discrete set and
the countable sets whose limit point it is form a filter.

This motivated P. Simon to define the following notion, which we have called a lonely point in [Ver08].
We want essentially the same type of point as in the above theorem only replacing the countable discrete
set whose limit point it is by a crowded set:

2.32 Definition (Simon). A point p ∈ X is a lonely point provided:

(i) p is ω-discretely untouchable, i.e. not a limit point of a countable discrete set,

(ii) p is a limit point of a countable crowded (i.e. without isolated points) set and

(iii) The countable sets whose limit point p is form a filter.

In [Ver08] we were able to show that they exist in some open dense subspace of ω∗ and we have later
extended this result in [Ver11] to prove that they exist in ω∗. The aim of this section is to present this
proof.

2.33 Theorem. ω∗ contains a lonely point.

The following observation motivates our approach.

2.34 Observation. If F ⊆ X is a weak P-set of X and x ∈ F is a lonely point of F then it is also a
lonely point of X.

The idea is to construct an countable space X such that βX has a lonely point and then use the
above observation together with the embedding theorem 2.28 of P. Simon. The space will be countable
so as to make sure that the weight is at most c. From the definition of a lonely point, we immediately get
that the space cannot have disjoint dense sets, i.e. it must be irresolvable. It would also be helpful, if no
countable subset of the remainder had limit points in X. Such spaces are called ℵ0-bounded and we will
look at them shortly. First, however, we shall see what is known about irresolvable spaces.

2.3.1 Maximal Topologies & Irresolvable spaces
2.35 Definition (vanDouwen). A crowded topological space is resolvable if it contains at least two disjoint
dense subsets. It is irresolvable if it is not resolvable. It is hereditarily irresolvable (HI) if each subspace
is irresolvable and it is open hereditarily irresolvable (OHI) if each open subspace is irresolvable.

The definition requires the space to have no isolated points, since any space with isolated points
would be automatically irresolvable. These spaces have been first constructed by E. Hewitt ([Hew43]),
who defined the notion of a hereditarily irresolvable space, and M. Katětov ([Kat47]) at the end of the
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forties. Van Douwen extended their work significantly in [vD93] where he used these spaces to construct a
separable ≤ 2-to-one image of ω∗. Quite recently the notion of irresolvability (and especially resolvability)
has become popular again, see e.g. [CW05], [JSS05] or [Pav05], which is a summary.

Irresolvable spaces are, in some sense, close to discrete spaces. This is suggested by the method Hewitt
used to construct them — he considered maximal crowded topologies. These topologies turn out to be
irresolvable. First we need a definition:

2.36 Definition. If P is a property of a topology (e.g. T1, T2, crowded, etc.), we say that τ is maximal P
if it has P but cannot be refined to a strictly stronger topology having P .

2.37 Note. Originally Hewitt defined maximal topologies to be maximal crowded topologies. In this
chapter we will use the modern terminology (as in the previous definition) not to confuse the reader.

2.38 Proposition (Hewitt). If τ is a maximal crowded topology on X, then any two τ -dense sets intersect.

Proof. Suppose D1, D2 are disjoint dense. Then D1 is not open and the topology generated by τ ∪ {D1}
is a strictly finer topology which does not have any isolated point.

We will need some of the results of van Douwen and we devote the rest of this section to their
presentation.

2.39 Definition. A topological space is perfectly disconnected if no point is a limit point of two disjoint
sets. It is nodec if every nowhere dense set is closed and is ultradisconnected if it is crowded and any two
disjoint crowded subsets have disjoint closures.

Before continuing, notice that in a perfectly disconnected space every point is lonely. Thus, ideally,
we would like to find a countable perfectly disconnected space with an ℵ0-bounded remainder. The results
from this section will allow us to do precisely that.

2.40 Theorem ( [vD93, 2.2] ). For a crowded space X the following are equivalent

(i) X is perfectly disconnected

(ii) a subset of X is open if and only if it is crowded

(iii) X is maximal crowded.

(iv) X is ultradisconnected and nodec

(v) X is extremally disconnected, OHI and nodec

Note, that an ultradisconnected space is hereditarily irresolvable (i.e. any crowded subspace is ir-
resolvable) and extremally disconnected. See diagram 2.2 illustrating some relations between different
irresolvability properties.

Irresolvable

Maximal regular

Ultradisconnected

Perfectly disconnected

Maximal crowded

Nodec+

+

Extremally disconnected

& zerodimensional

Hereditarily
irresolvable

Open hereditarily
irresolvable

Figure 2.2: Relations between irresolvability properties
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2.41 Theorem ([vD93],1.7,1.11). Maximal regular spaces are zerodimensional, ED and OHI.

2.42 Theorem ([vD93],1.4,1.6). If A,B are disjoint crowded subspaces of a maximal regular space, then
A and B are disjoint.

2.43 Theorem ([vD93],2.2). If X is ED and OHI and each nowhere dense subset of X is closed then X
is perfectly disconnected.

The following theorem is not explicitly stated in van Douwen’s paper, but its proof is essentially given
in his Lemma 3.2 and Example 3.3.

2.44 Theorem (van Douwen). Any countable maximal regular space X contains an open perfectly discon-
nected subspace.

Proof. For each Z ⊆ X let

AZ = {x ∈ Z : x is a limit point of a relatively discrete subset of Z}

Claim. AZ 6= Z for each nonempty open subset Z of X.

Proof of claim. Assume otherwise. Enumerate X as 〈xn : n < ω〉. By induction construct pairwise
disjoint, relatively discrete sets 〈Dn : n < ω〉 such that:

(i)
⋃
i<nDi ⊆ Dn for all n < ω and

(ii) xn ∈ Dn for n < ω.

This will lead to a contradiction with the irresolvability of Z (by theorem 2.41, X is OHI, so Z is
irresolvable) since

⋃
n<ωD2n and

⋃
n<ωD2n+1 would then be disjoint dense subsets of Z. To see that

the construction can be carried out let D0 = {x0} and assume we have constructed Di for i ≤ n. Let
Y = Dn ∪X \Dn. Since Dn is relatively discrete, Y is open. Since Z is regular and Dn is countable and
relatively discrete, there is a pairwise disjoint collection of open sets {Ux : x ∈ Dn} such that x ∈ Ux ⊆ Y .
Since we assumed AZ = Z we can choose for each x ∈ Dn a relatively discrete set Dx such that Dx ⊆ Ux
and x ∈ Dx \Dx. Let D′n+1 =

⋃
x∈Dn Dx. If xn+1 is a limit point of D′n+1 let Dn+1 = D′n+1 otherwise

let Dn+1 = D′n+1 ∪ {xn+1}. Then Dn+1 is as required. �

Claim. int AX = ∅.

Proof of claim. For any clopen U , AX ∩U = AU . Since X is regular and countable, it is zerodimensional.
Suppose, aiming towards a contradiction, that U is nonempty clopen and U ⊆ AX . By the previous claim
U \ AU 6= ∅. Take some x ∈ U \ AU . This x is not a limit point of a relatively discrete subset of U so,
since U is clopen, it is not a limit point of a relatively discrete subset of X so x 6∈ AX so U \ AX 6= ∅ a
contradiction. �

Claim. AX is nowhere dense.

Proof of claim. Take any open U ⊆ X. Then U \ AX is dense in UX , since int AX = ∅. Since X is OHI
(by theorem 2.41), U is irresolvable so AX cannot be dense in U so U 6⊆ AX . Thus int AX = ∅. �

Claim. If A ⊆ X is nowhere dense then there is a discrete D ⊆ A dense in A.

Proof of claim. Let D = {x ∈ A : x is isolated in A}. Since X is regular and countable D is relatively
discrete. Since A is nowhere dense, D is discrete. Let E = A \ D. Then E has no isolated points. Also
X \ E has no isolated points. By theorem 2.42 E must be open which contradicts that A is nowhere
dense. �

Let
ϑ = {x ∈ X : x is not a limit point of a nowhere dense subset of X}

By the previous claim (and by the fact that each discrete subset of X is nowhere dense)

ϑ = {x ∈ X : x is not a limit point of a discrete set}

Then X \ ϑ ⊆ AX so X \ ϑ is nowhere dense, so int ϑ is nonempty. We finally show that int ϑ is
perfectly disconnected. By the definition of ϑ any nowhere dense subset of int ϑ is closed. Now it remains
to apply theorem 2.43 remembering that by theorem 2.41 int ϑ is ED and OHI (any open subspace of a
maximal regular space is maximal regular).
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2.3.2 Special spaces

We shall now turn our attention to spaces having an ℵ0-bounded remainder.

2.45 Definition ([FlGuWe70]). A space X is ℵ0-bounded provided every countable subset of X has com-
pact closure in X.

The following definition and theorem is taken from [DGS88]:

2.46 Definition. Let p ∈ ω∗ be a weak P-point. The space Gω is the space ω<ω of all finite sequences of
natural numbers with G ⊆ ω<ω being open precisely when for each σ ∈ G the set {n : σan ∈ G} is in p.

2.47 Theorem (Dow, Gubbi, Szymanski). The remainder of Gω is ℵ0-bounded. Moreover Gω is a T2,
zerodimensional, ED space.

Proof. It is clear that the space is T2: Given σ, τ ∈ Gω if σ ⊥ τ then Gσ = {s ∈ Gω : σ ⊆ s} and
Gτ = {s ∈ Gω : τ ⊆ s} are disjoint open sets separating σ from τ . If σ ⊆ τ let Gσ = {s ∈ Gω : τ 6⊆ s} and
Gτ as before. Again we get two disjoint open sets separating σ from τ .

To see that the space is zerodimensional, notice that given τ ∈ U ⊆ Gω, the set

Hτ = {s ∈ Gω : (∀|τ | ≤ n ≤ |s|)(s � n ∈ U & τ ⊆ s)

is a clopen subset of U containing τ .
To see that it is ED consider an open set U ⊆ Gω with t ∈ U . By recursion construct 〈Tn : n < ω〉 such

that Tn ⊆ U and for each s ∈ Tn the set {k : sak ∈ Tn+1} is in p. Let T0 = {t}. If we have constructed
Tn and s ∈ Tn then, Ls = {k : sak ∈ U} ∈ p (This is clear if s ∈ U and if not, then for each k ∈ ω \ Ls
there would be an open Uk containing sak and disjoint from U . But then {s} ∪

⋃
k∈ω\Ln+1

Uk would be

a neighbourhood of s disjoint from U contradicting s ∈ U .). Now let Tn+1 = {sak : s ∈ Tn, k ∈ Ls}. This
finishes the recursive definition and finally let V =

⋃
n<ω Tn. Then V ⊆ U is an open neighbourhood of

t showing that U is open.
Finally we show Gω is ℵ0-bounded. First notice that, since G is zerodimensional, βGω ≈ Ult(Clop(Gω)).

We introduce some notation. For s ∈ Gω let Gω(s) = {t ∈ Gω : s ⊆ t}, Ls(n) = {t ∈ Gω(s) : |t| = n+ |s|},
succ(s) = {t ∈ Ls(1)} and, given an open U ⊆ Gω let Û = {q ∈ βGω : U ∈ q}. In the following, closure
will always be taken in βGω unless otherwise stated.

2.48 Observation. Each ˆGω(s) is a clopen subset of βGω disjoint from (βGω \ Gω(s)). �

Note that succ(s) is isomorphic to βω with s being taken to p by the isomorphism. Since p was a
weak P-point, together with the above, we have:

2.49 Observation. Each s ∈ Gω is a weak P-point in L∅(|s|+ 1). �

Let D = {pn : n < ω} be a countable subset of βGω \ Gω and t ∈ Gω. We will find a neighbourhood
U of t disjoint from D. Let Xn = Lt(n) and Dn = D ∩Xn. We shall recursively build a neighbourhood
T of t in Gω and in the end let U = T̂ ∩ Gω(t). We let T0 = {t} and suppose we have constructed Tn
such that Dn ∩ Tn = ∅. Since each s ∈ Tn is a weak P-point of Ls(n+ 1) and since Xn+1 is countable
and disjoint from Gω, we may find an open set (in βGω) Us such that s ∈ Us and Us ∩Dn+1 = ∅. Since
βGω ≈ Ult(Clop(Gω)), we may find a clopen U ′s ⊆ Gω such that Û ′s ⊆ Us. Let As = {U ′ ∩ succ(s)} and

let Tn+1 = Tn∪
⋃
s∈Tn As. At the end of the recursion let T =

⋃
n<ω Tn and U = T̂ ∩ ˆGω(t). Then U is an

open neighbourhood of t disjoint from
⋃
n<ωDn. Finally we let D′ = D\

⋃
n<ωDn and it remains to find a

neighbourhood of t disjoint from D′. Enumerate D′ as {qn : n < ω} and pick Un a clopen neighbourhood
of {qi : i ≤ n} disjoint from Ln(t) and let U =

⋃
n<ω Un. We claim that V = Gω(t) \ U is an open

neighbourhood of t (in Gω). Pick s ∈ Gω(t) \ U and suppose to the contrary that {n : san 6∈ V } ∈ p.
Then s ∈ {san : san 6∈ V } ⊆ U and, by the definition of U , s ∈

⋃
i≤|s|−|t| Ui but this is impossible, since⋃

i≤|s|−|t| Ui is clopen so then it would follow that s ∈
⋃
i≤|s|−|t| Ui ⊆ U a contradiction with the choice

of s.

2.3.3 Putting it all together

Now we have all that we need to construct lonely points in ω∗. We will use the space from the previous
section and refine the topology to a maximal regular topology. Then we will find an open perfectly
disconnected subspace using 2.44. This will give us a countable perfectly disconnected space with an ℵ0-
bounded remainder because of the following proposition (and the fact that the space is zerodimensional).
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2.50 Proposition. If (X, τ)∗ is a zerodimensional ℵ0-bounded space and σ ⊇ τ is also zerodimensional,
then (X,σ)∗ is ℵ0 bounded.

Proof. Note that any p ∈ (X, τ)∗ corresponds to a closed subset of (X,σ)∗ (denote it [p]). Now given
{qn : n < ω} ⊆ (X,σ)∗ we can find {pn : n < ω} ⊆ (X, τ)∗ such that {qn : n < ω} ⊆

⋃
{[pn] : n < ω}.

Since (X, τ)∗ is ℵ0-bounded, {pn : n < ω}
β(X,τ)

∩X = ∅ so also {qn : n < ω}
β(X,σ)

∩X = ∅ which implies
that (X,σ)∗ is ℵ0-bounded.

Summarizing we have the following theorem.

2.51 Theorem. There is a countable, ED, perfectly disconnected space X with an ℵ0-bounded remainder.

Proof. Take the space Gω from theorem 2.47, and refine the topology to a maximal regular topology.
Then, by the previous proposition, this space still has an ℵ0-bounded remainder and so does its open
perfectly disconnected subspace given by theorem 2.44. Let X be this subspace.

Notice that this space will have a dense set of lonely points. We now finish by embedding its Čech-
Stone compactification into ω∗ to get lonely points in ω∗.

2.52 Theorem. ω∗ contains a lonely point.

Proof. Let X be the space from the previous theorem. Since it is crowded perfectly disconnected, each
of its points is a lonely point of X. Since its remainder is ℵ0-bounded, each of its points is also a lonely
point of βX. Since it is ED, βX is also ED and since it is countable, βX has weight at most c. Hence, by
theorem 2.28, βX can be embedded as a weak P-set into ω∗ and each point of X will be a lonely point
of ω∗ (by observation 2.34).
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Chapter 3

Consistency Results

This chapter will give a sampling of the many constructions of ultrafilters which go beyond ZFC. Once
one is allowed to use additional axioms, there is a wide range of constructions one can use, or invent.
This chapter will present some of them, but the majority of the possibilities will not even be mentioned.
We will also omit all of the “non-results” which construct models of ZFC where certain ultrafilters do not
exist. Probably the first result in this direction was S. Shelah’s construction of a model with no P-points
([Wim82]). Many other results have followed but intriguing open questions still remain. One of the most
interesting representatives of these questions is probably the following:

3.1 Question. Is there a model of ZFC with no P-points and no Q-points?

This has been open for a long time and seems to be a very hard question. A positive solution requires
the continuum to be higher than ℵ21. This rules out the obvious approach of forcing with a countable
support iteration of proper forcings.

We will first start with two sections presenting several constructions based on additional combinatorial
assumptions beyond ZFC. The other two sections, based on results from [BlHrVe11] and [HrVer11], will
present two methods which use forcing to construct various ultrafilters.

3.1 Ketonen’s construction of a P-point

In this section we will show how one can, assuming additional axioms, construct P-points. We start with
W. Rudin’s proof under CH, then we extract the essence of the proof and show that MA is sufficient.
Finally we present J. Ketonen’s construction of P-points under d = c.

3.2 Theorem ([Rud56]). Assume 2ω = ω1. Then there is a P-point p in ω∗.

Proof. Let 〈Aα : α < ω1〉 be an enumeration of P(ω) and let 〈Cα : α < ω1〉 be an enumeration of ωP(ω)
with each sequence listed cofinally often. By induction construct filters Fα for α < ω1 satisfying:

(i) For each α < ω1 either Aα ∈ Fα+1 or (ω \Aα) ∈ Fα+1.

(ii) For each α < ω1 if all elements of the sequence Cα are in Fα then there is a B ∈ Fα+1 such that
|B \ Cα(n)| < ω for all n ∈ ω.

(iii) For each α < ω1 the filter Fα has a countable basis.

Let F0 be the Fréchet filter on ω. If α < ω1 is limit, let Fα =
⋃
β<α Fβ and both (i), (ii) and (iii)

are satisfied. So suppose α < ω1 is not limit. If there is an F ∈ Fα such that F ∩ Aα = ∅ then let
F′α = Fα ∪ {(ω \ Aα)} otherwise let F′α be the filter generated by Fα ∪ {Aα}. F′α is a filter satisfying
(i),(iii). Suppose the sequence Cα consists of elements of F′α. Let {Fn : n < ω} be an enumeration
of the basis of F′α. Inductively for each k < ω choose nk ∈ (

⋂
i<k Fi) \ {n0, . . . , nk−1}. This is possible

since F′α is centered. Now let Fα+1 = 〈Fα ∪ {{nk : k < ω}}〉. This is a centered system and the set
|{nk : k < ω} \ Cα(n)| < ω (in fact, if Cα(n) = Fi, then the cardinality is at most i).

Now let F =
⋃
α<ω1

Fα. (i) Guarantees that F is an ultrafilter and (ii) guarantees that it is a P-
point.

1Compare this with the p = t problem
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The continuum hypothesis turns out to be very strong and simplifies the study of ω∗ considerably.
But what if the continuum is larger and hence ω∗ is richer? Booth noticed ([Boo70]), that Martin’s axiom
(see definition 1.34) is enough to prove the existence of P -points. The proof proceeds similarly as in 3.2
where condition (ii) is guaranteed using the following standard lemma:

3.3 Lemma. Assume MA. If λ < c and {Aα : α < λ} is a centered system of subsets of ω then they have
an infinite pseudointersection, that is there is an infinite A which is almost contained in all Aα’s.

Proof. Define P = {(F, I) : F ∈ [ω]<ω, I ∈ [λ]<ω}, where (G, J) ≤ (F, I) if and only if G ⊇ F , J ⊇ I and
G \ F ⊆

⋂
α∈I Aα. Then (P,≤) is a ccc poset of size λ. Now consider the sets

Dα = {(F, I) ∈ P : α ∈ I}, D′n = {(F, I) ∈ P : |F | ≥ n}.

Each of them is dense in (P,≤). So there is a filter F on (P,≤) which meets each of them. If we let
A =

⋃
{F : (∃I ∈ [λ]<ω)(F, I) ∈ F} then A is infinite because F meets each D′n and is almost contained

in each Aα because some (F, I) is contained in Dα ∩ F. Then A \Aα ⊆ F .

3.4 Note. The previous construction in fact constructs ultrafilters with much stronger properties. They
are selective ultrafilters generated by a tower. They are also P<c-points, i.e. the intersection of less than
c neighbourhoods is again a neighbourhood.

In [Ket76] it is shown that if we only want a P-point, much less is needed. Recall the following
definition (see 1.35).

3.5 Definition. A family F of functions from ω to ω is dominating if and only if for any g ∈ ωω there is
an f ∈ F with g ≤∗ f (i.e. g(n) > f(n) for only finitely many n’s). The dominating number d is defined
to be the least cardinality of a dominating family.

It is easy to see, that ω < d ≤ c so CH implies d = c.

3.6 Fact (MA). d = c.

3.7 Lemma ([Ket76],1.3). Assume d = c. If F is a (uniformly) centered system of size < c, and 〈Fn : n < ω〉
is a descending sequence of sets which are F-positive, i.e. which hit each F ∈ F in an infinite set, then
there is an A which is almost contained in each Fn and such that F ∪ {A} is centered.

Proof. We may assume that the sequence is descending mod ⊆. Define for F ∈ F a function fF as follows:
fF (n) = min Fn∩F . Then the family {fF : F ∈ F} has size < c so it is not dominating by our assumption,
so there is a g ∈ ωω with {n : g(n) > fF (n)} infinite for each F ∈ F. Then if we let A =

⋃
i<ω Fi ∩ g(i)

we are done.

Looking at the proof of 3.2, the following theorem immediately follows:

3.8 Theorem (Ketonen). Assume d = c. Then there is a P-point in ω∗.

3.9 Note. Ketonen’s theorem in fact characterizes d = c in the sense that this equality is equivalent to
the fact that every filter of character < c can be extended to a P-point.

3.10 Definition. A filter F is a P+-filter if any descending sequence of F-positive sets has an F-positive
pseudointersection. It is a P-filter if for any descending sequence of sets from F has a pseudointersection
in F.

3.11 Note. For ultrafilters, the notion of a P-filter and P+-filter coincide.

We have an easy corollary of lemma 3.7

3.12 Corollary. Assume d = c. Then each filter with a basis of size < c is a P+-filter.

It is easy to see that an ultrafilter is a P-point if and only if it is a P-filter. Since the Fréchet filter is
a P-filter, one is tempted to ask how close to an ultrafilter we can get with the P-point property in ZFC
alone ([Kan78]). To quantify the “how close” A. R. D. Mathias introduced the notion of a feeble filter2:

3.13 Definition ([Mat78]). A filter F is feeble if it is RB-above the Fréchet filter.

It turns out that being non-feeble can be very close to being an ultrafilter

3.14 Theorem ([BlaLaf89]). The following Filter dichotomy is consistent with ZFC. For each filter F on
ω precisely one of the following happens:

2Kanamori called P-filters which are not feeble coherent
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(i) F is RB-above the Fréchet filter

(ii) F is RB-above some ultrafilter.

The above dichotomy follows from, e.g. the cardinal inequality u < g (see [Blass90]), and in turn
implies the Near coherence of filters (see [Blass86]). It is still an open question whether one of the
implications

u < g ⇒ Filter dichotomy ⇒ Near coherence of filters

can be reversed.
S. A. Jalaili-Naini and, independently, M. Talagrand have shown that a filter F is feeble if and only

if it is meager when considered as a subset of P(ω) with the Cantor topology.

3.15 Theorem ([Jal76],[Tal80]). A filter is feeble if it is a meager subset of ω with the Cantor topology.

A useful corollary of the previous theorem and 3.13 is the following characterization of non-meagerness
for ideals.

3.16 Theorem (Talagrand,Jalaili-Naini). An ideal I is non-meager if and only if for each interval partition
〈In : n < ω〉 there is an infinite set A ∈ [ω]<ω such that

⋃
n∈A In ∈ I.

One may now ask:

3.17 Question ([Kan78]). Is there a non-meager P-filter?

Non-meager P-filters have been constructed from varying assumptions, e.g. c ≤ ℵω+1 is sufficient, but
in ZFC the question still remains open. It is known, however, that a negative answer implies the existence
of large cardinals:

3.18 Theorem ([Mat78]). If there are no non-meager P-filters then 0# exists.

A survey article summarizing current knowledge about the question is [JuMaPrSi90]. Quite recently
N. Dobrinen and S. Todorcević found a curious characterization of non-meager P-ideals.

3.19 Definition ([SoTo04]). A separable metric space X together with a partial ordering ≤ is called basic
if

(i) Each pair of elements has a least upper bound and the least upper bound, when considered as a
map from X2 to X, is continuous,

(ii) each bounded sequence has a converging subsequence and

(iii) each converging sequence has a bounded subsequence.

3.20 Example. (R,≤) is basic.

3.21 Theorem ([DoTo11]). An ideal I extending Fin is a non-meager P-ideal if and only if it is a basic
space with the inclusion ordering and the metric inherited from the Cantor space.

Proof. Assume that I is basic. We shall first use theorem 3.16 to show that I is non-meager. So let
〈In : n < ω〉 be an interval partition of ω. The In’s converge to ∅ so they must have a bounded subsequence
〈Ink : k < ω〉. Then

⋃
k<ω Ink ∈ I so I is non-meager. We shall now show that I is a P-ideal. Suppose

〈An : n < ω〉 is a sequence of sets in I and that An ⊆ An+1. Let A′n = An \ n. Then 〈A′n : n < ω〉
is a sequence in I converging to ∅, so it must have a bounded subsequence 〈A′nk : k < ω〉. The bound
A =

⋃
k<ω A

′
nk

must be in I and for each n < ω, An ⊆∗ A.
Assume on the other hand that I is a non-meager P-ideal. Condition (i) is satisfied since I is closed

under finite unions and (ii) follows from compactness of 2ω and the fact that I is downwards closed.
We need to prove (iii). Let 〈An : n < ω〉 be sequence in I converging to A. Since I is a P-ideal we can
choose a B ∈ I such that An ⊆∗ B for each n < ω. Recursively construct a strictly increasing sequence
〈mk : k < ω〉 such that

(i) Amk+1
∩mk = A ∩mk for each k < ω and

(ii) Amk+1
\mk+2 ⊆ B for each k < ω (equivalently Amk \mk+1 ⊆ B for each 0 < k < ω)

Since I is non-meager, there is an infinite K ∈ [ω]ω such that C =
⋃
k∈K [m3k,m3k+3) ∈ I. Then the

subsequence 〈Am3k+1
: k ∈ K〉 is bounded in I. This follows since Am3k+1

∩m3k ⊆ A by (i), Am3k+1
∩

[m3k,m3k+3) ⊆ C by the choice of C and K and Am3k+1
\m3k+3 ⊆ B by (ii), so

⋃
k∈K Am3k+1

⊆ A ∪
B ∪ C ∈ I.
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3.2 Selective ultrafilters, Q-points
As far as I know, the following concept first appeared in [Boo70] and/or in [Cho68]:

3.22 Definition. An ultrafilter U is Selective, or Ramsey, if for each partition {An : n < ω} of ω, either
there is some n < ω such that An ∈ U or there is a set A ∈ U such that |A ∩An| ≤ 1 for each n < ω.

It is not hard to see that every selective ultrafilter is a P-point. The converse is not true, however. As
we shall see in the next section, each strong P-point (see definition 3.34) is not selective. The following
property extracts what is needed to get selectivity if the filter already is a P-point.

3.23 Definition ([Cho68],[Mat78]). A filter F is a Q-filter (rare in the terminology of Choquet), if for
every (interval) partition {In : n < ω} of ω into finite sets there is a set A ∈ F such that |A ∩ In| ≤ 1.
F is called rapid ([Mok67]) if for each such partition there is a set A ∈ F such that |A ∩ In| ≤ n. An
ultrafilter that is Q is called a Q-point.

3.24 Observation. An ultrafilter U is selective if and only if it is a P-point and a Q-point.

As we have already mentioned the existence of P-points, and hence also selective ultrafilters, is
unprovable in ZFC. One may ask whether the existence of Q-points is provable. This question was
answered by A. Miller in the negative.

3.25 Theorem ([Miller80]). There are no Q-points in the Laver Model for Borel Conjecture.

As in the case of P-points selective ultrafilters can be easily constructed under CH (or MA). However
d = c is not enough to get selective ultrafilters. How about Q-points? Somewhat surprisingly A. R. D. Math-
ias was able to construct Q-points provided d = ω1.

3.26 Theorem ([Mat78]). Assuming d = ω1 there is a Q-point.

3.27 Lemma. Suppose M ⊆ V is a model of ZFC such that ωω ∩M is a dominating family. If F ∈M is
a Q-filter in the sense of M , then any ultrafilter extending F is a Q-point in V .

Proof. Let U extend F. Suppose 〈In : n < ω〉 is an interval partition of ω. Let f : ω → ω be the strictly
increasing function such that In = [f(n), f(n + 1)). Since ωω ∩ M is dominating, there is a g ∈ M
dominating f . We may assume g is strictly increasing and that g(n) > n. Define g′ : ω → ω, by recursion
as follows: g′(0) = g(0) and g′(n+ 1) = g(g′(n)). Clearly g′ ∈M . By our assumption on F we can choose
F ∈ F such that |F ∩ [g′(n), g′(n + 1))| ≤ 1. Then |F ∩ In| ≤ 2 for each n < ω. Now split F into two
sets F0, F1 such that |F0 ∩ In|, |F1 ∩ In| ≤ 1 for each n < ω. Since U is an ultrafilter extending F it must
contain either F0 or F1.

proof of theorem 3.26. Since d = ω1 we can choose a set of ordinals A ⊆ ω1 coding a dominating family
in (ωω,≤∗). Let M = L[A]. Then M ∩ ωω is a dominating family since A ∈ M . Since M � c = ω1,
M � “There is a selective ultrafilter F”. Then F is a filter in V and, by the previous lemma, any extension
of F to an ultrafilter is a Q-point in V .

Miller’s and Mathias’s results of course motivated the question 3.1 mentioned in the introductory
part of this chapter. Later Canjar and, independently, Bartoszyński and Judah proved a theorem for
Q-points, which is reminiscent of Ketonen’s characterization of d = c. This was then extended by Fremlin
to rapid filters.

3.28 Theorem ([Can90],[BarJu88],Fremlin). The following are equivalent

(i) cov(M) = c

(ii) d = c and every filter of character < c can be extended to a Q-point.

(iii) d = c and every filter of character < c can be extended to a rapid filter.

The proof of the previous theorem may be found e.g. in [SRL, Lemmas 4.5.6 and 4.6.5].

3.3 Canjar Ultrafilters
This section will show how Canjar ultrafilters, which turn out to be a stronger version of P-points, can
be constructed via forcing. Their definition is motivated by considering Mathias forcing.
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3.29 Definition. Mathias forcing M consists of conditions which are pairs (s,A) such that s ∈ [ω]<ω and
A ∈ [ω]ω ordered as follows: (s,A) ≤ (t, B) if

(i) s w t and A ⊆ B and

(ii) s \ t ⊆ B

Given a family of subsets A ⊆ [ω]ω we may define MA to be the restriction of Mathias forcing to
conditions whose second coordinate is in A.

It is not hard to see that M factors into two parts

M = P(ω)/F in ∗MĠ,

where the first forcing adds an ultrafilter3 while the second forcing shoots a pseudointersection through
this ultrafilter. It is not hard to see that the second forcing will add a dominating real, since Ġ is forced
to be rapid (even selective). M. Canjar in [Can88] was probably the first to ask whether this is always
the case with Mathias-type forcings or whether one can have an ultrafilter U such that MU does not add
a dominating real.

3.30 Question. Is there an ultrafilter U such that MU, the Mathias forcing relativized to the ultrafilter
U, does not add a dominating real?

We shall call these ultrafilters Canjar ultrafilters, i.e.

3.31 Definition. A Canjar ultrafilter is an ultrafilter on ω such that MU does not add dominating reals.

M. Canjar established the following necessary condition for an ultrafilter to be Canjar:

3.32 Theorem (Canjar). A Canjar ultrafilter must be a P-point with no rapid Rudin-Keisler predecessor.

From this theorem it is clear that we can only hope for a consistent positive answer to the question
3.30, since, e.g. in the model where there are no P-points, MU always adds a dominating real. Later in
this section we will present M. Canjar’s proof of a consistent positive answer, but first we shall look at
Canjar ultrafilters in more detail.

In [Laf89] C. Laflamme considered, amongst other notions, what we call Canjar ultrafilters. He also
introduced the notion of a strong P-point, which is motivated by the following observation.

3.33 Observation. An ultrafilter U is a P-point if and only if for any descending sequence of sets
〈Xn : n < ω〉 from U there is an interval partition 〈In : n < ω〉 of ω such that

X =
⋃
n<ω

(In ∩Xn) ∈ U.

Note that X will always be a pseudointersection of the Xn’s, and the larger the intervals are, the
larger it will be.

3.34 Definition ([Laf89]). An ultrafilter is a strong P-point if for any sequence 〈Cn : n < ω〉 of compact
subsets of U (considering U as a subset of 2ω with the product topology), there is an interval partition
〈In : n < ω〉 such that for each choice of Xn ∈ Cn we have

X =
⋃
n<ω

(In ∩Xn) ∈ U.

It is easy to see that a strong P-point cannot be rapid (for example consider Cn = {X : |ω \
X| ≤ n}) and in [Laf89, Lemma 6.8] it is proved that strong P-points are preserved when passing to
RK-predecessors. Summarizing we have the following fact.

3.35 Fact (Laflamme). A strong P-point is a P-point and it cannot have rapid RK-predecessors.

In the cited paper C. Laflamme noted without proof that every Canjar ultrafilter must be a strong
P-point and conjectured that the two notions coincide. The topic was recently revisited by M. Hrušák
and H. Minami in [HrMi∞] who invented a combinatorial characterization of Canjar ultrafilters. Before
we can present their characterization we need the following notion which was probably first considered

3See the next section for a more detailed consideration of similar forcings
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implicitly by S. M. Sirota ([Sir69]) and explicitly by A. Louveau ([Lou72]) in the construction of an
extremally disconnected topological group:

3.36 Notation. Given a filter F on ω we define F<ω to be the filter on [ω]<ω \ {∅} generated by {[F ]<ω \
{∅} : F ∈ F}.

Note that [F]<ω is a filter on [ω]<ω \ {∅} and it is easy to see that U<ω is never an ultrafilter, e.g.
neither of the sets {a ∈ [ω]<ω : |a| = 2n} and {a ∈ [ω]<ω : |a| = 2n + 1} can be in U<ω. It is clear from
the definition, that a set A ⊆ [ω]<ω is U<ω-positive if it hits each [U ]<ω for U ∈ U. The next lemma gives
an alternative characterization.

3.37 Lemma. If U is an ultrafilter on ω then A ⊆ [ω]<ω is U<ω-positive if and only if each set X ⊆ ω
such that every element a ∈ A has nonempty intersection with X is in U.

Proof. Suppose A is positive and X hits each element of A. We will show that X intersects each Y ∈ U:
take Y ∈ U, then [Y ]<ω ∩ A 6= ∅ so Y ∩X 6= ∅. Since U is an ultrafilter, X ∈ U. On the other hand if A
is not positive there is some Y ∈ U with [Y ]<ω ∩A = ∅. Then X = ω \ Y hits every element of A.

We are now ready to prove M. Hrušák and H. Minami’s characterization of Canjar ultrafilters (for
P+-filters see definition 3.10).

3.38 Theorem ([HrMi∞]). An ultrafilter U is Canjar if and only if U<ω is a P+-filter.

Proof. ⇐: Assume U<ω is a P+-filter and suppose, aiming towards a contradiction, that MU adds a
dominating real. Let ġ be a name for it. For each f ∈ ωω there is an nf < ω and (tf , Ff ) ∈MU such that

(tf , Ff )  (∀k ≥ nf )(f(k) ≤ ġ(k)).

Since b > ω, we can fix n < ω and t ∈ [ω]<ω such that the family of functions F = {f ∈ ωω : nf = n& tf = t}
is a dominating family. For k < ω let

X ′k = {s ∈ [ω \ t]<ω : (∃F ∈ U,m ≥ k, i < ω)((t ∪ s, F )  ġ(m) = i)}.

Clearly X ′k is U<ω-positive and the sets decrease as k increases. Define Y =
⋂
k<ωX

′
k and let Xk = X ′k\Y .

Notice that the sets Xk are still decreasing and, if we can show that Y is not U<ω-positive, then they
will also be positive.

Claim. Y 6∈ (U<ω)+.

Proof of claim. Suppose otherwise and for s ∈ Y let fs : As → ω be a maximal (w.r.t. inclusion)
function such that for each m ∈ As there is F sm ∈ U such that (t ∪ s, F sm)  ġ(m) = fs(m). Note
that each As is infinite. Choose f ∈ F eventually dominating {fs : s ∈ Y }. Pick F ∈ U such that
(t, F )  (∀m > n)(f(m) ≤ ġ(m)). Since Y is positive, there must be some s ∈ Y ∩ [F ]<ω. Finally pick
m > n such that m ∈ As and fs(m) < f(m) (this is possible since As is infinite and f eventually
dominates fs). But then (t ∪ s, F ∩ F sm)  ġ(m) = fs(m) < f(m) ≤ ġ(m) — a contradiction. This
completes the verification of the claim. �

Since U<ω is a P+-filter by assumption, there must be a U<ω-positive set X ⊆ X0 which is a
pseudointersection of the Xk’s. Define

f(k) = max{i+ 1 : (∃s ∈ X \Xk+1, F ∈ U)((t ∪ s, F )  ġ(k) = i)} ∪ {0}.

Since the family F was a dominating family, choose h ∈ F dominating f above some k0 < ω with n < k0.
Since X is U<ω-positive and X ⊆∗ Xk0 , we may find s ∈ X ∩ Xk0 ∩ [Fh]<ω. Let k be maximal such
that s ∈ Xk. Then k ≥ k0. By the definition of the Xk’s and f , there is F ∈ U and i < f(k) such that
(t ∪ s, F )  ġ(k) = i. But this contradicts the fact that (t ∪ s, F ∩ Fh) ≤ (t, Fh) forces f(k) ≤ ġ(k).
⇒: Assume U<ω is not a P+-filter. We shall show that U is not Canjar. Let 〈Xn : n < ω〉 be a

descending sequence of U<ω-positive sets with no positive pseudointersection. Work in the extension by
MU and let Fg ⊆ ω be the generic real. Notice that [Fg \ n]<ω ∩ Xn 6= ∅. Otherwise there would be
some condition (s,A) forcing [Fg \n]<ω ∩Xn = ∅. However, since Xn positive with respect to U<ω, there
would be t ∈ [A \ n]<ω ∩Xn, and (s ∪ t, A)  t ∈ [Fg \ n]<ω ∩Xn. This would contradict the choice of
(s,A). So [Fg \ n]<ω ∩Xn 6= ∅ and we can recursively pick xn ∈ [Fg \ n]<ω ∩Xn. Let f(n) = maxxn + 1
and notice that xn ∈ [f(n)]<ω ∩ Xn. Suppose some strictly increasing h is not dominated by f and
let X =

⋃
n<ω[h(n)]<ω ∩ Xn. Clearly X is a pseudointersection of the Xn’s. Since h is not dominated

by f , X contains infinitely many xi’s and it follows that it is positive: Suppose F ∈ U. We will show
[F ]<ω ∩ X 6= ∅. Find n < ω such that Fg \ n ⊆ F . Then we can pick m > n such that xm ∈ X and
xm ⊆ Fg \m ⊆ Fg \ n ⊆ F . This shows that X is positive. So h cannot be in the ground model.
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In [BlHrVe11] we were able to extend this result by proving Laflamme’s conjecture.

3.39 Theorem ([BlHrVe11]). An ultrafilter is Canjar if and only if it is a strong P-point.

Proof. We actually rely on the previous theorem and show that U is a strong P-point if and only if U<ω

is a P+-filter.

⇐: Suppose U<ω is a P+-filter but U is not a strong P-point. Let Cn witness the latter. We
may assume that Cn ⊆ Cn+1 and that Cn is closed under intersections of up to n + 1 elements, i.e.
(∀C ∈ [Cn]≤n+1)(

⋂
C ∈ Cn). Let

An = {a ∈ [ω]<ω : (∀X ∈ Cn)(a ∩X 6= ∅)}.

Notice that An+1 ⊆ An. In addition An ∈ (U<ω)+. To show this, choose F ∈ U and check that {X ∩
F : X ∈ Cn} is a compact set not containing ∅. In particular there is an a ∈ [F ]<ω such that a ∩X 6= ∅
for each X ∈ Cn, so a ∈ An∩ [F ]<ω. Now let A be a U<ω-positive pseudointersection of the An’s. We will
deduce a contradiction. Let

g(n) = min{k : a ∈ A \An → a ⊆ k}.

Enlarging g(n), if necessary, we may assume it is increasing. By our assumption on the Cn’s, there are
Xn’s with Xn ∈ Cn such that ⋃

n<ω

(
Xn ∩ [g(n), g(n+ 1))

)
6∈ U.

Define Yn =
⋂
i≤nXn and notice that Yn ∈ Cn since the sequence of Cn’s is increasing and Cn is

closed under intersections of at most n+ 1 elements. Moreover we have

Y =
⋃
n<ω

(
Yn ∩ [0, g(n+ 1))

)
⊆
⋃
n<ω

(
Xn ∩ [g(n), g(n+ 1))

)
6∈ U.

Since A is positive Lemma 3.37 will give the desired contradiction if we show that Y hits each a ∈ A.
Pick a ∈ A and let

k = max{n : a ∩ [g(n), g(n+ 1)) 6= ∅}

Notice that a ⊆ g(k+ 1) and, by the definition of g, a ∈ Ak. Hence a∩Yk 6= ∅ so a∩ [0, g(k+ 1))∩Yk 6= ∅
so a ∩ Y 6= ∅ and we are done.

⇒: Suppose on the other hand that U is a strong P-point and that 〈An : n < ω〉 is a descending
sequence of U<ω-positive sets. We shall find a U<ω-positive pseudointersection. Let

Cn = {X : (∀a ∈ An)(a ∩X 6= ∅)}.

Then Cn ⊆ U by Lemma 3.37. Moreover Cn is closed (it is an intersection of clopen sets). Since U is a
strong P-point, there is an interval partition 〈In : n < ω〉 of ω satisfying the condition in the definition
of a strong P-point. Let

A =
⋃
n<ω

(
An ∩ P(In)

)
.

Since the An’s were decreasing, A will be a pseudointersection of them. We have to show that it is positive.
Pick F ∈ U. We need to show that there is n < ω such that [F ]<ω ∩ An ∩ P(In) 6= ∅. Suppose this is
not so. Then let Xn = (ω \ In) ∪ (In \ F ) and notice that

⋃
n<ω(Xn ∩ In) = ω \ F 6∈ U. We will show

that each Xn ∈ Cn which will contradict the choice of the interval partition, thus finishing the proof. But
given some a ∈ An either a 6∈ P(In) and then a ∩Xn 6= ∅ trivially, or a ∈ P(In) but then a 6∈ [F ]<ω so
a ∩Xn 6= ∅ also.

The paper [BlHrVe11] also contains a counterexample to C. Laflamme’s conjecture that the implica-
tion in M. Canjar’s theorem 3.32 can be reversed.

3.40 Theorem ([BlHrVe11]). It is consistent that there is a P-point with no rapid RK-predecessors which
is not a strong P-point.

The proof of this theorem is a classical MA-style construction and we will not include it here but we
shall present a different counterexample in the next section (see example 3.61).

We now return to the original question of M. Canjar and show a consistent positive answer.
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3.41 Theorem ([Can88]). It is consistent that there is a Canjar ultrafilter.

Proof. Consider the forcing notion PFσ consisting of (proper) Fσ-ideals ordered by inclusion.

Claim. PFσ is σ-closed and hence it does not add new reals.

Proof of claim. Suppose 〈In : n < ω〉 is a descending sequence of conditions and let I =
⋃
n<ω In. Clearly

I is Fσ, since it is a countable union of Fσ sets, and ω 6∈ I. �

Claim. If G is PFσ -generic, then IG =
⋃
G is a maximal ideal.

Proof of claim. Since PFσ does not add new reals by the previous claim, we only need to consider subsets
of ω in the ground model. Suppose A ⊆ ω and I is a condition. If A ∈ I∗ then I  ω \A ∈ Ġ. Otherwise
{A} ∪ I generates a proper ideal J which is easily seen to be Fσ and J  A ∈ Ġ. �

Claim. If G is PFσ -generic then I∗G is a strong P-point.

Proof of claim. Since PFσ does not add new reals (and since compact subsets of 2ω are coded by reals) we
need only consider sequences 〈Cn : n < ω〉 of compact sets from the ground model. Fix such a sequence.
Since ∪ : 2ω × 2ω → 2ω is continuous, we may, without loss of generality, assume that Cn is closed under
intersections of up to n elements. Let I be a condition such that I  (∀n < ω)(Cn ⊆ I∗

Ġ
). By theorem 1.30

fix a lower semicontinuous submeasure µ such that I = Fin(µ). By recursion construct 〈kn : n < ω〉 such
that for each X ∈ Cn we will have µ(X ∩ [kn, kn+1)) ≥ n. Let k0 = 0 and assume we have constructed kn.
Consider the function f : Cn → ω defined as follows: f(X) = min{k : µ(X ∩ [kn, k)) ≥ n}. This function
is well defined (each X has infinite measure) and is a continuous function by monotonicity of µ. Since Cn
is compact f [Cn] is bounded and has a maximum. Let kn+1 be this maximum. This clearly works. Let J
be the ideal generated by

A = {Y ⊆ ω : (∀n < ω)(∃Xn ∈ Cn)(Y ∩Xn ∩ [kn, kn+1) = ∅)}.

Since the generating set is clearly closed, J is an Fσ-ideal. We shall show that the ideal generated by
I ∪ J is proper. It is enough to show that for each Y ∈ J the measure µ(ω \ Y ) is infinite. Pick Y ∈ J
and write it as ω = Y0 ∪ · · · ∪ Ym where each Yi ∈ A as witnessed by 〈Xi

n : n < ω〉. Let Xn =
⋂m
i=0X

i
n.

By our assumption on Cn we have Xn ∈ Cn for n > m + 1. Moreover Xn ∩ Y ∩ [kn, kn+1) = ∅. Let
X =

⋃
n>m+1Xn ∩ [kn, kn+1). Then X ∩ Y = ∅ and µ(X) = ∞ (since µ(X ∩ [kn, kn+1)) ≥ n). So I ∪ J

generates a condition J ′ ∈ PFσ . It is easy to see that

J ′  (∀〈Xn : n < ω〉 ∈
∏
n<ω

Cn)(
⋃
n<ω

(Xn ∩ [kn, kn+1)) ∈ I∗G)

and this finishes the proof of the claim. �

By the preceding claims it follows that PFσ  “I∗G is a strong P-point” and it now remains to apply
theorem 3.39.

3.4 Adding Ultrafilters by Definable Quotients
We now turn to constructing ultrafilters via forcings of a special kind. In the previous section we presented
an ultrafilter construction with a forcing where conditions were Fσ-ideals. In the present section we will
look at ultrafilter constructions based on forcing notions of the form P(ω)/I for some definable I. We
will restrict ourselves to I such that P(ω)/I does not add new reals. There are two ways to look at this
approach: (1) depending on the choice of I various types of ultrafilters may be added and (2) the definable
ideals may be classified according to the ultrafilters which arise when forcing with P(ω)/I. We will first
take the second view and present characterizations of ideals based on the type of ultrafilters (P-points,
selective, rapid ...) added by the forcings. Then we will take the first view and present constructions of
interesting ultrafilters via these forcings.

This section is based on [HrVer11].
Instead of dealing with the quotient algebra P(ω)/I we will implicitly use the equivalent forcing notion

(I+,⊆). We introduce the following definition to simplify the statement of our theorems.

3.42 Definition. I (or P(ω)/I) adds an ultrafilter with property P if every generic ultrafilter on (I+,⊆)
has property P.

Beware that this usage of the phrase “P(ω)/I adds an ultrafilter” differs from the usual meaning of
“a forcing P adds an object Q”! We have chosen to use it in this modified sense since, e.g. under CH, the
usual sense trivializes: under CH all forcings of this form are isomorphic and thus an ultrafilter added by
one of the forcings is added by any other.
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3.4.1 P-points
The following theorem may be found in [Zap09]

3.43 Theorem (Zapletal). An ultrafilter U is a P-point if all analytic ideals disjoint from U can be
separated from U by an Fσ ideal (i.e. are contained in an Fσ ideal disjoint from U).

We shall prove the forward implication which will be used in the proof of theorem 3.49.

Proof. We will need the following dichotomy due to Kechris-Louveaou-Woodin.

3.44 Theorem ([KeLoWo87]). Suppose U, J are two disjoint subsets of 2ω such that J is analytic and
cannot be separated from U by an Fσ-set. Then there is a perfect set C ⊆ U ∪ J such that C ∩ U is
countable dense in C.

Also recall that U is a P-point provided player I has no winning strategy in the game G(U) where he
chooses sets An ∈ U while player II chooses finite sets an ∈ [An]<ω and II wins if at the end

⋃
n<ω an ∈ U.

To prove the theorem, suppose U cannot be separated by an Fσ-set from an analytic ideal J. We will
show that player I has a winning strategy in G(U). By the Kechris-Louveau-Woodin dichotomy there is
a perfect set C ⊆ U∪ J with C∩U countable dense in C. Enumerate C∩U as {Cn : n < ω}. The strategy
for player I will be as follows. He will play sets An ∈ U ∩ C and, on the side, he will write down finite
initial segments bn v An of An such that

(i)
⋃
i<n bn v An and

(ii) An 6= Cn which will already be witnessed by bn, i.e. bn 6⊆ Cn.

Since C∩U is dense in C it is always possible to play according to this strategy. In the end, let B =
⋃
n<ω bn.

Then B is a limit of the An’s by (i), so B ∈ C. By (ii), B 6= Cn for any n, so B 6∈ C ∩U, so B ∈ J. Since
B contains all the moves of player II, it follows that player II lost.

Compare the above theorem with a result of M. Hrušák and H. Minami ([HrMi∞]):

3.45 Theorem (Hrušák-Minami). A Borel ideal I can be extended to an Fσ ideal if and only if it can be
extended to a P+-ideal.

Using Mazur’s theorem (1.30) it is easy to prove the following which was first observed in [JuKr84]:

3.46 Observation (Just-Krawczyk). If I is an Fσ ideal then P(ω)/I is σ-closed, in fact, I is a P+-ideal.

Proof. By Mazur’s theorem 1.30 we may find a lscsm µ such that I = Fin(µ). Assume 〈An : n < ω〉 ⊆ I+

is a descending sequence of conditions. Without loss of generality we may assume that An+1 ⊆ An (since
An+1 \An ∈ I). Using lower semicontinuity and the fact that µ(An) =∞ we recursively construct finite
sets an ∈ [An]<ω such that µ(an) ≥ n. Finally let A =

⋃
n<ω an. By monotonicity µ(A) =∞ so A ∈ I+

is a condition. Since µ(A\An) ≤ µ(
⋃
i<n ai) ≤

∑
i<n µ(ai) <∞, we have that A\An ∈ I for each n < ω.

Hence A is a condition stronger than each An.

3.47 Question. Suppose I is Borel and P(ω)/I does not add new reals. Is P(ω)/I σ-closed?

3.48 Observation (Folklore). If I is Fσ then P(ω)/I adds a P-point.

Proof. To prove that the generic ultrafilter G is a P-point suppose A ∈ I+ forces 〈Ȧn : n < ω〉 ⊆ Ġ.
Since P(ω)/I is σ-closed we may assume 〈An : n < ω〉 ∈ V . As above in the proof of observation 3.46
find B ⊆ A, µ(B) =∞ with µ(B \ An) <∞. Then B ∈ I+ is stronger than A and forces that B ∈ Ġ is
a pseudointersection of 〈An : n < ω〉.

We shall show that this is essentially the only case when a definable I not adding reals adds a P-point:

3.49 Theorem. . Suppose I is analytic and P(ω)/I adds no new reals. Then P(ω)/I adds a P-point if and
only if I is locally Fσ.

Proof. If I is locally Fσ then P(ω)/I adds a P-point by observation 3.48.
Suppose on the other hand that P(ω)/I adds a P-point and that A ∈ I+. Work in the extension by

some generic filter G containing A. Clearly G ∩ I = ∅ so, by Zapletal’s theorem 3.43 there is an Fσ ideal
J extending I. Since J is given by a lscsm, which is essentially given by a real, and P(ω)/I adds no new
reals, this J is already in the ground model and we may assume that A  “Ġ∩ J̌ = ∅”. Since J � A is an
Fσ ideal it is sufficient to show I � A = J � A. The inclusion from left to right is clear. So suppose there
was some C ⊆ A, C ∈ J \ I. Then C  “Č ∈ Ġ ∩ J̌” which would be a contradiction.
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Note that being locally Fσ is not the same as being Fσ even in the class of Borel tall ideals:

3.50 Example. There are tall Borel ideals of arbitrarily high complexity which are locally Fσ.

Proof. Given a set A ⊆ ωω let IA be the ideal on ω<ω generated by sets of the form

(i) {f � n : n < ω} for f ∈ A,

(ii) {f � n : n ∈ X} for f 6∈ A, X ∈ I1/n (see definition 1.28) and

(iii) antichains in ω<ω.

This is clearly a tall ideal.
The complexity of IA is at least the complexity of A: Consider Φ : ωω → P(ω<ω) defined as follows

Φ(f) = {f � n : n < ω}. This is a continuous function and Φ−1[IA] = A.
Note that Iωω is Fσ, as is IA � {f � n : n < ω} for f 6∈ A. Suppose X ∈ I+A. Then either

IA � X = Iωω � X and then IA � X is Fσ or not, and then there is f 6∈ A such that Y = X ∩
{f � n : n < ω} ∈ I+A. Then IA � Y is Fσ.

3.4.2 Selectivity
Recall the following classical theorem of A. R. D. Mathias ([Mat77])

3.51 Theorem (Mathias). An ultrafilter U is selective if and only if U is disjoint from all tall analytic
ideals.

The following fact is folklore:

3.52 Fact. P(ω)/F in adds a selective ultrafilter.

We shall show that, in the class of analytic ideals not adding reals, Fin is in a sense the only ideal
adding a selective ultrafilter:

3.53 Theorem. Suppose I is analytic and P(ω)/I does not add reals. Then P(ω)/I adds a selective ultra-
filter if and only if I is locally Fin.

Proof. Suppose first that I is locally Fin. Given A ∈ I+ there is an I-positive B ⊆ A such that
I � B ' P(ω)/F in. Now use fact 3.52.

The other direction is a direct corollary of theorem 3.51: Suppose A ∈ I+. By assumption A  “Ġ is
selective”. We need to find a B ∈ [A]ω such that I � B = Fin. Since I ∩ Ġ = ∅ and I is analytic, we may
apply theorem 3.51 (taking A instead of ω) to see that I � A is not tall. So there is an infinite B ⊆ A
such that I � B = Fin.

3.54 Remark. This, of course, fails badly in the non-definable case, e.g. P(ω)/I(A) adds a selective
ultrafilter for every MAD family A (see [Mat77]).

3.4.3 Q-points and rapid ultrafilters
Now we turn our attention to other properties of ultrafilters and prove two more characterizations.

3.55 Definition. Let ∆ = {(x, y) : x ≤ y}. The ideal EDfin on ∆ consists of those sets which can be
covered by finitely many functions.

3.56 Proposition. Suppose P(ω)/I does not add new reals. Then the forcing I adds a Q-point if and only
if it is locally not KB-above EDfin.

Proof. Suppose that I adds a Q-point. We must show that I is locally not KB-above EDfin. Pick some
I-positive set A and a finite-to-one function f : A → ∆. Aiming towards a contradiction suppose this
function witnesses I � A ≥KB EDfin. Let An = f−1[{(n, y) : y ≤ n}]. Then An is a partition of A into

finite sets with no positive selector so A  “Ġ is not a Q-point” a contradiction.
On the other hand suppose A ∈ I+ and A  “Ġ is not a Q-point”. Since P(ω)/I does not add new

reals, we can assume that there is an interval partition 〈In : n < ω〉 such that A forces each each selector
to be outside of Ġ. Fix an increasing sequence kn of natural numbers such that |In| ≤ kn and also fix
bijections ϕn : In → kn. Finally define f : A→ ∆ as follows. For x ∈ A find n < ω such that x ∈ In and
let f(x) = ϕn(x). It is easy to see that this function witnesses I � A is KB-above EDfin.
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For dealing with rapid ultrafilters we use the following theorem of P. Vojtáš ([Voj94]).

3.57 Theorem (Vojtáš). An ultrafilter is rapid if and only if it meets every tall summable ideal (see
definition 1.28).

The following proposition, which can be found in [HrHe07], shows that we can replace tall summable
ideals with tall analytic P-ideals in the above theorem.

3.58 Proposition (Hrušák-Hernandez). Suppose I is a tall analytic P-ideal. Then there is a tall summable
ideal contained in I.

Proof. By theorem 1.31 there is a lscsm µ such that I = Exh(µ). We shall show that µ({n}) → 0:
Suppose otherwise. Then there is an ε > 0 and an infinite A ⊆ ω such that µ({a}) ≥ ε for each a ∈ A.
Then any infinite subset of A has submeasure ≥ ε so it is not in I contradicting the tallness of I. Now
let g(n) = µ({n}). Since g converges to zero Ig is a tall summable ideal. We claim that Ig ⊆ I. To see
this, let A ⊆ ω with

∑
a∈A g(a) < ∞. Since the sum converges, necessarily

∑
a∈A\n g(a) → 0. Moreover

µ(A \ n) ≤
∑
a∈A\n g(a) so also µ(A \ n)→ 0 so A ∈ I.

3.59 Proposition. Suppose P(ω)/I does not add new reals. Then forcing with I adds a rapid ultrafilter if
and only if it is locally not KB-above a tall summable ideal.

Proof. Suppose I adds a rapid ultrafilter and A ∈ I+. We shall show that I � A is not KB-above a
tall summable ideal. Aiming towards a contradiction suppose that I � A ≥KB Ig as witnessed by some

f : A → ω. and define µ(n) = g(f(n)). Then Fin(µ) ⊆ I � A so, in particular, A  “Ġ ∩ Fin(µ) = ∅”
contradicting Vojtáš’s characterization 3.57 (Fin(µ) is tall since f was finite-to-one, so µ→ 0).

Suppose on the other hand that I does not add a rapid ultrafilter. Using Vojtáš’s characterization
again, since P(ω)/I does not add any new reals, there must be a condition A ∈ I+ and a tall summable
ideal J such that A  “Ġ∩ J = ∅”. Then necessarily J � A ⊆ I � A and the identity map shows that I � A
is KB-above a summable ideal. The same argument shows that the restriction of I to any I-positive B
below A is also Katětov-above a summable ideal.

3.4.4 Canjar Ultrafilters
On the other hand forcing with tall a analytic P-ideal gives a special kind of ultrafilter. Recall (see
definition 3.31) that an ultrafilter U is Canjar if MU does not add a dominating real.

We will now present a counterexample to Laflamme’s conjecture:

3.60 Conjecture (Laflamme). If U is a P-point which has no rapid RK-predecessors then U is Canjar.

The following theorem shows that counterexamples to the above conjecture may be added by forcing
with P(ω)/I for a tall Fσ P-ideal I.

3.61 Theorem. If I is a tall Fσ P-ideal, then P(ω)/I adds a P-point with no rapid RK-predecessors which
is not Canjar.

Proof. By observation 3.48 P(ω)/I adds a P-point and by observation 3.46 it is σ-closed. We first show
that the generic has no rapid RB-predecessors. By proposition 3.58 and the characterization 3.57 of rapid
ultrafilters, it will be sufficient to show that for each f : ω → ω finite-to-one, f∗(I) is a tall analytic P-ideal.
(Recall that in definition 1.22 we have defined f∗(I) = {A ⊆ ω : f−1[A] ∈ I}.) Let I = Fin(µ) = Exh(µ)
by theorem 1.31. Define µ∗(A) = µ(f−1[A]). Then µ∗ is a submeasure on ω and since f is finite-to-one it is
lower semicontinuous. It is easy to see that f∗(I) = Fin(µ∗). It remains to verify that Exh(µ∗) = Fin(µ∗).
The ⊆ inclusion is clear and for the other one we use the fact that, since f is finite-to-one, for each n there
is k ≥ n such that f−1[A \ k] ⊆ f−1[A] \ n. Since RK-predecessors of P-points are its RB-predecessors it
remains for us to show that the generic is not Canjar. To do this, we show that it fails the combinatorial
condition of theorem 3.38.

Let Xn = {a ∈ [ω]<ω : µ(a) ≥ (n + 1)}. Clearly P(ω)/I  Xn ∈ (Ġ<ω)+. Pick A ∈ I+ and
let X be a pseudointersection of the Xn’s. We shall find a stronger condition B ⊆ A, B ∈ I+ which
will force X to be in (Ġ<ω)∗. Let g(n) = min{k : a ∈ X \ Xn → a ⊆ k}. By increasing g we may
assume 1 ≤ µ([g(n), g(n + 1)) ∩ A) and µ({x}) ≤ 1/8 for each x ∈ [g(n), g(n + 1)) ∩ A. For n let
bn ⊆ [g(n), g(n+ 1))∩A be minimal such that 1/4 ≤ µ(bn). Then, by the minimality of bn, µ(bn) < 1/2.
Let B =

⋃
n<ω bn. Then 1/4 ≤ µ(B \ n) for each n so B ∈ I+ by exhaustivity and clearly B ⊆ A. We

will show that [B]<ω ∩X = ∅. Let b ∈ [B]<ω and let k = max{n : b \ g(n) 6= ∅}. If b ∈ X then b ∈ Xk by
the definition of g. Then µ(b) ≥ (n+ 1). However b ⊆

⋃
i≤n bi so µ(b) ≤

∑
i≤n µ(bi) < (n+ 1)/2 ≤ n+ 1

which is absurd. This finishes the proof.
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One way to construct Canjar ultrafilters is to force with Fσ ideals (ordered by reverse inclusion). This
suggests the following question:

3.62 Question. Is there a Borel ideal I on ω such that P(ω)/I adds a Canjar ultrafilter?

By the previous results such an ideal would have to be locally Fσ, locally KB-above a tall analytic
P-ideal and locally not P.

3.4.5 Examples

We conclude by presenting a few illustrative examples.

3.63 Example. The ideal EDfin adds a semiselective ultrafilter with a selective ultrafilter RB-below.

Proof. First notice that EDfin = Fin(µ) where µ(A) = min{|K| : K ⊆ ωω & A ⊆
⋃
K}. This shows

that EDfin is Fσ so it is σ-closed and adds a P-point.
To show it adds a rapid ultrafilter, pick 〈an : n < ω〉 a partition of ∆ into finite sets and a condition

A ∈ EDfin
+. We must find B ⊆ A, B ∈ EDfin

+ such that |B ∩ an| ≤ n. We shall actually find a B such
that |B ∩ an| ≤ n2 which is clearly sufficient. For each n < ω let kn = min{k : (∀i < n)(ai ⊆ k× k ∩∆)}.
By induction pick an increasing sequence 〈ln : n < ω〉 such that kn < ln and |A ∩ {ln} × ln| ≥ n. Then
choose bn ∈ [A ∩ {ln} × ln]n and let B =

⋃
n<ω bn. Clearly B ∈ EDfin

+ and, moreover, |B ∩ an| ≤ n2 by
the definition of kn. This finishes the proof that EDfin adds a rapid ultrafilter.

To see that the generic filter always has a selective ultrafilter below, let π : ∆→ ω be the projection
on the first coordinate. Given A ∈ EDfin and 〈In : n < ω〉 an interval partition of ω, choose an increasing
sequence 〈kn : n < ω〉 such that |{kn} × kn ∩ A| ≥ n. Then pick some infinite N ⊆ ω such that
(∀j < ω)(|{kn : n ∈ N} ∩ Ij | ≤ 1), and let B = π−1{kn : n ∈ N} ∩A. Then clearly B ∈ (EDfin)+ and B
forces that π∗(G) contains a selector for the partition 〈In : n < ω〉.

Recall that Fin × Fin = {X ⊆ ω × ω : (∀∞k)(|X ∩ {k} × ω| < ω)}. Even though Fin × Fin is not
an Fσ-ideal (not even locally Fσ), P(ω × ω)/F in× Fin is σ-closed (see [Dow89] or [Szy83]).

3.64 Example. The ideal Fin× Fin adds a Q-point which is not a P-point.

Proof. To see that it does not add a P-point, notice that if we let An = [n,∞)×ω then An ∈ (Fin×Fin)∗

so they will be in any generic. However any pseudointersection of the An’s is in Fin× Fin.
To see that the generic is a Q-point, fix A ∈ Fin×Fin positive and some partition 〈an : n < ω〉 of ω×ω

into finite sets. Enumerate {n : |{n}×ω∩A| = ω} as 〈nk : k < ω〉 so that each number appears infinitely
often. By induction choose xl ∈ A ∩ {nl} × [l, ω) \

⋃
i<s(l) ai where s(l) = max{i : (∃j < l)(xj ∩ ai 6= ∅)}.

Then B = {xl : l < ω} is a Fin × Fin-positive subset of A which is a selector for the partition. This
shows that the generic is a Q-point.

3.65 Example. Let GC = {X ⊆ [ω]2 : (∀A ∈ [ω]ω)([A]2 6⊆ X)} (see [Mez09]). Then GC adds a rapid
ultrafilter which is neither a P-point nor a Q-point.

Notice that P([ω]2)/GC is not σ-closed, but does not add new reals, since it has a dense subset
isomorphic to P(ω)/F in (take the embedding A 7→ [A]2). This shows that the question 3.47 can be
answered in the negative for co-analytic ideals.

Proof of example 3.65. Notice that EDfin ≤KB GC : let Fn = {{m,n} : m < n} then [ω]2 =
⋃
n<ω Fn

and all selectors are in GC . Next Fin×Fin ≤KB GC : let In = {{m,n} : n < m} then [ω]2 =
⋃
n<ω In and

each infinite subset A of ω has |[A]2 ∩ In| = ω for infinitely many n (every n ∈ A). The first implies that
the generic is not a Q-point while the second shows that it cannot be a P-point via the same argument
as for Fin× Fin.

To show that it adds a rapid ultrafilter, by proposition 3.59 and homogeneity it suffices to show that
GC is not KB-above any tall summable ideal Ig. So suppose f : [ω]2 → ω is finite-to-one. Now construct
a sequence 〈ni : i < ω〉 such that for each i < j, g(f({ni, nj})) < 1

j·2j . This is easy to do and then

f ′′[{ni : i < ω}]2 ∈ Ig, so GC is not KB-above Ig via f .

3.66 Definition ([HrZaRo∞]). If µ is a lscsm and there is a partition 〈an : n < ω〉 of ω into finite sets
and a sequence of submeasures 〈µn : n < ω〉, such that µ(A) = sup{µn(A∩ an) : n < ω}, then we say the
submeasure µ is fragmented. The ideal Fin(µ) is then called a fragmented ideal.
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3.67 Example. If I is a fragmented ideal, then P(ω)/I adds a P-point RB-above a selective ultrafilter.

Proof. The forcing adds a P-point by theorem 3.49. We show that the generic is RB-above a selective
ultrafilter. Let 〈an : n < ω〉 be the partition of ω witnessing the fragmentation of I = Fin(µ). Fix some
finite-to-one function such that µ(f−1(n)) ≥ n and each an is contained in some f−1(k). Suppose A ∈ I+

and 〈Xn : n < ω〉 is a partition of ω. For k < ω choose nk such that µ(f−1(nk) ∩A) ≥ k (this is possible
since µ(A) ≤ sup{µ(A ∩ f−1(n) : n < ω}). Now either there is an infinite X ⊆ {nk : k < ω} which is
almost contained in some Xn or we can pick an infinite X ⊆ {nk : k < ω} such that |X ∩ In| ≤ 1 for
each n < ω. Then B = f−1[X] ∩A ∈ I+ and B forces that either some Xn is in the generic or there is a
selector in the generic.
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[Kat47] M. Katětov, On topological spaces containing no disjoint dense subsets, Mat. Sbornik, NS
(63) 21 (1947), 3–12.

[Kat68] , Products of filters, Comm. Math. Univ. Carolin. 9 (1968), 173–189.

[Kei64] J. H. Keisler, Good ideals in fields of sets, 338–359.



47 BIBLIOGRAPHY

[KeLoWo87] A. Kechris, A. Louveau, and W. Woodin, The structure of σ-ideals of compact sets, Trans-
actions of the American Mathematical Society 301 (1987), no. 1, 263–288.

[Ket76] J. Ketonen, On the existence of P-points in the Čech-Stone compactification of integers,
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[Szy83] A. Szymański and H. X. Zhou, The behaviour of ω2∗ under some consequences of Martin’s
axiom, General topology and its relations to modern analysis and algebra, V (Prague, 1981),
Sigma Ser. Pure Math., vol. 3, Heldermann, Berlin, 1983, p. 577–584.

[Tal80] M. Talagrand, Compacts de fonctions mesurables et filtres non mesurables, Studia Mathe-
matica 67 (1980), no. 1, 13–43.

[Ter79] T. Terada, On remote points in νX−X, Proceedings of the American Mathematical Society
77 (1979), 264–266.

[Ter08] Šéfredaktorka Tereza, Ráj pod palmami, Joy 05 (2008).
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