
Complexity of a Problem Concerning Reset

Words for Eulerian Binary Automata

Vojtěch Vorel

Charles University in Prague, Czech Republic
vorel@ktiml.mff.cuni.cz

Abstract. A word is called a reset word for a deterministic finite au-
tomaton if it maps all states of the automaton to one state. Deciding
about the existence of a reset word of given length for a given automa-
ton is known to be a NP-complete problem. We prove that it remains
NP-complete even if restricted on Eulerian automata over the binary
alphabet, as it has been conjectured by Martyugin (2011).

1 Introduction

A deterministic finite automaton is a triple A = (Q,X, δ), where Q and X are
finite sets and δ is an arbitrary mapping Q×X → Q. Elements of Q are called
states, X is the alphabet. The transition function δ can be naturally extended
to Q × X� → Q, still denoted by δ. We extend it also by defining δ (S,w) =
{δ (s, w) | s ∈ S,w ∈ X�} for each S ⊆ Q.

For a given automaton A = (Q,X, δ), we call w ∈ X� a reset word if
|δ (Q,w)| = 1. If such a word exists, we call the automaton synchronizing. Note
that each word having a reset word as a factor is also a reset word.

The Černý conjecture, a longstanding open problem, claims that each syn-
chronizing automaton has a reset word of length (|Q| − 1)

2
. However, there are

many weaker results in this field, see e.g. [6,7] for recent ones.
Various computational problems arises from study of synchronization:

– Given an automaton, decide if it is synchronizing. Relatively simple algo-
rithm which could be traced back to [1] works in polynomial time.

– Given a synchronizing automaton and a number d, decide if d is the length
of shortest reset words. This has been shown to be both NP-hard [2] and
coNP-hard. More precisely, it is DP-complete [5].

– Given a synchronizing automaton and a number d, decide if there exists a
reset word of length d. This problem is of our interest. Lying in NP, it is not
so computationally hard as the previous problem. However, it is proven to be
NP-complete [2]. Following the notation of [4], we call it Syn. Assuming that
M is a class of automata and membership in M is polynomially decidable,
we define a restricted problem:

Syn(M)
Input: synchronizing automaton A = ([n], X, δ) ∈ M, d ∈ N

Output: does A have a reset word of length d?

A.-H. Dediu et al. (Eds.): LATA 2014, LNCS 8370, pp. 576–587, 2014.
c© Springer International Publishing Switzerland 2014

Complexity of a Problem Concerning Reset Words 577

An automaton A = (Q,X, δ) is Eulerian if

∑

x∈X

|{r ∈ Q | δ (r, x) = q}| = |X |

for each q ∈ Q. Informally, there must be exactly |X | transitions incoming to
each state. An automaton is binary if |X | = 2. The classes of Eulerian and
binary automata are denoted by EU and AL2 respectively.

Previous results about various restrictions of Syn can be found in [2,3,4].
Some of these problems turned out to be polynomially solvable, others are NP-
complete. In [4] Martyugin conjectured that Syn(EU ∩ AL2) is NP-complete.
This conjecture is confirmed in the rest of the present paper.

2 Main Result

Proof Outline. We prove the NP-completeness of Syn(EU ∩AL2) by polyno-
mial reduction from 3-SAT. So, for arbitrary propositional formula φ in 3-CNF
we construct an Eulerian binary automaton A and a number d such that

φ is satisfiable ⇔ A has a reset word of length d. (1)

For the rest of the paper we fix a formula φ =
∧m

i=1

∨
λ∈Ci

λ on n variables where
each Ci is a three-element set of literals, i.e. subset of

Lφ = {x1, . . . , xn,¬x1, . . . ,¬xn} .

We index the literals by the mapping κ defined by

κ : x1 �→ 0, . . . , xn �→ n− 1,¬x1 �→ n, . . . ,¬xn �→ 2n− 1.

Let A = (Q,X, δ), X = {a, b}. Because the structure of the automaton A
will be very heterogenous, we use an unusual method of description. The basic
principles of the method are:

– We describe the automaton A via labeled directed multigraph G, represent-
ing the automaton in a standard way: edges of G are labeled by single letters
a and b and carry the structure of the function δ. Paths in G are labeled by
words from {a, b}�.

– There is a collection of labeled directed multigraphs called templates. The
graph G is one of them. Another template is SINGLE, which consists of one
vertex and no edges.

– Each template T �=SINGLE is a disjoint union through a set PARTST of its
proper subgraphs (the parts of T), extended by a set of additional edges (the
links of T). Each H ∈ PARTST is isomorphic to some template U. We say
that H is of type U.

578 V. Vorel

– Let q be a vertex of a template T, lying in subgraph H ∈ PARTST which is
of type U via vertex mapping ρ : H → U. The local adress adrT (q) is a finite
string of identifiers separated by “|”. It is defined inductively by

adrT (q) =

{
H | adrU ρ (q) if U �= SINGLE

H if U = SINGLE.

The string adrG (q) is used as regular vertex identifier.

Having a word w ∈ X�, we denote a t-th letter of w by wt and define the set
St = δ (Q,w1 . . . wt) of active states at time t. Whenever we depict a graph, a
solid arrow stands for the label a and a dotted arrow stands for the label b.

Description of the Graph G

Let us define all the templates and informally comment on their purpose.
Figure 1 defines the template ABS, which does not depend on the formula φ.

in

out

r2r1

q1 q2 q3

Fig. 1. Template ABS Fig. 2. A barrier of ABS parts

The state out of a part of type ABS is always inactive after application of a
word of length at least 2 which does not contain b2 as a factor. This allows us
to ensure the existence of a relatively short reset word. Actually, large areas of
the graph (namely the CLAUSE(. . .) parts) have roughly the shape depicted in
Figure 2, a cylindrical structure with a horizontal barrier of ABS parts. If we use
a sufficiently long word with no occurence of b2, the edges outgoing from the
ABS parts are never used and almost all states become inactive.

in

out

sbsa

in

out

sbsa

s2

sd

s1

Fig. 3. Templates CCA, CCI and PIPE(d)

Complexity of a Problem Concerning Reset Words 579

Figure 3 defines simple templates CCA, CCI and PIPE(d) for each d ≥ 1. If
we secure constant activity of the in state, the activity of the out state depends
exactly on the last two letters applied. In the case of CCA it gets inactive if
and only if the two letters were equal. In the case of CCI it works oppositely,
equal letters correspond to active out state. One of the key ideas of the entire
construction is the following. Let there be a subgraph of the form

part of type PIPE(d)
↓ a, b

part of type CCA or CCI
↓ a, b

part of type PIPE(d).

(2)

Before the synchronization process starts, all the states are active. As soon
as the second letter of an input word is applied, the activity of the out state
starts to depend on the last two letters and the pipe below keeps a record of
its previous activity. We say that a part H of type PIPE(d) records a sequence
B1 . . . Bd ∈ {0,1}d at time t, if it holds that

Bk = 1 ⇔ H |sk /∈ St.

In order to continue with defining templates, let us define a set Mφ containing
all literals from Lφ and some auxiliary symbols:

Mφ = Lφ ∪ {y1, . . . , yn} ∪ {z1, . . . , zn} ∪ {q, q′, r, r′} .

We index the 4n+ 4 members of Mφ by the following mapping μ:

ν ∈ Mφ q r y1 x1 y2 x2 . . . yn xn

μ (ν) 1 2 3 4 5 6 . . . 2n+ 1 2n+ 2

ν ∈ Mφ q′ r′ z1 ¬x1 z2 ¬x2 . . . zn ¬xn

μ (ν) 2n+ 3 2n+ 4 2n+ 5 2n+ 6 2n+ 7 2n+ 8 . . . 4n+ 3 4n+ 4

The inverse mapping is denoted by μ′. For each λ ∈ Lφ we define templates
INC(λ) and NOTINC(λ), both consisting of 12n+ 12 SINGLE parts identified by
elements of {1, 2, 3} ×Mφ. As depicted by Figure 4, the links of INC(λ)are:

(1, ν)
a−→

{
(2, r) if ν = λ or ν = r

(2, ν) otherwise

(2, ν)
a−→

⎧
⎪⎨

⎪⎩

(3, q) if ν = λ or ν = q

(3, λ) if ν = r

(3, ν) otherwise

(1, ν)
b−→

{
(2, λ) if ν = λ or ν = r

(2, ν) otherwise

(2, ν)
b−→

⎧
⎪⎨

⎪⎩

(3, r) if ν = λ or ν = q

(3, λ) if ν = r

(3, ν) otherwise

Note that we use the same identifier for an one-vertex subgraph and for its
vertex. The structure of NOTINC(λ) is clear from Figure 5.

580 V. Vorel

1, x1

2, x1

3, x1

1, λ

2, λ

3, λ

1,¬x1

2,¬x1

3,¬x1

1, r

2, r

3, r

1, q

2, q

3, q

Fig. 4. Template INC(λ)

1, x1

2, x1

3, x1

1, λ

2, λ

3, λ

1,¬x1

2,¬x1

3,¬x1

1, r

2, r

3, r

1, q

2, q

3, q

Fig. 5. Template NOTINC(λ)

part levelx2 of type

{
INC(x2) if x2 ∈ Ci

NOTINC(x2) otherwise

part levelλ of type

{
INC(λ) if λ ∈ Ci

NOTINC(λ) otherwise

part level¬xn of type

{
INC(¬xn) if ¬xn ∈ Ci

NOTINC(¬xn) otherwise

part levelx1 of type

{
INC(x1) if x1 ∈ Ci

NOTINC(x1) otherwise

Fig. 6. Template TESTER

Complexity of a Problem Concerning Reset Words 581

The key property of such templates comes to light when we need to apply some
two-letter word in order to make the state (3, λ) inactive assuming (1, r) inactive.
If also (1, λ) is initially inactive, we can use the word a2 in both templates. If
it is active (which corresponds to the idea of unsatisfied literal λ), we discover
the difference between the two templates: The word a2 works if the type is
NOTINC(λ), but fails in the case of INC(λ). Such failure corresponds to the idea
of unsatisfied literal λ occuring in certain clause of φ.

For each clause (each i ∈ {1, . . . ,m}) we define a template TESTER(i). It
consists of 2n serially linked parts, namely levelλ for each λ ∈ Lφ, each of type
INC(λ) or NOTINC(λ). The particular type of each levelλ depends on the clause
Ci as seen in Figure 6, so exactly three of them are always of type INC(. . .).
If the corresponding clause is unsatisfied, each of its three literals is unsatisfied,
which causes three failures within the levels. Three failures imply at least three
occurences of b, which turns up to be too much for a reset word of certain length
to exist. Clearly we still need some additional mechanisms to realize this vague
vision.

Figure 7 defines templates FORCER and LIMITER. The idea of template FORCER
is simple. Imagine a situation when q1,0 or r1,0 is active and we need to deactivate
the entire forcer by a word of length at most 2n+ 3. Any use of b would cause
an unbearable delay, so if such a word exists, it starts by a2n+2.

The idea of LIMITER is similar, but we tolerate some occurences of b here,
namely two of them. This works if we assume s1,0 active and it is neccesary to
deactivate the entire limiter by a word of length at most 6n+ 1.

q1,0

s0 s1,0

s2,0

s3,0

s4,0

s5,0

s2,1

s3,1

s4,1

s5,1

s3,2

s4,2

s5,2

s4,3

s5,3

r1,0

q1,1

r1,1

q1,2

r1,2

q2n+1,0

q2n+1,0

s6n−4,0 s6n−4,1 s6n−4,2 s6n−4,3

s6n−5,0 s6n−5,1 s6n−5,2 s6n−5,3

s6n−3,0 s6n−3,1 s6n−3,2 s6n−3,3

s6n−2,0 s6n−2,1 s6n−2,2 s6n−2,3

q2,0

r2,0

q2,1

r2,1

q2,2

r2,2

q2n+1,1

r2n+1,1

q2n+1,2

r2n+1,2

Fig. 7. Templates FORCER and LIMITER respectively

582 V. Vorel

We also need a template PIPES(d, k) for each d, k ≥ 1. It consists just of k
parallel pipes of length d. Namely there is a SINGLE part sd′,k′ for each d′ ≤ d,
k′ ≤ k and all the edges are of the form sd′,k′ −→ sd′+1,k′ .

The most complex templates are CLAUSE(i) for each i ∈ {1, . . . ,m}. Denote

αi = (i− 1) (12n− 2) ,

βi = (m− i) (12n− 2) .

As shown in Figure 8, CLAUSE(i) consists of the following parts:

– Parts sp1, . . . , sp4n+6 of type SINGLE.
– Parts abs1, . . . , abs4n+6 of type ABS. All the template have a shape similar

to Figure 2, including the barrier of ABS parts.
– Parts pipe2, pipe3, pipe4 of types PIPE(2n − 1) and pipe6, pipe7 of types

PIPE(2n+ 2).
– Parts cca and cci of types CCA and CCI respectively. Together with the pipes

above they realize the idea described in (2). As they form two constellations
which work simultaneously, the parts pipe6 and pipe7 typically record mutu-
ally inverse sequences. We interpret them as an assignment of the variables
x1, . . . , xn. Such assignment is then processed by the tester.

– A part ν of type SINGLE for each ν ∈ Mφ.
– The part tester of type TESTER(i).
– A part λ of type SINGLE for each λ ∈ Lφ. While describing the templates

INC(λ) and NOTINC(λ) we claimed that in certain case there arises a need to
make the state (3, λ) inactive. This happens when the border of inactive area
moves down through the tester levels. The point is that any word of length 6n
deactivates the entire tester, but we need to ensure that some tester columns,
namely the κ (λ)-th for each λ ∈ Lφ, are deactivated one step earlier. If some
of them is still active just before the deactivation of tester finishes, the state
λ becomes active, which slows down the sychronizing process.

– Parts pipes1, pipes2 and pipes3 of types PIPES(αi, 4n+4), PIPES(6n−2, 4n+
4) and PIPES(βi, 4n+ 4) respectively. There are multiple clauses in φ, but
multiple testers cannot work in parallel. That is why each of them is padded
by a passive PIPES(. . .) part of size depending on particular i. If αi = 0 or
βi = 0, the corresponding PIPES part is not present in cl i.

– Parts pipe1, pipe5, pipe8, pipe9 of types PIPE(12mn+4n−2m+6), PIPE(4),
PIPE(αi + 6n− 1), PIPE(βi) respectively.

– The part forcer of type FORCER. This part guarantees that only the letter
a is used in certain segment of the word w. This is nessesary for the data
produced by cca and cci to safely leave the parts pipe3, pipe4 and line up in
the states of the form ν for ν ∈ Mφ, from where they shift to the tester.

– The part limiter of type LIMITER. This part guarantees that the letter b
occurs at most twice when the border of inactive area passes through the
tester. Because each usatisfied literal from the clause requests an occurence
of b, only a satisfied clause meets all the conditions for a reset word of certain
length to exist.

Complexity of a Problem Concerning Reset Words 583

sp4n+4 sp4n+5 sp4n+6

q

r

y1

x1

y2

x2

yn

xn

q ′

r ′

z1

¬x1
z2

¬x2
zn

¬xn

x1 x2 xn ¬x1 ¬x2 ¬xn

pipes2

pipes3

tester

forcer

sp4n+6

sp2

sp1 sp2n+8

sp2n+9

sp2n+6

sp2n+7

sp2n+4

sp2n+5

abs3

abs4

abs5

abs6

abs7

abs8

abs1

abs2

abs2n+4 abs2n+6

abs2n+5 abs2n+7

sp1 sp2 sp3 sp4 sp5 sp6 sp7 sp8

abs2n+8 abs2n+10

abs2n+9 abs2n+11

abs4n+6

sp4

sp3

sp6

sp5

sp8

sp7

sp2n+11

sp2n+10

limiter

cca cci

pipes1

pipe3pipe2

pipe5

pipe4

pipe7pipe6

pipe8
pipe1

pipe9

Fig. 8. Template CLAUSE(i)

584 V. Vorel

Links of CLAUSE(i), which are not clear from the Figure 8 are

ν
a−→

{
pipes1|s1,μ(ν) if ν = ¬xn

μ′ (μ (ν) + 1) otherwise
ν

b−→ pipes1|s1,μ(ν)

for each ν ∈ Mφ\ {¬xn} and

pipes3|sβi,k
a,b−→

{
μ′ (k) if μ′ (k) ∈ Lφ

absk+2|in otherwise
λ

a,b−→ absμ(λ)+2|in

for each k ∈ {1, . . . , 4n+ 4}, λ ∈ Lφ.
We are ready to form the whole graph G, see Figure 9. For each i, k ∈

{1, . . .m} there are parts clk, absk of types CLAUSE(i) and ABS respectively and
qk, rk, r

′
k, s1, s2 of type SINGLE. The edge incoming to a cl i part ends in cl i|sp1,

the outgoing one starts in cl i|sp4n+6. When no states outside ABS parts are ac-
tive within each CLAUSE(. . .) part and no out , r1 nor r2 state is active in any
ABS part, the word b2ab4n+m+7 takes all active states to s2 and completes the
sychronization. Graph G does not fully represent the automaton A yet, because
there are

– 8mn+4m vertices with only one outgoing edge, namely cl i|absk|out and spl

for each i ∈ {1, . . . ,m} , k ∈ {1, . . . , 4n+ 6} , l ∈ {7, . . . , 4n+ 4},
– 8mn+ 4m vertices with only one incoming edge: cl i|ν and cl i|pipes1| (1, ν′)

for each i ∈ {1, . . . ,m} , ν ∈ Mφ\ {q, q′} , ν′ ∈ Mφ\ {xn,¬xn}.
But we do not need to specify the missing edges exactly, let us just say that they
somehow connect the relevant states and the automaton A is complete. Let us
set d = 12mn+ 8n−m+ 18 and prove that the equivalence (1) holds.

r ′1

r ′2

r ′m

cl1

clm

abs1

abs2

absm

cl2

cl1

clm−1

clm

cl2

r1

r2

rm

q1

q2

qm

s1 s2

clm−1r ′m−1 absm−1qm−1 rm−1

Fig. 9. The graph G

Complexity of a Problem Concerning Reset Words 585

From an Assignment to a Word. At first let us suppose that there is an
assignment ξ1, . . . , ξn ∈ {0,1} of the variables x1, . . . , xn (respectively) satisfying
the formula φ and prove that the automaton A has a reset word w of length d.

For each j ∈ {1, . . . , n} we denote

σj =

{
a if ξj = 1

b if ξj = 0

and for each i ∈ {1, . . . ,m} we choose a satisfied literal λi from Ci. We set

w = a2 (σna) (σn−1a) . . . (σ1a) aba
2n+3b

(
a6n−2v1

)
. . .

(
a6n−2vm

)
b2ab4n+m+7,

where for each i ∈ {1, . . . ,m} we use the word

vi = ui,x1 . . . ui,xnui,¬x1 . . . ui,¬xn ,

denoting

ui,λ =

{
a3 if λ = λi or λ /∈ Ci

ba2 if λ �= λi and λ ∈ Ci

for each λ ∈ Lφ. We see that |vi| = 6n and therefore

|w| = 4n+ 8 +m (12n− 2) + 4n+m+ 10 = 12mn+ 8n−m+ 18 = d.

Let us denote
γ = 12mn+ 4n− 2m+ 9.

Because the first occurence of b2 in w starts by γ-th letter, we have:

Lemma 1. No state of a form cl ...|abs ...|out or abs...|out lies in any of the sets
S2, . . . , Sγ.

Let us fix an arbitrary i ∈ {1, . . . ,m} and describe a growing area of inactive
states within cl i. The following claims follows directly from the definition of w.
Note that the claim 7 relies on the fact that b occurs only twice in vi.

Lemma 2

1. No state of the form sp... lies in any of the sets S2, . . . , Sγ.
2. No state from pipe2 or pipe3 or pipe4 lies in any of the sets S2n+1, . . . , Sγ .
3. No state from cca or cci or pipe5 lies in any of the sets S2n+5, . . . , Sγ .
4. No state from pipe6 or pipe7 or forcer lies in any of the sets S4n+7, . . . , Sγ.
5. No state ν for ν ∈ Mφ lies in any of the sets S4n+8, . . . , Sγ .
6. No state from pipes1 or pipes2 or pipe8 lies in any of the sets S10n+αi+6, . . .

. . . , Sγ.
7. No state from limiter or tester lies in any of the sets S16n+αi+6, . . . , Sγ

8. No state from pipe1 or pipe9 or pipes3 lies in any of the sets Sγ−1, Sγ.

For each λ ∈ Lφ we ensure by the word ui,λ that the κ (λ)-th tester column is
deactivated in advance, namely at time t = 16n + αi + 5. The advance allows
the following key claim to hold true.

586 V. Vorel

Lemma 3. No state cl i|λ for λ ∈ Lφ lies in any of the sets Sγ−1, Sγ.

We see that within cl i only states from the ABS parts can lie in Sγ−1. Since
wγ−2wγ−1 = a2, no state r1, r2 or out from any ABS part lies in Sγ−1. Now we
easily check that all the states possibly present in Sγ−1 are mapped to s2 by the
word wγ . . . wd = b2ab4n+m+7.

From a Word to an Assignment. Since now we suppose that there is a reset
word w of length d = 12mn+ 8n−m+ 18. The following lemma is not hard to
verify.

Lemma 4

1. Up to labeling there is unique pair of paths having length at most d−2, leading
from cl1|pipe1|s1 and cl2|pipe1|s1 respectively to a common end. They are
of length d− 2 and meet in s2.

2. The word w starts by a2.

The second claim implies that for each i ∈ {1, . . . ,m} it holds that cl i|pipe1|s1 ∈
S2, so it follows that

δ (Q,w) = {s2} .
Let us denote d = 12mn+4n−2m+11 and w = w1 . . . wd. The following lemma
holds, because no edges labelled by a are available for final segments of the paths
described in the first claim of Lemma 4.

Lemma 5

1. The word w can be written as w = wb4n+m+7 for some word w.
2. For any t ≥ d, no state from any cl ... part lie in St, except for the sp... states.

The next lemma is based on properties of the parts cl ...|forcer but to prove that
no more a follows the enforced factor a2n+1 we also need to observe that each
cl ...|cca|out or each cl ...|cci |out lies in S2n+4.

Lemma 6. The word w starts by ua2n+1b for some u of length 2n+ 6.

Now we are able to write the word w as

w = ua2n+1b (v1v
′
1c1) . . . (vmv′mcm)wd−2wd−1wd,

where |vk| = 6n − 2, |v′k| = 6n − 1 and |ck| = 1 for each k and denote di =
10n+αi +6. At time 2n+5 the parts cl ...|pipe6 and cl ...|pipe7 record mutually
inverse sequences. Because there is the factor a2n+1 after u, at time di we find
the information pushed to the first rows of testers:

Lemma 7. For each i ∈ {1, . . . ,m}, j ∈ {1, . . . , n} it holds that

cl i|tester |levelx1 | (1, xj) ∈ Sdi ⇔
cl i|tester |levelx1 | (1,¬xj) /∈ Sdi ⇔ w2n−2j+2 �= w2n−2j+3.

Complexity of a Problem Concerning Reset Words 587

Let us define the assignment ξ1, . . . , ξn ∈ {0,1}. By Proposition 7 the definition
is correct and does not depend on i:

ξj =

{
1 if cl i|tester |levelx1 | (1, xj) /∈ Sdi

0 if cl i|tester |levelx1 | (1,¬xj) /∈ Sdi .

The following lemma holds due to cl ...|limiter parts.

Lemma 8. For each i ∈ {1, . . . ,m} there are at most two occurences of b in the
word v′i.

Now we choose any i ∈ {1, . . . ,m} and prove that the assignment ξ1, . . . , ξn
satisfies the clause

∨
λ∈Ci

λ. Let p ∈ {0, 1, 2, 3} denote the number of unsatisfied
literals in Ci.

As we claimed before, all tester columns corresponding to any λ ∈ Lφ have
to be deactivated earlier than other columns. Namely, if cl i|tester |levelx1 | (1, λ)
is active at time di, which happens if and only if λ is not satisfied by ξ1, . . . , ξn,
the word v′ici must not map it to cl i|pipes3|s1,μ(λ). If cl i|tester |levelλ is of type
INC(λ), the only way to ensure this is to use the letter b when the border of
inactive area lies at the first row of cl i|tester |levelλ. Thus each unsitisfied λ ∈ Ci

implies an occurence of b in corresponding segment of v′i:

Lemma 9. There are at least p occurences of the letter b in the word v′i.

By Lemma 8 there are at most two occurences of b in v′i, so we get p ≤ 2 and
there is at least one satisfied literal in Ci.

References

1. Černý, J.: Poznámka k homogénnym experimentom s konečnými automatmi.
Matematicko-fyzikálny časopis 14(3), 208–216 (1964)

2. Eppstein, D.: Reset sequences for monotonic automata. SIAM J. Comput. 19(3),
500–510 (1990)

3. Martyugin, P.: Complexity of problems concerning reset words for some partial cases
of automata. Acta Cybern. 19(2), 517–536 (2009)

4. Martyugin, P.: Complexity of problems concerning reset words for cyclic and eulerian
automata. In: Bouchou-Markhoff, B., Caron, P., Champarnaud, J.-M., Maurel, D.
(eds.) CIAA 2011. LNCS, vol. 6807, pp. 238–249. Springer, Heidelberg (2011)

5. Olschewski, J., Ummels, M.: The complexity of finding reset words in finite
automata. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281,
pp. 568–579. Springer, Heidelberg (2010)

6. Steinberg, B.: The Černý conjecture for one-cluster automata with prime length
cycle. Theoret. Comput. Sci. 412(39), 5487–5491 (2011)

7. Trahtman, A.N.: Modifying the upper bound on the length of minimal synchroniz-
ing word. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914,
pp. 173–180. Springer, Heidelberg (2011)

	Complexity of a Problem Concerning Reset
Words for Eulerian Binary Automata
	1 Introduction
	2 MainResult
	References

