Complexity of a Problem Concerning Reset Words for Eulerian Binary Automata

Vojtěch Vorel
Charles University in Prague, Czech Republic
vorel@ktiml.mff.cuni.cz

Abstract

A word is called a reset word for a deterministic finite automaton if it maps all states of the automaton to one state. Deciding about the existence of a reset word of given length for a given automaton is known to be a NP-complete problem. We prove that it remains NP-complete even if restricted on Eulerian automata over the binary alphabet, as it has been conjectured by Martyugin (2011).

1 Introduction

A deterministic finite automaton is a triple $A=(Q, X, \delta)$, where Q and X are finite sets and δ is an arbitrary mapping $Q \times X \rightarrow Q$. Elements of Q are called states, X is the alphabet. The transition function δ can be naturally extended to $Q \times X^{\star} \rightarrow Q$, still denoted by δ. We extend it also by defining $\delta(S, w)=$ $\left\{\delta(s, w) \mid s \in S, w \in X^{\star}\right\}$ for each $S \subseteq Q$.

For a given automaton $A=(Q, X, \delta)$, we call $w \in X^{\star}$ a reset word if $|\delta(Q, w)|=1$. If such a word exists, we call the automaton synchronizing. Note that each word having a reset word as a factor is also a reset word.

The Černý conjecture, a longstanding open problem, claims that each synchronizing automaton has a reset word of length $(|Q|-1)^{2}$. However, there are many weaker results in this field, see e.g. 677] for recent ones.

Various computational problems arises from study of synchronization:

- Given an automaton, decide if it is synchronizing. Relatively simple algorithm which could be traced back to [1] works in polynomial time.
- Given a synchronizing automaton and a number d, decide if d is the length of shortest reset words. This has been shown to be both NP-hard [2] and coNP-hard. More precisely, it is DP-complete [5].
- Given a synchronizing automaton and a number d, decide if there exists a reset word of length d. This problem is of our interest. Lying in NP, it is not so computationally hard as the previous problem. However, it is proven to be NP-complete [2]. Following the notation of 4], we call it Syn. Assuming that \mathcal{M} is a class of automata and membership in \mathcal{M} is polynomially decidable, we define a restricted problem:
$\operatorname{Syn}(\mathcal{M})$
Input: synchronizing automaton $A=([n], X, \delta) \in \mathcal{M}, d \in \mathbb{N}$
Output: does A have a reset word of length d ?

An automaton $A=(Q, X, \delta)$ is Eulerian if

$$
\sum_{x \in X}|\{r \in Q \mid \delta(r, x)=q\}|=|X|
$$

for each $q \in Q$. Informally, there must be exactly $|X|$ transitions incoming to each state. An automaton is binary if $|X|=2$. The classes of Eulerian and binary automata are denoted by $\mathcal{E U}$ and $\mathcal{A} \mathcal{L}_{2}$ respectively.

Previous results about various restrictions of SYN can be found in [2]3|4]. Some of these problems turned out to be polynomially solvable, others are NPcomplete. In [4 Martyugin conjectured that $\operatorname{Syn}\left(\mathcal{E U} \cap \mathcal{A L}_{2}\right)$ is NP-complete. This conjecture is confirmed in the rest of the present paper.

2 Main Result

Proof Outline. We prove the NP-completeness of $\operatorname{SYN}\left(\mathcal{E U} \cap \mathcal{A L}_{2}\right)$ by polynomial reduction from 3-SAT. So, for arbitrary propositional formula ϕ in 3-CNF we construct an Eulerian binary automaton A and a number d such that

$$
\begin{equation*}
\phi \text { is satisfiable } \Leftrightarrow A \text { has a reset word of length } d \tag{1}
\end{equation*}
$$

For the rest of the paper we fix a formula $\phi=\bigwedge_{i=1}^{m} \bigvee_{\lambda \in C_{i}} \lambda$ on n variables where each C_{i} is a three-element set of literals, i.e. subset of

$$
L_{\phi}=\left\{x_{1}, \ldots, x_{n}, \neg x_{1}, \ldots, \neg x_{n}\right\} .
$$

We index the literals by the mapping κ defined by

$$
\kappa: x_{1} \mapsto 0, \ldots, x_{n} \mapsto n-1, \neg x_{1} \mapsto n, \ldots, \neg x_{n} \mapsto 2 n-1 .
$$

Let $A=(Q, X, \delta), X=\{a, b\}$. Because the structure of the automaton A will be very heterogenous, we use an unusual method of description. The basic principles of the method are:

- We describe the automaton A via labeled directed multigraph G, representing the automaton in a standard way: edges of G are labeled by single letters a and b and carry the structure of the function δ. Paths in G are labeled by words from $\{a, b\}^{\star}$.
- There is a collection of labeled directed multigraphs called templates. The graph G is one of them. Another template is SINGLE, which consists of one vertex and no edges.
- Each template $\mathrm{T} \neq$ SINGLE is a disjoint union through a set PARTS $_{T}$ of its proper subgraphs (the parts of T), extended by a set of additional edges (the links of T). Each $H \in \mathrm{PARTS}_{\mathrm{T}}$ is isomorphic to some template U . We say that H is of type U .
- Let q be a vertex of a template T , lying in subgraph $H \in \mathrm{PARTS}_{\mathrm{T}}$ which is of type U via vertex mapping $\rho: H \rightarrow \mathrm{U}$. The local adress $\operatorname{adr}_{\mathrm{T}}(q)$ is a finite string of identifiers separated by "|". It is defined inductively by

$$
\operatorname{adr}_{\mathrm{T}}(q)= \begin{cases}H \mid \operatorname{adr}_{\mathrm{U}} \rho(q) & \text { if } \mathrm{U} \neq \text { SINGLE } \\ H & \text { if } \mathrm{U}=\text { SINGLE. }\end{cases}
$$

The string $\operatorname{adr}_{G}(q)$ is used as regular vertex identifier.
Having a word $w \in X^{\star}$, we denote a t-th letter of w by w_{t} and define the set $S_{t}=\delta\left(Q, w_{1} \ldots w_{t}\right)$ of active states at time t. Whenever we depict a graph, a solid arrow stands for the label a and a dotted arrow stands for the label b.

Description of the Graph G

Let us define all the templates and informally comment on their purpose. Figure 1 defines the template ABS, which does not depend on the formula ϕ.

Fig. 1. Template ABS

Fig. 2. A barrier of ABS parts

The state out of a part of type ABS is always inactive after application of a word of length at least 2 which does not contain b^{2} as a factor. This allows us to ensure the existence of a relatively short reset word. Actually, large areas of the graph (namely the CLAUSE(...) parts) have roughly the shape depicted in Figure 2 a cylindrical structure with a horizontal barrier of ABS parts. If we use a sufficiently long word with no occurence of b^{2}, the edges outgoing from the ABS parts are never used and almost all states become inactive.

Fig. 3. Templates CCA, CCI and PIPE(d)

Figure 3 defines simple templates CCA, CCI and $\operatorname{PIPE}(d)$ for each $d \geq 1$. If we secure constant activity of the in state, the activity of the out state depends exactly on the last two letters applied. In the case of CCA it gets inactive if and only if the two letters were equal. In the case of CCI it works oppositely, equal letters correspond to active out state. One of the key ideas of the entire construction is the following. Let there be a subgraph of the form

$$
\begin{gather*}
\text { part of type PIPE }(d) \\
\downarrow a, b \\
\text { part of type CCA or CCI } \tag{2}\\
\downarrow a, b \\
\text { part of type PIPE }(d) .
\end{gather*}
$$

Before the synchronization process starts, all the states are active. As soon as the second letter of an input word is applied, the activity of the out state starts to depend on the last two letters and the pipe below keeps a record of its previous activity. We say that a part H of type $\operatorname{PIPE}(d)$ records a sequence $B_{1} \ldots B_{d} \in\{\mathbf{0}, \mathbf{1}\}^{d}$ at time t, if it holds that

$$
B_{k}=\mathbf{1} \Leftrightarrow H \mid s_{k} \notin S_{t} .
$$

In order to continue with defining templates, let us define a set M_{ϕ} containing all literals from L_{ϕ} and some auxiliary symbols:

$$
M_{\phi}=L_{\phi} \cup\left\{y_{1}, \ldots, y_{n}\right\} \cup\left\{z_{1}, \ldots, z_{n}\right\} \cup\left\{q, q^{\prime}, r, r^{\prime}\right\} .
$$

We index the $4 n+4$ members of M_{ϕ} by the following mapping μ :

$\nu \in M_{\phi}$	q	r	y_{1}	x_{1}	y_{2}	x_{2}	\ldots	y_{n}	x_{n}
$\mu(\nu)$	1	2	3	4	5	6	\ldots	$2 n+1$	$2 n+2$

$\nu \in M_{\phi}$	q^{\prime}	r^{\prime}	z_{1}	$\neg x_{1}$	z_{2}	$\neg x_{2}$	\ldots	z_{n}	$\neg x_{n}$
$\mu(\nu)$	$2 n+3$	$2 n+4$	$2 n+5$	$2 n+6$	$2 n+7$	$2 n+8$	\ldots	$4 n+3$	$4 n+4$

The inverse mapping is denoted by μ^{\prime}. For each $\lambda \in L_{\phi}$ we define templates $\operatorname{INC}(\lambda)$ and NOTINC (λ), both consisting of $12 n+12$ SINGLE parts identified by elements of $\{1,2,3\} \times M_{\phi}$. As depicted by Figure [4, the links of $\operatorname{INC}(\lambda)$ are:

$$
\begin{aligned}
& (1, \nu) \xrightarrow{a} \begin{cases}(2, r) & \text { if } \nu=\lambda \text { or } \nu=r \\
(2, \nu) & \text { otherwise }\end{cases} \\
& (2, \nu) \xrightarrow{a} \begin{cases}(3, q) & \text { if } \nu=\lambda \text { or } \nu=q \\
(3, \lambda) & \text { if } \nu=r \\
(3, \nu) & \text { otherwise }\end{cases}
\end{aligned}
$$

Note that we use the same identifier for an one-vertex subgraph and for its vertex. The structure of $\operatorname{NOTINC}(\lambda)$ is clear from Figure 5

Fig. 4. Template $\operatorname{INC}(\lambda)$

Fig. 5. Template NOTINC(λ)

Fig. 6. Template TESTER

The key property of such templates comes to light when we need to apply some two-letter word in order to make the state $(3, \lambda)$ inactive assuming $(1, r)$ inactive. If also $(1, \lambda)$ is initially inactive, we can use the word a^{2} in both templates. If it is active (which corresponds to the idea of unsatisfied literal λ), we discover the difference between the two templates: The word a^{2} works if the type is $\operatorname{NOTINC}(\lambda)$, but fails in the case of $\operatorname{INC}(\lambda)$. Such failure corresponds to the idea of unsatisfied literal λ occuring in certain clause of ϕ.

For each clause (each $i \in\{1, \ldots, m\}$) we define a template $\operatorname{TESTER}(i)$. It consists of $2 n$ serially linked parts, namely level $_{\lambda}$ for each $\lambda \in L_{\phi}$, each of type $\operatorname{INC}(\lambda)$ or $\operatorname{NOTINC}(\lambda)$. The particular type of each level $_{\lambda}$ depends on the clause C_{i} as seen in Figure 6, so exactly three of them are always of type INC(...). If the corresponding clause is unsatisfied, each of its three literals is unsatisfied, which causes three failures within the levels. Three failures imply at least three occurences of b, which turns up to be too much for a reset word of certain length to exist. Clearly we still need some additional mechanisms to realize this vague vision.

Figure 7 defines templates FORCER and LIMITER. The idea of template FORCER is simple. Imagine a situation when $q_{1,0}$ or $r_{1,0}$ is active and we need to deactivate the entire forcer by a word of length at most $2 n+3$. Any use of b would cause an unbearable delay, so if such a word exists, it starts by $a^{2 n+2}$.

The idea of LIMITER is similar, but we tolerate some occurences of b here, namely two of them. This works if we assume $s_{1,0}$ active and it is neccesary to deactivate the entire limiter by a word of length at most $6 n+1$.

Fig. 7. Templates FORCER and LIMITER respectively

We also need a template $\operatorname{PIPES}(d, k)$ for each $d, k \geq 1$. It consists just of k parallel pipes of length d. Namely there is a SINGLE part $s_{d^{\prime}, k^{\prime}}$ for each $d^{\prime} \leq d$, $k^{\prime} \leq k$ and all the edges are of the form $s_{d^{\prime}, k^{\prime}} \longrightarrow s_{d^{\prime}+1, k^{\prime}}$.

The most complex templates are CLAUSE (i) for each $i \in\{1, \ldots, m\}$. Denote

$$
\begin{aligned}
\alpha_{i} & =(i-1)(12 n-2), \\
\beta_{i} & =(m-i)(12 n-2) .
\end{aligned}
$$

As shown in Figure 8, CLAUSE (i) consists of the following parts:

- Parts $s p_{1}, \ldots, s p_{4 n+6}$ of type SINGLE.
- Parts $a b s_{1}, \ldots, a b s_{4 n+6}$ of type ABS. All the template have a shape similar to Figure 2 including the barrier of ABS parts.
- Parts pipe $_{2}$, pipe $_{3}$, pipe $_{4}$ of types PIPE $(2 n-1)$ and pipe $_{6}$, pipe $_{7}$ of types PIPE $(2 n+2)$.
- Parts $c c a$ and $c c i$ of types CCA and CCI respectively. Together with the pipes above they realize the idea described in (2). As they form two constellations which work simultaneously, the parts pipe ${ }_{6}$ and pipe ${ }_{7}$ typically record mutually inverse sequences. We interpret them as an assignment of the variables x_{1}, \ldots, x_{n}. Such assignment is then processed by the tester.
- A part ν of type SINGLE for each $\nu \in M_{\phi}$.
- The part tester of type TESTER (i).
- A part $\bar{\lambda}$ of type SINGLE for each $\lambda \in L_{\phi}$. While describing the templates $\operatorname{INC}(\lambda)$ and NOTINC (λ) we claimed that in certain case there arises a need to make the state $(3, \lambda)$ inactive. This happens when the border of inactive area moves down through the tester levels. The point is that any word of length $6 n$ deactivates the entire tester, but we need to ensure that some tester columns, namely the $\kappa(\lambda)$-th for each $\lambda \in L_{\phi}$, are deactivated one step earlier. If some of them is still active just before the deactivation of tester finishes, the state $\bar{\lambda}$ becomes active, which slows down the sychronizing process.
- Parts pipes ${ }_{1}$, pipes $_{2}$ and pipes $_{3}$ of types PIPES $\left(\alpha_{i}, 4 n+4\right)$, PIPES ($6 n-2,4 n+$ 4) and $\operatorname{PIPES}\left(\beta_{i}, 4 n+4\right)$ respectively. There are multiple clauses in ϕ, but multiple testers cannot work in parallel. That is why each of them is padded by a passive PIPES (...) part of size depending on particular i. If $\alpha_{i}=0$ or $\beta_{i}=0$, the corresponding PIPES part is not present in $c l_{i}$.
- Parts pipe ${ }_{1}$, pipe $_{5}$, pipe $_{8}$, pipe $_{9}$ of types PIPE ($12 m n+4 n-2 m+6$), PIPE (4), $\operatorname{PIPE}\left(\alpha_{i}+6 n-1\right), \operatorname{PIPE}\left(\beta_{i}\right)$ respectively.
- The part forcer of type FORCER. This part guarantees that only the letter a is used in certain segment of the word w. This is nessesary for the data produced by cca and cci to safely leave the parts pipe $_{3}$, pipe 4_{4} and line up in the states of the form ν for $\nu \in M_{\phi}$, from where they shift to the tester.
- The part limiter of type LIMITER. This part guarantees that the letter b occurs at most twice when the border of inactive area passes through the tester. Because each usatisfied literal from the clause requests an occurence of b, only a satisfied clause meets all the conditions for a reset word of certain length to exist.

Fig. 8. Template CLAUSE (i)

Links of CLAUSE (i), which are not clear from the Figure 8 are

$$
\nu \xrightarrow{a}\left\{\begin{array}{ll}
\text { pipes }_{1} \mid s_{1, \mu(\nu)} & \text { if } \nu=\neg x_{n} \\
\mu^{\prime}(\mu(\nu)+1) & \text { otherwise }
\end{array} \quad \nu \xrightarrow{b} \text { pipes }_{1} \mid s_{1, \mu(\nu)}\right.
$$

for each $\nu \in M_{\phi} \backslash\left\{\neg x_{n}\right\}$ and

$$
\text { pipes }_{3} \left\lvert\, s_{\beta_{i}, k} \xrightarrow{a, b}\left\{\left.\begin{array}{ll}
\overline{\mu^{\prime}(k)} & \text { if } \mu^{\prime}(k) \in L_{\phi} \\
a b s_{k+2} \mid \text { in } & \text { otherwise }
\end{array} \quad \bar{\lambda} \xrightarrow{a, b} a b s_{\mu(\lambda)+2} \right\rvert\,\right. \text { in }\right.
$$

for each $k \in\{1, \ldots, 4 n+4\}, \lambda \in L_{\phi}$.
We are ready to form the whole graph G, see Figure 9 For each $i, k \in$ $\{1, \ldots m\}$ there are parts $c l_{k}, a b s_{k}$ of types $\operatorname{CLAUSE}(i)$ and ABS respectively and $q_{k}, r_{k}, r_{k}^{\prime}, s_{1}, s_{2}$ of type SINGLE. The edge incoming to a $c l_{i}$ part ends in $c l_{i} \mid s p_{1}$, the outgoing one starts in $c l_{i} \mid s p_{4 n+6}$. When no states outside ABS parts are active within each CLAUSE (...) part and no out, r_{1} nor r_{2} state is active in any ABS part, the word $b^{2} a b^{4 n+m+7}$ takes all active states to s_{2} and completes the sychronization. Graph G does not fully represent the automaton A yet, because there are
$-8 m n+4 m$ vertices with only one outgoing edge, namely $c l_{i}\left|a b s_{k}\right| o u t$ and $s p_{l}$ for each $i \in\{1, \ldots, m\}, k \in\{1, \ldots, 4 n+6\}, l \in\{7, \ldots, 4 n+4\}$,
$-8 m n+4 m$ vertices with only one incoming edge: $c l_{i} \mid \nu$ and $c l_{i} \mid$ pipes $_{1} \mid\left(1, \nu^{\prime}\right)$ for each $i \in\{1, \ldots, m\}, \nu \in M_{\phi} \backslash\left\{q, q^{\prime}\right\}, \nu^{\prime} \in M_{\phi} \backslash\left\{x_{n}, \neg x_{n}\right\}$.

But we do not need to specify the missing edges exactly, let us just say that they somehow connect the relevant states and the automaton A is complete. Let us set $d=12 m n+8 n-m+18$ and prove that the equivalence (1) holds.

Fig. 9. The graph G

From an Assignment to a Word. At first let us suppose that there is an assignment $\xi_{1}, \ldots, \xi_{n} \in\{\mathbf{0}, \mathbf{1}\}$ of the variables x_{1}, \ldots, x_{n} (respectively) satisfying the formula ϕ and prove that the automaton A has a reset word w of length d.

For each $j \in\{1, \ldots, n\}$ we denote

$$
\sigma_{j}= \begin{cases}a & \text { if } \xi_{j}=\mathbf{1} \\ b & \text { if } \xi_{j}=\mathbf{0}\end{cases}
$$

and for each $i \in\{1, \ldots, m\}$ we choose a satisfied literal $\bar{\lambda}_{i}$ from C_{i}. We set

$$
w=a^{2}\left(\sigma_{n} a\right)\left(\sigma_{n-1} a\right) \ldots\left(\sigma_{1} a\right) a b a^{2 n+3} b\left(a^{6 n-2} v_{1}\right) \ldots\left(a^{6 n-2} v_{m}\right) b^{2} a b^{4 n+m+7}
$$

where for each $i \in\{1, \ldots, m\}$ we use the word

$$
v_{i}=u_{i, x_{1}} \ldots u_{i, x_{n}} u_{i, \neg x_{1}} \ldots u_{i, \neg x_{n}}
$$

denoting

$$
u_{i, \lambda}= \begin{cases}a^{3} & \text { if } \lambda=\bar{\lambda}_{i} \text { or } \lambda \notin C_{i} \\ b a^{2} & \text { if } \lambda \neq \bar{\lambda}_{i} \text { and } \lambda \in C_{i}\end{cases}
$$

for each $\lambda \in L_{\phi}$. We see that $\left|v_{i}\right|=6 n$ and therefore

$$
|w|=4 n+8+m(12 n-2)+4 n+m+10=12 m n+8 n-m+18=d
$$

Let us denote

$$
\gamma=12 m n+4 n-2 m+9
$$

Because the first occurence of b^{2} in w starts by γ-th letter, we have:
Lemma 1. No state of a form $c l_{\ldots . .|a b s . . .|o u t ~ o r ~ a b s . . .| o u t ~ l i e s ~ i n ~ a n y ~ o f ~ t h e ~ s e t s ~}^{\text {l }}$ $S_{2}, \ldots, S_{\gamma}$.
Let us fix an arbitrary $i \in\{1, \ldots, m\}$ and describe a growing area of inactive states within $c l_{i}$. The following claims follows directly from the definition of w. Note that the claim 7 relies on the fact that b occurs only twice in v_{i}.

Lemma 2

1. No state of the form $s p \ldots$ lies in any of the sets $S_{2}, \ldots, S_{\gamma}$.
2. No state from pipe ${ }_{2}$ or pipe e_{3} or pipe ${ }_{4}$ lies in any of the sets $S_{2 n+1}, \ldots, S_{\gamma}$.
3. No state from cca or cci or pipe ${ }_{5}$ lies in any of the sets $S_{2 n+5}, \ldots, S_{\gamma}$.
4. No state from pipe ${ }_{6}$ or pipe ${ }_{7}$ or forcer lies in any of the sets $S_{4 n+7}, \ldots, S_{\gamma}$.
5. No state ν for $\nu \in M_{\phi}$ lies in any of the sets $S_{4 n+8}, \ldots, S_{\gamma}$.
6. No state from pipes 1_{1} or pipes $_{2}$ or pipe 8 lies in any of the sets $S_{10 n+\alpha_{i}+6}, \ldots$ \ldots, S_{γ}.
7. No state from limiter or tester lies in any of the sets $S_{16 n+\alpha_{i}+6}, \ldots, S_{\gamma}$
8. No state from pipe ${ }_{1}$ or pipe ${ }_{9}$ or pipes ${ }_{3}$ lies in any of the sets $S_{\gamma-1}, S_{\gamma}$.

For each $\lambda \in L_{\phi}$ we ensure by the word $u_{i, \lambda}$ that the $\kappa(\lambda)$-th tester column is deactivated in advance, namely at time $t=16 n+\alpha_{i}+5$. The advance allows the following key claim to hold true.

Lemma 3. No state cli $\mid \bar{\lambda}$ for $\lambda \in L_{\phi}$ lies in any of the sets $S_{\gamma-1}, S_{\gamma}$.
We see that within $c l_{i}$ only states from the ABS parts can lie in $S_{\gamma-1}$. Since $w_{\gamma-2} w_{\gamma-1}=a^{2}$, no state r_{1}, r_{2} or out from any ABS part lies in $S_{\gamma-1}$. Now we easily check that all the states possibly present in $S_{\gamma-1}$ are mapped to s_{2} by the word $w_{\gamma} \ldots w_{d}=b^{2} a b^{4 n+m+7}$.

From a Word to an Assignment. Since now we suppose that there is a reset word w of length $d=12 m n+8 n-m+18$. The following lemma is not hard to verify.

Lemma 4

1. Up to labeling there is unique pair of paths having length at most $d-2$, leading from $\mathrm{cl}_{1} \mid$ pipe $_{1} \mid s_{1}$ and $\mathrm{cl}_{2} \mid$ pipe $_{1} \mid s_{1}$ respectively to a common end. They are of length $d-2$ and meet in s_{2}.
2. The word w starts by a^{2}.

The second claim implies that for each $i \in\{1, \ldots, m\}$ it holds that $c l_{i} \mid$ pipe $_{1} \mid s_{1} \in$ S_{2}, so it follows that

$$
\delta(Q, w)=\left\{s_{2}\right\}
$$

Let us denote $\bar{d}=12 m n+4 n-2 m+11$ and $\bar{w}=w_{1} \ldots w_{\bar{d}}$. The following lemma holds, because no edges labelled by a are available for final segments of the paths described in the first claim of Lemma 4.

Lemma 5

1. The word w can be written as $w=\bar{w} b^{4 n+m+7}$ for some word \bar{w}.
2. For any $t \geq \bar{d}$, no state from any cl... part lie in S_{t}, except for the $s p \ldots$ states.

The next lemma is based on properties of the parts $c l \ldots \mid$ forcer but to prove that no more a follows the enforced factor $a^{2 n+1}$ we also need to observe that each $c l_{\ldots}|c c a|$ out or each $c l \ldots \mid$... $c c i \mid$ out lies in $S_{2 n+4}$.

Lemma 6. The word \bar{w} starts by $\bar{u} a^{2 n+1} b$ for some \bar{u} of length $2 n+6$.
Now we are able to write the word \bar{w} as

$$
\bar{w}=\bar{u} a^{2 n+1} b\left(\bar{v}_{1} v_{1}^{\prime} c_{1}\right) \ldots\left(\bar{v}_{m} v_{m}^{\prime} c_{m}\right) w_{\bar{d}-2} w_{\bar{d}-1} w_{\bar{d}}
$$

where $\left|\bar{v}_{k}\right|=6 n-2,\left|v_{k}^{\prime}\right|=6 n-1$ and $\left|c_{k}\right|=1$ for each k and denote $d_{i}=$ $10 n+\alpha_{i}+6$. At time $2 n+5$ the parts $c l_{\ldots} \mid$ pipe $_{6}$ and $c l_{\ldots} \mid$ pipe $_{7}$ record mutually inverse sequences. Because there is the factor $a^{2 n+1}$ after \bar{u}, at time d_{i} we find the information pushed to the first rows of testers:

Lemma 7. For each $i \in\{1, \ldots, m\}, j \in\{1, \ldots, n\}$ it holds that

$$
\begin{aligned}
\text { cl }_{i} \mid \text { tester } \mid \text { level }_{x_{1}} \mid\left(1, x_{j}\right) & \in S_{d_{i}} \Leftrightarrow \\
\text { cl }_{i} \mid \text { tester } \mid \text { level }_{x_{1}} \mid\left(1, \neg x_{j}\right) & \notin S_{d_{i}} \Leftrightarrow w_{2 n-2 j+2} \neq w_{2 n-2 j+3} .
\end{aligned}
$$

Let us define the assignment $\xi_{1}, \ldots, \xi_{n} \in\{\mathbf{0}, \mathbf{1}\}$. By Proposition 7 the definition is correct and does not depend on i :

$$
\xi_{j}= \begin{cases}\mathbf{1} & \text { if } \text { cl }_{i} \mid \text { tester } \mid \text { level }_{x_{1}} \mid\left(1, x_{j}\right) \notin S_{d_{i}} \\ \mathbf{0} & \text { if } l_{i} \mid \text { tester } \mid \text { level }_{x_{1}} \mid\left(1, \neg x_{j}\right) \notin S_{d_{i}} .\end{cases}
$$

The following lemma holds due to cl_{l}.. |limiter parts.
Lemma 8. For each $i \in\{1, \ldots, m\}$ there are at most two occurences of b in the word v_{i}^{\prime}.

Now we choose any $i \in\{1, \ldots, m\}$ and prove that the assignment ξ_{1}, \ldots, ξ_{n} satisfies the clause $\bigvee_{\lambda \in C_{i}} \lambda$. Let $p \in\{0,1,2,3\}$ denote the number of unsatisfied literals in C_{i}.

As we claimed before, all tester columns corresponding to any $\lambda \in L_{\phi}$ have to be deactivated earlier than other columns. Namely, if $c l_{i} \mid$ tester \mid level $_{x_{1}} \mid(1, \lambda)$ is active at time d_{i}, which happens if and only if λ is not satisfied by ξ_{1}, \ldots, ξ_{n}, the word $v_{i}^{\prime} c_{i}$ must not map it to $c l_{i} \mid$ pipes $_{3} \mid s_{1, \mu(\lambda)}$. If $c l_{i} \mid$ tester \mid level l_{λ} is of type $\operatorname{INC}(\lambda)$, the only way to ensure this is to use the letter b when the border of inactive area lies at the first row of $c l_{i} \mid$ tester \mid level λ_{λ}. Thus each unsitisfied $\lambda \in C_{i}$ implies an occurence of b in corresponding segment of v_{i}^{\prime} :

Lemma 9. There are at least p occurences of the letter b in the word v_{i}^{\prime}.
By Lemma 8 there are at most two occurences of b in v_{i}^{\prime}, so we get $p \leq 2$ and there is at least one satisfied literal in C_{i}.

References

1. Černý, J.: Poznámka k homogénnym experimentom s konečnými automatmi. Matematicko-fyzikálny časopis 14(3), 208-216 (1964)
2. Eppstein, D.: Reset sequences for monotonic automata. SIAM J. Comput. 19(3), 500-510 (1990)
3. Martyugin, P.: Complexity of problems concerning reset words for some partial cases of automata. Acta Cybern. 19(2), 517-536 (2009)
4. Martyugin, P.: Complexity of problems concerning reset words for cyclic and eulerian automata. In: Bouchou-Markhoff, B., Caron, P., Champarnaud, J.-M., Maurel, D. (eds.) CIAA 2011. LNCS, vol. 6807, pp. 238-249. Springer, Heidelberg (2011)
5. Olschewski, J., Ummels, M.: The complexity of finding reset words in finite automata. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 568-579. Springer, Heidelberg (2010)
6. Steinberg, B.: The Cerný conjecture for one-cluster automata with prime length cycle. Theoret. Comput. Sci. 412(39), 5487-5491 (2011)
7. Trahtman, A.N.: Modifying the upper bound on the length of minimal synchronizing word. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914, pp. 173-180. Springer, Heidelberg (2011)
