
Information and Computation 253 (2017) 497–509
Contents lists available at ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

Complexity of a problem concerning reset words for Eulerian

binary automata ✩

Vojtěch Vorel

Faculty of Mathematics and Physics, Charles University Malostranské nám. 25, 118 00 Prague, Czech Republic

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 June 2014
Available online 6 June 2016

A word is called a reset word for a deterministic finite automaton if it maps all the states
of the automaton to a unique state. Deciding about the existence of a reset word of a given
length for a given automaton is known to be an NP-complete problem. We prove that it
remains NP-complete even if restricted to Eulerian automata with binary alphabets as it
has been conjectured by Martyugin (2011).

© 2016 Elsevier Inc. All rights reserved.

1. Introduction and preliminaries

A deterministic finite automaton is a triple A = (Q , X, δ), where Q and X are finite sets and δ is an arbitrary mapping
Q × X → Q . Elements of Q are called states, X is the alphabet. The transition function δ can be naturally extended to
Q × X� → Q , still denoted by δ. We extend it also by defining

δ(S, w) = {
δ(s, w) | s ∈ S, w ∈ X�

}
for each S ⊆ Q . If the automaton is fixed, we write

r
w−→ s

instead of δ(r, w) = s.
For a given automaton A = (Q , X, δ), we call w ∈ X� a reset word if

|δ(Q , w)| = 1.

If such a word exists, we call the automaton synchronizing. Note that each word having a reset word as a factor is also a
reset word.

A need for finding reset words appears in several fields of mathematics and engineering. Classical applications (see [14])
include model-based testing, robotic manipulation, and symbolic dynamics, but there are important connections also with
information theory [13] and with formal models of biomolecular processes [2].

The Černý Conjecture, a longstanding open problem, claims that each synchronizing automaton has a reset word of length
at most (|Q | − 1)2. Though it still remains open, there are many weaker results in this field, see e.g. [11,7] for recent ones.1

✩ Research supported by the Czech Science Foundation grant GA14-10799S and the GAUK grant No. 52215.
E-mail address: vorel@ktiml.mff.cuni.cz.

1 The result published by Trahtman [12] in 2011 was proved incorrectly, see [6].
http://dx.doi.org/10.1016/j.ic.2016.06.013
0890-5401/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.ic.2016.06.013
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
mailto:vorel@ktiml.mff.cuni.cz
http://dx.doi.org/10.1016/j.ic.2016.06.013
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ic.2016.06.013&domain=pdf

498 V. Vorel / Information and Computation 253 (2017) 497–509
Various computational problems arise from the study of synchronization:

• Given an automaton, decide whether it is synchronizing. Relatively simple algorithm, which could be traced back to [3],
works in polynomial time.

• Given a synchronizing automaton and a number d, decide whether d is the length of shortest reset words. This has been shown
to be both NP-hard [4] and coNP-hard. More precisely, it is DP-complete [10]. See also [1] and [5] for recent non-
approximability results concerning an optimization setting.

• Given a synchronizing automaton and a number d, decide whether there exists a reset word of length d. This problem is of
our interest. Lying in NP, it is not so computationally hard as the previous problem. However, it is proven to be NP-
complete [4]. Following the notation of [9], we call it Syn. Assuming that M is a class of automata and membership in
M is polynomially decidable, we define a restricted problem:

Syn(M)

Input: synchronizing automaton A ∈ M,d ∈N

Output: does A have a reset word of length d?

An automaton A = (Q , X, δ) is Eulerian if∑
x∈X

|{r ∈ Q | δ(r, x) = q}| = |X |

for each q ∈ Q . Informally, there should be exactly |X | transitions incoming to each state. An automaton is binary if |X | = 2.
The classes of Eulerian and binary automata are denoted by EU and AL2 respectively.

Previous results about various restrictions of Syn can be found in [4,8,9]. Some of these problems turned out to be
polynomially solvable, others are NP-complete. In [9] Martyugin conjectured that Syn(EU ∩ AL2) is NP-complete. This
conjecture is confirmed in the rest of the present paper.

2. Main result

2.1. Proof outline

We prove the NP-completeness of Syn(EU ∩ AL2) by a polynomial reduction from 3-SAT. So, for an arbitrary proposi-
tional formula φ in 3-CNF we construct an Eulerian binary automaton A and a number d such that

φ is satisfiable ⇔ A has a reset word of length d. (1)

For the rest of the paper we fix a formula

φ =
m∧

i=1

∨
λ∈Ci

λ

on n variables, where each Ci is a three-element set of literals, i.e., a subset of

Lφ = {x1, . . . , xn,¬x1, . . . ,¬xn} .

We index the literals λ ∈ Lφ by the following mapping κ :

λ x1 x2 . . . xn ¬x1 ¬x2 . . . ¬xn

κ (λ) 0 1 . . . n − 1 n n + 1 . . . 2n − 1

Let A = (Q , X, δ), X = {a,b}. Because the structure of the automaton A will be very heterogeneous, we use an unusual
method of description. The basic principles of the method are:

• We describe the automaton A via a labeled directed multigraph G , representing the automaton in a standard way:
edges of G are labeled by single letters a and b and carry the structure of the function δ. Paths in G are thus labeled by
words from {a,b}� .

• There is a collection of labeled directed multigraphs called templates. The graph G is one of them. Another template is
SINGLE, which consists of one vertex and no edges.

• Each template T�=SINGLE is expressed in a fixed way as a disjoint union through the set PARTST of its proper sub-
graphs (the parts of T), extended by a set of additional edges (the links of T). Each H ∈ PARTST is isomorphic to some
template U. We say that H is of type U.

V. Vorel / Information and Computation 253 (2017) 497–509 499
Fig. 1. Template ABS.

Fig. 2. A barrier of ABS parts.

Fig. 3. Templates CCA, CCI and PIPE(d) respectively.

• Let q be a vertex of a template T, lying in a subgraph H ∈ PARTST which is of type U via a vertex mapping ρ : H → U.
The local address adrT(q) is a finite string of identifiers separated by „|”. It is defined inductively by

adrT(q) =
{

H | adrU(ρ(q)) if U �= SINGLE,

H if U= SINGLE.

The string adrG(q) is used as a regular vertex identifier.

Having a word w ∈ X� , we denote a t-th letter of w by wt and define the set St = δ(Q , w1 . . . wt) of active states at time t .
Whenever we depict a graph, a solid arrow stands for the label a and a dotted arrow stands for the label b.

2.2. Description of the graph G

Let us define all the templates and informally comment on their purpose. Fig. 1 defines the template ABS, which does
not depend on the formula φ.

The state out of a part of type ABS is always inactive after application of a word of length at least 2 which does not
contain b2 as a factor. This allows us to ensure the existence of a relatively short reset word. Actually, large areas of the
graph (namely the CLAUSE(. . .) parts) have roughly the shape depicted in Fig. 2, a cylindrical structure with a horizontal
barrier of ABS parts. If we use a sufficiently long word with no occurrence of b2, the edges outgoing from the ABS parts
are never used and almost all states become inactive.

Fig. 3 defines simple templates CCA, CCI and PIPE(d) for a given length d ≥ 1. The activity of an out state depends on
the last two letters applied. In the case of CCA it is inactive if (and typically only if) the two letters were equal. In the case
of CCI it works oppositely, equal letters correspond to active out state. One of the key ideas of the entire construction is
the following. Let there be a subgraph of the form

part of type PIPE(d)
↓ a,b

part of type CCA or CCI
↓ a,b

part of type PIPE(d).

(2)

Before the synchronization process starts, all the states are active. As soon as the second letter of an input word is applied,
the activity of the out state starts to depend on the last two letters and the pipe below keeps a record of its previous
activity. We say that a part H of type PIPE(d) records a sequence B1 . . . Bd ∈ {0,1}d at time t , if it holds that

Bk = 1 ⇔ H|sk /∈ St .

500 V. Vorel / Information and Computation 253 (2017) 497–509
Fig. 4. Templates INC(λ) and NOTINC(λ).

Fig. 5. Template TESTER.

In order to continue with defining templates, let us define a set Mφ containing all the literals from Lφ and some auxiliary
symbols:

Mφ = Lφ ∪ {y1, . . . , yn} ∪ {z1, . . . , zn} ∪ {
q,q′, r, r′} .

We index the 4n + 4 members ν ∈ Mφ by the following mapping μ:

ν q r y1 x1 y2 x2 . . . yn xn

μ(ν) 1 2 3 4 5 6 2n +1 2n +2

ν q′ r′ z1 ¬x1 z2 ¬x2 . . . zn ¬xn

μ(ν) 2n +3 2n +4 2n +5 2n +6 2n +7 2n +8 . . . 4n +3 4n +4

The inverse mapping is denoted by μ−1. For each λ ∈ Lφ we define templates INC(λ) and NOTINC(λ), both consisting
of 12n + 12 SINGLE parts identified by the elements of {1,2,3} × Mφ . As depicted in Fig. 4a, the links of INC(λ)are:

(1, ν)
a−→

{
(2, λ) if ν = λ or ν = r,

(2, ν) otherwise,

(2, ν)
a−→

{
(3,q) if ν = r or ν = q,

(3, ν) otherwise,

(1, ν)
b−→

{
(2, r) if ν = λ or ν = r,

(2, ν) otherwise,

(2, ν)
b−→

{
(3, r) if ν = r or ν = q,

(3, ν) otherwise.

Note that we use the same identifier for a one-vertex subgraph and for its vertex. As it is clear from Fig. 4b, the links of
NOTINC(λ) are:

V. Vorel / Information and Computation 253 (2017) 497–509 501
Fig. 6. Templates FORCER and LIMITER respectively.

(1, ν)
a−→ (2, λ) ,

(2, ν)
a−→

{
(3,q) if ν = q or ν = λ,

(3, ν) otherwise,

(1, ν)
b−→ (2, r) ,

(2, ν)
b−→

{
(3, λ) if ν = q or ν = λ,

(3, ν) otherwise.

The key property of such templates comes to light when we need to apply some two-letter word in order to make the
state (3, λ) inactive assuming (1, r) inactive. If also (1, λ) is initially inactive, we can use the word a2 in both templates. If
it is active (which corresponds to the idea of unsatisfied literal λ), we discover the difference between the two templates:
The word a2 works if the type is NOTINC(λ), but fails in the case of INC(λ). Such failure corresponds to the idea of
unsatisfied literal λ occurring in a clause of φ.

For each i-th clause we define the template TESTER(i). It consists of 2n serially linked parts, namely levelλ for each
λ ∈ Lφ , each of type INC(λ) or NOTINC(λ). The particular type of each levelλ depends on the clause Ci as seen in Fig. 5,
so exactly three of them are always of type INC(. . .). If the corresponding clause is unsatisfied, each of its three literals is
unsatisfied, which causes three failures within the levels. Three failures imply at least three occurrences of b, which turns up
to be too much for a reset word of certain length to exist. Clearly we still need some additional mechanisms to implement
this vague vision.

Fig. 6 defines templates FORCER and LIMITER. The idea of template FORCER is simple. Imagine a situation when q1,0
or r1,0 is active and we need to deactivate the entire forcer by a word of length at most 2n + 3. Any use of b would cause
an unbearable delay, so if such a word exists, it starts by a2n+2.

The idea of LIMITER is similar, but we tolerate some occurrences of b here, namely two of them. This works if we
assume s1,0 active and it is necessary to deactivate the entire limiter by a word of length at most 6n + 1.

We also need a template PIPES(d, k) for each d, k ≥ 1. It consists just of k parallel pipes of length d. Namely there is a
SINGLE part sd′,k′ for each d′ < d, k′ ≤ k and all the edges are of the form sd′,k′ −→ sd′+1,k′ .

The most complex templates are CLAUSE(i) for each i ∈ {1, . . . ,m}. Denote

αi = (i − 1) (12n − 2) ,

βi = (m − i) (12n − 2) .

As shown in Fig. 7, CLAUSE(i) consists of the following parts:

• Parts sp1, . . . , sp4n+6 of type SINGLE. The acronym sp stands for spine.
• Parts abs1, . . . , abs4n+6 of type ABS. The entire template has a shape similar to Fig. 2, including the barrier of ABS parts.
• Parts pipeB, pipeF, pipeH of types PIPE(2n − 1) and pipeG, pipeI of types PIPE(2n + 2).
• Parts cca and cci of types CCA and CCI respectively. Together with the pipes above they realize the idea described

in (2). As they form two constellations which work simultaneously, the parts pipeG and pipeI typically record mutually
inverse sequences. We interpret them as an assignment of the variables x1, . . . , xn . Such assignment is then processed
by the tester.

• A part ν of type SINGLE for each ν ∈ Mφ .
• A part tester of type TESTER(i).
• A part λ of type SINGLE for each λ ∈ Lφ . While describing the templates INC(λ) and NOTINC(λ) we claimed that

in certain case there arises a need to make the state (3, λ) inactive. This happens when the border of inactive area

502 V. Vorel / Information and Computation 253 (2017) 497–509
Fig. 7. Template CLAUSE(i).

moves down through the tester levels. The point is that any word of length 6n deactivates the entire tester, but we
need to ensure that some tester columns, namely the κ(λ)-th for each λ ∈ Lφ , are deactivated one step earlier. If some
of them is still active just before the deactivation of tester finishes, the state λ becomes active, which slows down the
synchronization process.

• Parts pipesJ , pipesK and pipesL of types PIPES(αi, 4n + 4), PIPES(6n − 2, 4n + 4) and PIPES(βi, 4n + 4) respectively.
There are multiple clauses in φ, but multiple testers cannot work in parallel. That is why each of them is padded by a
passive PIPES(. . .) part of size depending on particular i. If αi = 0 or βi = 0, the corresponding PIPES part is not
present in CLAUSE(i).

• Parts pipeA, pipeC, pipeD, pipeE of types PIPE(12mn + 4n − 2m + 6), PIPE(4), PIPE(αi + 6n − 1), PIPE(βi) respec-
tively.

• A part forcer of type FORCER. This part guarantees that only the letter a is used in certain segment of the word w .
This is necessary for the data produced by cca and cci to safely leave the parts pipeF, pipeH and line up in the states of
the form ν for ν ∈ Mφ , from where they are shifted to the tester.

• A part limiter of type LIMITER. This part guarantees that the letter b occurs at most twice when the border of inactive
area passes through the tester. Because each unsatisfied literal from the clause requests an occurrence of b, only a
satisfied clause meets all the conditions for a reset word of certain length to exist.

See also Table 1. Links of CLAUSE(i) that may not be clear from Fig. 7 are

V. Vorel / Information and Computation 253 (2017) 497–509 503
Table 1
Length of selected parts of CLAUSE(i).

Part Length

pipeA 12mn + 4n − 2m + 6
pipeB 2n − 1
pipeC 4
pipeD αi + 6n − 1
pipeE βi

pipeF 2n − 1

Part Length

pipeG 2n + 2
pipeH 2n − 1
pipeI 2n + 2
pipesJ αi

pipesK 6n − 2
pipesL βi

Fig. 8. The graph G .

ν
a−→

{
pipesJ|s1,μ(ν) if ν ∈ {xn,¬xn} ,

μ−1(μ(ν) + 1) otherwise,
ν

b−→pipesJ|s1,μ(ν)

for each ν ∈ Mφ and

pipesL|sβi ,k
a,b−→

{
μ−1(k) if μ−1(k) ∈ Lφ,

absk+2|in otherwise,
λ

a,b−→absμ(λ)+2|in

for each k ∈ {1, . . . ,4n + 4}, λ ∈ Lφ . Note that we rely on the addressing system introduced in Section 2.1.
We are ready to form the whole graph G , see Fig. 8. For each i ∈ {1, . . .m} there are parts cli , absi of types CLAUSE(i)

and ABS, respectively, and parts qi , ri , r′
i of type SINGLE. The parts s1, s2 are of type SINGLE as well. The edge incoming

to a cli part ends in cli |sp1, the outgoing b-edge one starts in cli |sp4n+6. When no states outside ABS parts are active within
each CLAUSE(. . .) part and no out, r1 nor r2 state is active in any ABS part, the word b2ab4n+m+7 takes all active states
to s2 and completes the synchronization.

Graph G does not fully represent the automaton A yet because there are

• 8mn +4m vertices with only one outgoing edge, namely cli |absk|out and cli |spl for each i ∈ {1, . . . ,m}, k ∈ {1, . . . ,4n + 6},
l ∈ {7, . . . ,4n + 4},

• 8mn + 4m vertices with only one incoming edge: cli |ν and cli |pipesJ|
(
1, ν ′) for each i ∈ {1, . . . ,m}, ν ∈ Mφ\

{
q,q′},

ν ′ ∈ Mφ\ {xn,¬xn}.

We do not need to specify the missing edges exactly, let us just say that they somehow connect the relevant states so that
the automaton A is complete and Eulerian. Let us set

d = 12mn + 8n − m + 18

and prove that the equivalence (1) holds.

2.3. From an assignment to a word

First, let us suppose that there is an assignment ξ1, . . . , ξn ∈ {0,1} of the variables x1, . . . , xn (respectively) satisfying the
formula φ and prove that the automaton A has a reset word w of length d. For each j ∈ {1, . . . ,n} we denote

σ j =
{

a if ξ j = 1,

b if ξ j = 0

and for each i ∈ {1, . . . ,m} we choose a satisfied literal λi from Ci . We set

504 V. Vorel / Information and Computation 253 (2017) 497–509
w = a2 (σna) (σn−1a) . . . (σ1a)aba2n+3b
(

a6n−2 v1

)
. . .

(
a6n−2 vm

)
b2ab4n+m+7,

where for each i ∈ {1, . . . ,m} we use the word

vi = ui,x1 . . . ui,xn ui,¬x1 . . . ui,¬xn ,

denoting

ui,λ =
{

a3 if λ = λi or λ /∈ Ci,

ba2 if λ �= λi and λ ∈ Ci

for each λ ∈ Lφ . We see that |vi | = 6n and therefore

|w| = 4n + 8 + m (12n − 2) + 4n + m + 10 = 12mn + 8n − m + 18 = d.

Let us denote

γ = 12mn + 4n − 2m + 9

and

St = Q \St

for each t ≤ d. Because the first occurrence of b2 in w starts at the γ -th position, we have:

Lemma 2.1. Each state of the form cl...|abs...|out or abs...|out lies in S2 ∩ · · · ∩ Sγ .

Let us fix an arbitrary i ∈ {1, . . . ,m} and describe a growing area of inactive states within cli . We use the following
method of verifying inactivity of states: Having a state s ∈ Q and t, k ≥ 1 such that any path of length k ending in s
contains a member of St−k ∩ · · · ∩ St−1, we easily deduce that s ∈ St . In such case let us just say that k witnesses that s ∈ St .
The following claims follow directly from the definition of w . Note that Claim 7 relies on the fact that b occurs only twice
in vi :

Lemma 2.2.
1.

{
cli |sp1, . . . , cli |sp4n+6

} ⊆ S2 ∩ · · · ∩ Sγ

2. cli |pipeB ∪ cli |pipeF ∪ cli |pipeH ⊆ S2n+1 ∩ · · · ∩ Sγ

3. cli |cca ∪ cli |cci ∪ cli |pipeC ⊆ S2n+5 ∩ · · · ∩ Sγ

4. cli |pipeG ∪ cli |pipeI ∪ cli |forcer ⊆ S4n+7 ∩ · · · ∩ Sγ

5.
{

cli |ν : ν ∈ Mφ

} ⊆ S4n+8 ∩ · · · ∩ Sγ

6. cli |pipesJ ∪ cli |pipesK ∪ cli |pipeD ⊆ S10n+αi+6 ∩ · · · ∩ Sγ

7. cli |limiter ∪ cli |tester ⊆ S16n+αi+6 ∩ · · · ∩ Sγ

8. cli |pipeA ∪ cli |pipeE ∪ cli |pipesL ⊆ Sγ −1 ∩ Sγ

Proof. 1. Claim:
{

cli |sp1, . . . , cli |sp4n+6
} ⊆ S2 ∩ · · · ∩ Sγ .

We have w1 w2 = a2 and there is no path labeled by a2 ending in any cli |sp... state, so such states lie in S2. For each
t = 3, . . . , γ we can inductively use k = 1 to witness the memberships in St . In the induction step we use Lemma 2.1,
which excludes the out states of the ABS parts from each corresponding St−1.

2. Claim: cli |pipeB ∪ cli |pipeF ∪ cli |pipeH ⊆ S2n+1 ∩ · · · ∩ Sγ .
All the memberships are witnessed by k = 2n − 1, because any path of the length 2n − 1 ending in such state must use
a cli |sp... state and such states lie in S2 ∩ · · · ∩ Sγ by the previous claim.

3. Claim: cli |cca ∪ cli |cci ∪ cli |pipeC ⊆ S2n+5 ∩ · · · ∩ Sγ .
We have w2n+2 . . . w2n+5 = a2ba, which clearly maps each state of cli |cca, cli |cci or cli |pipeC out of those parts. Each
path of length 4 leading into the parts from outside starts in S2n+1, so it follows that all the states lie in S2n+5. To
prove the rest we inductively use the witness k = 1.

4. Claim: cli |pipeG ∪ cli |pipeI ∪ cli |forcer ⊆ S4n+7 ∩ · · · ∩ Sγ .
In the cases of cli |pipeG and cli |pipeI we just use the witness k = 2n + 2. In the case of cli |forcer we proceed in the
same way as in the previous claim. Because w2n+5 . . . w4n+7 = a2n+3, only the states q...,0 can be active within the part
cli |forcer in time 2n + 6. The word w2n+7 . . . w4n+7 maps all such states out of cli |forcer. Each path of length 2n + 2

V. Vorel / Information and Computation 253 (2017) 497–509 505
leading into cli |forcer from outside starts in S2n+5, so it follows that all states from cli |forcer lie in S4n+7. To handle
t = 4n + 8, . . . , γ we inductively use the witness k = 1.

5. Claim:
{

cli |ν : ν ∈ Mφ

} ⊆ S4n+8 ∩ · · · ∩ Sγ .
In the cases of cli |q and cli |q′ we use the witness 1. We have w4n+8 = b and the only edges labeled by b incoming to
remaining states could be some of the 8mn + 4m unspecified edges of G . But we have w4n+6 w4n+7 = a2, so each out
state of any ABS part lies in S4n+7 and thus no unspecified edge starts in a state outside S4n+7.

6. Claim: cli |pipesJ ∪ cli |pipesK ∪ cli |pipeD ⊆ S10n+αi+6 ∩ · · · ∩ Sγ .
We use witnesses k = αi for cli |pipesJ , k = 6n − 2 for cli |pipesK and k = αi + 6n − 1 for cli |pipeD.

7. Claim: cli |limiter ∪ cli |tester ⊆ S16n+αi+6 ∩ · · · ∩ Sγ .
Because

w4n+αi+9 . . . w10n+αi+6 = a6n−2,

there are only states of the form cli |limiter|s...,0 in the intersection of cli |limiter and S10n+αi+6. Together with the fact
that there are only two occurrences of b in vi it confirms that the case of cli |limiter holds. The case of cli |tester is easily
witnessed by k = 6n.

8. Claim: cli |pipeA ∪ cli |pipeE ∪ cli |pipesL ⊆ Sγ −1 ∩ Sγ .
We use witnesses k = 12mn + 4n − 2m + 6 for cli |pipeA and k = βi for cli |pipeE, cli |pipesL. �

For each λ ∈ Lφ we ensure by the word ui,λ that the κ(λ)-th tester column is deactivated in advance, namely at time
t = 16n + αi + 5. The advance allows the following key claim to hold true:

Lemma 2.3.
{

cli |λ : λ ∈ Lφ

} ⊆ Sγ −1 ∩ Sγ .

Proof. For each such λ we choose

k = 6n − 3κ(λ) + βi + 1

as a witness of cli |λ ∈ Sγ −1. There is only one state where a path of length k ending in λ starts: the state

s = cli |tester|levelλ| (3, λ) .

It holds that

s ∈ S10n+αi+3κ(λ)+6 ∩ · · · ∩ Sγ ,

as is easily witnessed by k′ = 3κ(λ) using Claim 6 of Lemma 2.2. But we are going to show also that

s ∈ S10n+αi+3κ(λ)+5, (3)

which will imply that k is a true witness of λ ∈ Sγ −1, because

(γ − 1) − k = 10n + αi + 3κ(λ) + 5.

So let us prove the membership (3). We need to observe, using the definition of w , that:

• At time 2n + 5 the part pipeG records the sequence

0,1, ξ1, ξ1, ξ2, ξ2, . . . , ξn, ξn

and the part pipeI records the sequence of inverted values. Because

w2n+6 . . . w4n+7 = a2n+2,

at time 4n + 7 the states q, r′ are active, the states q′ , r are inactive and for each j ∈ {1, . . . ,n} it holds that

x j ∈ S4n+7 ⇔ y j ∈ S4n+7 ⇔ ¬x j ∈ S4n+7 ⇔ z j ∈ S4n+7 ⇔ ξ j = 1.

Because w4n+8 = b, at time 10n + αi + 6 we find the whole structure above shifted to the first row of cli |tester, so
particularly for λ ∈ Lφ :

cli |tester|levelx1 | (1, λ) ∈ S10n+αi+6 ⇔ λ is satisfied by ξ1, . . . , ξn.

• From a simple induction on tester levels it follows that

cli |tester|levelλ| (1, r) ∈ S10n+αi+3κ(λ)+3.

506 V. Vorel / Information and Computation 253 (2017) 497–509
Note that

w10n+αi+3κ(λ)+4 w10n+αi+3κ(λ)+5 w10n+αi+3κ(λ)+6 = ui,λ

and distinguish the following cases:

• If λ = λi , we have λ ∈ Ci , the part cli |tester|levelλ is of type INC(λ) and ui,λ = a3. We also know that λ is satisfied, so

cli|tester|levelx1 | (1, λ) ∈ S10n+αi+6.

The state above is the only state, from which any path of length 3κ(λ) − 3 leads to cli |tester|levelλ| (1, λ), so we deduce
that

cli|tester|levelλ| (1, λ) ∈ S10n+αi+3κ(λ)+3.

We see that each path labeled by a2 ending in cli |tester|levelλ| (3, λ) starts in cli |tester|levelλ| (1, λ) or in
cli |tester|levelλ| (1, r), but each of the two states lies in S10n+αi+3κ(λ)+3. So the membership (3) holds.

• If λ /∈ C , the part cli |tester|levelλ is of type NOTINC(λ) and ui,λ = a3. Particularly w10n+αi+3κ(λ)+5 = a but no edge
labeled by a comes to cli |tester|levelλ| (3, λ) and the membership (3) follows trivially.

• If λ �= λi and λ ∈ Ci , the part cli |tester|levelλ is of type INC(λ) and ui,λ = ba2. Particularly

w10n+αi+3κ(λ)+4 w10n+αi+3κ(λ)+5 = ba,

but no path labeled by ba comes to cli |tester|levelλ| (3, λ), so we reach the same conclusion as in the previous case.

We have proven that cli |λ lies in Sγ −1. From Claim 8 of Lemma 2.2 it follows directly that it lies also in Sγ . �
We see that within cli only the states from the ABS parts can lie in Sγ −1. Since wγ −2 wγ −1 = a2, no state r1, r2 nor out

from any ABS part lies in Sγ −1. Now we easily check that all the states possibly present in Sγ −1 are mapped to s2 by the
word wγ . . . wd = b2ab4n+m+7.

2.4. From a word to an assignment

From now on we suppose that there is a reset word w of length

d = 12mn + 8n − m + 18.

The following lemma is not hard to verify:

Lemma 2.4.

1. Up to labeling there is a unique pair of paths, both of a length l ≤ d − 2, leading from cl1|pipeA|s1 and cl2|pipeA|s1 to a common
end. They are of length d − 2 and meet in s2.

2. The word w starts by a2 .

Proof. 1. The leading segments of both paths are similar since they stay within the parts cl1 and cl2:

pipeA|s1
a,b−→ . . .

a,b−→pipeA|s12mn+4n−2m+6
a,b−→abs1|in b−→

b−→abs1|r1
b−→abs1|out

a−→ sp1
b−→ . . .

b−→ sp4n+6.

Once the paths leave the parts cl1 and cl2, the shortest way to merge is the following:

cl1|sp4n+6
b−→q1

b−→q2
b−→ . . .

b−→qm−1
b−→qm

b−→ s1
b−→

cl2|sp4n+6
b−→q2

b−→q3
b−→ . . .

b−→qm
b−→ s1

b−→ s2
b−→

s2

Having the description above it is easy to verify that the length is d − 2 and there is no way to make the paths shorter.
2. Suppose that w1 w2 �= a2. Any of the three possible values of w1 w2 implies that{

cli|sp3, . . . , cli|sp4n+6
} ⊆ S2

for each i. It cannot hold that w = w1 w2bd−2, because in such case all cl...|cca|sb states would be active in any time
t ≥ 3. So the word w has a prefix w1 w2bka for some k ≥ 0. If k ≤ 4n + 3, it holds that cli |sp4n+6 ∈ Sk+2 and therefore

V. Vorel / Information and Computation 253 (2017) 497–509 507
cli |pipeA|s1 ∈ Sk+3, which contradicts the first claim. Let k ≥ 4n +4. Some state of the form cli |forcer|q1,... or cli |forcer|r1,...

lies in Sk+2 for each i. This holds particularly for i = 1 and i = 2, but there is no pair of paths of length at most

d − (4n + 4) ≥ d − k

leading from such two states to a common end. �
The second claim implies that cli |pipeA|s1 ∈ S2 for each i ∈ {1, . . . ,m}, so it follows that

δ (Q , w) = {s2} .

Let us denote

d = 12mn + 4n − 2m + 11,

w = w1 . . . wd,

and

S ′ =
{

s ∈ Q | (∃d ∈N) δ
(

s,bd
)

= s2

}
.

The following lemma holds because no edges labeled by a are available for final segments of the paths described in the first
claim of Lemma 2.4:

Lemma 2.5.

1. The word w can be written as w = wb4n+m+7 for some word w.
2. For any t ≥ d, no state from any cl... part lies in St , except for the sp... states.

Proof. 1. Let us write w = w1 w2 w ′ . From Lemma 2.4 it follows that

δ
(
cl1|pipeA|s1, w ′) = δ

(
cl2|pipeA|s1, w ′)

and w ′ has to label some of the paths determined up to the labeling in Lemma 2.4(1). The final 4n +m + 7 edges of the
paths lead from cl1|sp1 and cl2|sp1 to s2. All the transitions used here are necessarily labeled by b.

2. The claim is easy to observe, since the first claim implies that St is a subset of S ′ . �
The next lemma is based on properties of the parts cl...|forcer but to prove that no more a follows the enforced factor

a2n+1 we also need to observe that each cl...|cca|out or each cl...|cci|out lies in S2n+4:

Lemma 2.6. The word w starts by ua2n+1b for some u of length 2n + 6.

Proof. At first we prove that w starts by ua2n+1. Lemma 2.4(2) implies that cl1|pipeB|s1 ∈ S2, so obviously at least one of the
states cl1|forcer|q1,0 and cl1|forcer|r1,0 lies in S2n+6. If w2n+6+k = b for some k ∈ {1, . . . ,2n + 1}, it holds that cli |forcer|qk,2
or cli |forcer|rk,2 lies in S2n+6+k . From such a state no path of length at most 2n + 3 − k leads to cli |pipeD|s1 and therefore
no path of length at most

(2n + 3 − k) + (αi + 6n − 1) + (6n − 2) + βi + 3 = d − (2n + 6 + k)

leads into S ′ , which contradicts Lemma 2.5(2). It remains to show that there is b after the prefix ua2n+1. Lemma 2.4(2)
implies that both cl1|cca|in and cl1|cci|in lie in S2n+1, from which it is not hard to deduce that cl1|cca|out or cl1|cci|out lies
in S2n+4 and therefore cl1|q or cl1|r lies in S4n+7. Any path of length d − (4n + 7) leading from cl1|q or cl1|r into S starts
by an edge labeled by b. �

Now we are able to write the word w as

w = ua2n+1b
(

v1 v ′
1c1

)
. . .

(
vm v ′

mcm
)

wd−2 wd−1 wd,

where
∣∣vk

∣∣ = 6n −2,
∣∣v ′

k

∣∣ = 6n −1 and |ck| = 1 for each k and denote di = 10n +αi +6. At time 2n +5 the parts cl...|pipeG and
cl...|pipeI record mutually inverse sequences. The factor a2n+1b after u guarantees that at time di we find the information
pushed to the first rows of testers:

508 V. Vorel / Information and Computation 253 (2017) 497–509
Lemma 2.7. For each i ∈ {1, . . . ,m}, j ∈ {1, . . . ,n} it holds that

cli|tester|levelx1 |
(
1, x j

) ∈ Sdi ⇔
cli |tester|levelx1 |

(
1,¬x j

)
/∈ Sdi ⇔ w2n−2 j+2 �= w2n−2 j+3.

Proof. From the definition of CCA and CCI it follows that at time 2n + 5 the parts pipeG and pipeI record the sequences
B(2n+3) . . . B(2) and B ′

(2n+3) . . . B ′
(2) respectively, where

B(k) =
{

1 if wk = wk+1,

0 otherwise,
B ′

(k) =
{

0 if wk = wk+1,

1 otherwise.

Whatever the letter w2n+6 is, Lemma 2.6 implies that

cli |x j ∈ S4n+7 ⇔ cli|¬x j /∈ S4n+7 ⇔ w2n−2 j+2 �= w2n−2 j+3,

from which the claim follows easily according to the shape of cli |pipesJ and cli |pipesK. �
Let us define the assignment ξ1, . . . , ξn ∈ {0,1}:

ξ j =
{

1 if w2n−2 j+2 = w2n−2 j+3,

0 otherwise.

Note that the definition may be directly rephrased according to Lemma 2.7. The following lemma holds due to the cl...|limiter
parts:

Lemma 2.8. For each i ∈ {1, . . . ,m} there are at most two occurrences of b in the word v ′
i .

Proof. It is easy to see that cli |limiter|s1,0 ∈ S10n+αi+6 and to note that

v ′
i = w10n+αi+7 . . . w16n+αi+5.

Within the part cli |limiter no state except for s6n−2,0 can lie in S16n+αi+5, because from such states there is no path of
length at most

d − (16n + αi + 5) = βi + 4

leading into S ′ .
The shortest paths from s1,0 to s6n−2,0 have length 6n − 3 and each path from s1,0 into S ′ uses the state s6n−2,0. So there

is a path P leading from s1,0 to s6n−2,0 labeled by a prefix of v ′ . We distinguish the following cases:

• If P is of length 6n − 3, we just note that such path is unique and labeled by a6n−3. No b occurs in v ′ except for the
last two positions.

• If P is of length 6n − 2, it uses an edge of the form sk,0
b−→ sk+1,1. Such edges preserve the distance to s6n−2, so the

rest of P must be a shortest path from sk+1,1 to s6n−2,0. Such paths are unique and labeled by a6n−2−k . Any other b
can occur only at the last position.

• If P is of length 6n − 1, it is labeled by whole v ′ . Because any edge labeled by b preserves or increases the distance to
s6n−2, the path P can use at most two of them. �

Now we choose any i ∈ {1, . . . ,m} and prove that the assignment ξ1, . . . , ξn satisfies the clause
∨

λ∈Ci
λ. Let p ∈ {0,1,2,3}

denote the number of unsatisfied literals in Ci .
As we claimed before, all tester columns corresponding to any λ ∈ Lφ have to be deactivated earlier than other columns.

Namely, if cli |tester|levelx1 | (1, λ) is active at time di , which happens if and only if λ is not satisfied by ξ1, . . . , ξn , the word
v ′

ici must not map it to cli |pipesL|s1,μ(λ) . If cli |tester|levelλ is of type INC(λ), the only way to ensure this is to use the letter
b when the border of inactive area lies at the first row of cli |tester|levelλ . Thus each unsatisfied λ ∈ Ci implies an occurrence
of b in corresponding segment of v ′

i :

Lemma 2.9. There are at least p occurrences of the letter b in the word v ′
i .

V. Vorel / Information and Computation 253 (2017) 497–509 509
Proof. Let λ1, . . . , λp be the unsatisfied literals of Ci . From Lemma 2.7 it follows easily that

cli|tester|levelλk | (1, λk) ∈ Sdi+3κ(λk)

for each k ∈ {1, . . . , p}. The part cli |tester|levelλk is of type INC(λk), which implies that any path of the length(
d − 3

)
− (di + 3κ(λk))

starting by a takes cli |tester|levelλk | (1, λk) to the state cli |λ, which lies outside Sd−3, as it is implied by Lemma 2.5(2). We
deduce that wdi+3κ(λk)+1 = b. �

By Lemma 2.8 there are at most two occurrences of b in v ′
i , so we get p ≤ 2 and there is at least one satisfied literal

in Ci .

References

[1] M.V. Berlinkov, On two algorithmic problems about synchronizing automata, in: A. Shur, M. Volkov (Eds.), Developments in Language Theory, in:
Lecture Notes in Computer Science, vol. 8633, Springer International Publishing, 2014, pp. 61–67.

[2] P. Bonizzoni, N. Jonoska, Existence of constants in regular splicing languages, Inf. Comput. 242 (2015) 340–353.
[3] J. Černý, Poznámka k homogénnym experimentom s konečnými automatmi, Mat.-Fyz. Čas. 14 (3) (1964) 208–216.
[4] D. Eppstein, Reset sequences for monotonic automata, SIAM J. Comput. 19 (3) (1990) 500–510.
[5] P. Gawrychowski, D. Straszak, Strong inapproximability of the shortest reset word, in: G. Italiano, G. Pighizzini, D. Sannella (Eds.), Mathematical Foun-

dations of Computer Science 2015, in: Lecture Notes in Computer Science, vol. 9234, Springer, Berlin, Heidelberg, 2015, pp. 243–255.
[6] F. Gonze, R.M. Jungers, A. Trakhtman, A note on a recent attempt to improve the Pin–Frankl bound, Discret. Math. Theor. Comput. Sci. 17 (1) (2015)

307–308.
[7] M. Grech, A. Kisielewicz, The Černý conjecture for automata respecting intervals of a directed graph, Discret. Math. Theor. Comput. Sci. 15 (3) (2013)

61–72.
[8] P.V. Martugin, Complexity of problems concerning reset words for some partial cases of automata, Acta Cybern. 19 (2) (2009) 517–536.
[9] P. Martyugin, Complexity of problems concerning reset words for cyclic and eulerian automata, Theor. Comput. Sci. 450 (2012) 3–9.

[10] J. Olschewski, M. Ummels, The complexity of finding reset words in finite automata, in: P. Hliněný, A. Kučera (Eds.), Mathematical Foundations of
Computer Science 2010, in: Lecture Notes in Computer Science, vol. 6281, Springer, Berlin, Heidelberg, 2010, pp. 568–579.

[11] B. Steinberg, The Černý conjecture for one-cluster automata with prime length cycle, Theor. Comput. Sci. 412 (39) (2011) 5487–5491.
[12] A. Trahtman, Modifying the upper bound on the length of minimal synchronizing word, in: O. Owe, M. Steffen, J.A. Telle (Eds.), Fundamentals of

Computation Theory, in: Lecture Notes in Computer Science, vol. 6914, Springer, Berlin, Heidelberg, 2011, pp. 173–180.
[13] N. Travers, J. Crutchfield, Exact synchronization for finite-state sources, J. Stat. Phys. 145 (5) (2011) 1181–1201.
[14] M.V. Volkov, Synchronizing automata and the Černý conjecture, in: C. Martín-Vide, F. Otto, H. Fernau (Eds.), Language and Automata Theory and

Applications, in: Lecture Notes in Computer Science, vol. 5196, Springer, Berlin, Heidelberg, 2008, pp. 11–27.

http://refhub.elsevier.com/S0890-5401(16)30029-3/bib42455236s1
http://refhub.elsevier.com/S0890-5401(16)30029-3/bib42455236s1
http://refhub.elsevier.com/S0890-5401(16)30029-3/bib424F4E31s1
http://refhub.elsevier.com/S0890-5401(16)30029-3/bib43455231s1
http://refhub.elsevier.com/S0890-5401(16)30029-3/bib45505031s1
http://refhub.elsevier.com/S0890-5401(16)30029-3/bib47415731s1
http://refhub.elsevier.com/S0890-5401(16)30029-3/bib47415731s1
http://refhub.elsevier.com/S0890-5401(16)30029-3/bib474F4E31s1
http://refhub.elsevier.com/S0890-5401(16)30029-3/bib474F4E31s1
http://refhub.elsevier.com/S0890-5401(16)30029-3/bib47524531s1
http://refhub.elsevier.com/S0890-5401(16)30029-3/bib47524531s1
http://refhub.elsevier.com/S0890-5401(16)30029-3/bib4D415233s1
http://refhub.elsevier.com/S0890-5401(16)30029-3/bib4D415232s1
http://refhub.elsevier.com/S0890-5401(16)30029-3/bib4F4C5331s1
http://refhub.elsevier.com/S0890-5401(16)30029-3/bib4F4C5331s1
http://refhub.elsevier.com/S0890-5401(16)30029-3/bib53544535s1
http://refhub.elsevier.com/S0890-5401(16)30029-3/bib54524131s1
http://refhub.elsevier.com/S0890-5401(16)30029-3/bib54524131s1
http://refhub.elsevier.com/S0890-5401(16)30029-3/bib54525331s1
http://refhub.elsevier.com/S0890-5401(16)30029-3/bib564F4C31s1
http://refhub.elsevier.com/S0890-5401(16)30029-3/bib564F4C31s1

	Complexity of a problem concerning reset words for Eulerian binary automata
	1 Introduction and preliminaries
	2 Main result
	2.1 Proof outline
	2.2 Description of the graph G
	2.3 From an assignment to a word
	2.4 From a word to an assignment

	References

