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Abstract

By the Road Coloring Theorem (Trahtman, 2008), the edges of any given aperi-
odic strongly connected directed multigraph with a constant out-degree can be
colored such that the resulting automaton admits a reset word. There may also
be a need for a particular reset word to be admitted. In this paper we consider
the following problem: given a word w and digraph G, is it true that G has a
coloring that is synchronized by w? We show that it is NP-complete for certain
fixed words. For the binary alphabet we present a classification that separates
such words from those that make the problem solvable in polynomial time. The
classification differs if we consider only strongly connected multigraphs. In this
restricted setting the classification remains incomplete.

Keywords: synchronizing word, reset word, Road Coloring Problem,
synchronizing automata, Černý conjecture

1. Introduction

Questions about synchronization of finite automata have been studied since
the early times of automata theory. The basic concept is very natural: we want
to find an input sequence that would bring a given machine to a unique state,
no matter in which state the machine was before. Such sequence is called a reset
word. If an automaton has a reset word, we call it a synchronizing automaton.

This area of research attracts much attention because of the famous Černý
conjecture [1] posted in 1964 by Jan Černý. It says that an n-state synchronizing
automaton has a reset word of length not longer than (n− 1)2. Since then the
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literature on the subject is constantly growing (see for example [2, 3, 4, 5, 6, 7,
8, 9]).

In the study of road coloring, synchronizing automata are created from di-
rected multigraphs through edge coloring. A directed multigraph is said to be
admissible if it has a constant out-degree and is aperiodic (that is, the greatest
common divisor of the lengths of all cycles in the graph equals to 1). Sometimes
we use the notion of admissible graph – in such case we always mean an admis-
sible directed multigraph. A multigraph needs to be admissible in order to have
a synchronizing coloring. Many papers in the area of synchronization focus on
the road coloring type of problems, like algorithmic approach [10, 11], counting
the colorings [12] or using various tools to investigate the road coloring problem
itself [13, 14].

In this paper we deal with the complexity issues related to the road coloring
problem. It is quite reasonable approach, as each synchronizing problem may
be transformed to its road-coloring version in a very natural way:

• (synchronizing problem) Given an automaton A and some set of parame-
ters and constraints Θ, check if some condition C holds.

• (road-coloring version) Given an admissible graph G and Θ, check if there
exists a coloring δ such that condition C holds for the resulting automaton
A = G(δ).

Given an alphabet I and an admissible graph such that all out-degrees are
equal to |I|, the following questions arise:

1. Is there a coloring such that the resulting automaton has a reset word?
2. Given a number k ≥ 1, is there a coloring such that the resulting automa-

ton has a reset word of length at most k?
3. Given a word w ∈ I?, is there a coloring such that w is a reset word of

the resulting automaton?
4. Given a set of words W ⊆ I?, is there a coloring such that some w ∈ W

is a reset word of the resulting automaton?

For the first question it was conjectured in 1977 by Adler, Goodwyn, and
Weiss [15] that for strongly connected graphs the answer is always yes. The
conjecture was known as the Road Coloring Problem until Trahtman [16] in
2008, using some ideas from [13], found a proof, turning the claim into the Road
Coloring Theorem.

The second question was initially studied in the paper [17] presented at
LATA 2012, while the papers [18] and [19] give final results: the problem is
NP-complete for any fixed k ≥ 4 and any fixed |I| ≥ 2. The instances with
k ≤ 3 or |I| = 1 can be solved by a polynomial-time algorithm. See [20, 19] for
some recent results and a detailed discussion on the parameterized complexity
for synchronizing automata.

The third question is the subject of the present paper. We show that the
problem becomes NP-complete even if restricted to |I| = 2 and w = abb or
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to |I| = 2 and w = aba, which may seem surprising. Moreover, we provide a
complete classification of binary words: The NP-completeness holds for |I| = 2
and any w ∈ {a, b}? that does not equal ak, bk, akb, nor bka for any k ≥ 1. On
the other hand, for any w that matches some of these patterns, the restricted
problem is solvable in polynomial time.

The fourth question was raised in [18] and it was emphasized that there
are no results about the problem. Our results on the third problem provide an
initial step for this direction of research.

It is an easy but important observation that any instance of the first ques-
tion can be reduced to a strongly connected one by taking a suitable strongly
connected component from the original digraph. So, with the Road Coloring
Theorem in mind, it may seem that strong connectivity can be safely assumed
even if dealing with other problems related to road coloring. Surprisingly, we
show that this does not hold for complexity issues. If P is not equal to NP, the
complexity of the third problem for strongly connected digraphs differs from the
basic third problem in the case of w = abb. However, for the strongly connected
case we are not able to provide a complete characterization as described above.
We are able to give only partial results.

2. Preliminaries

Definition 2.1. A deterministic finite automaton (DFA) is a triple (Q, I, δ),
where Q is a finite set of states, I is a finite alphabet, and δ : Q × I → Q is
a total transition function. Slightly abusing the notation, we define δ(q, wx) =
δ(δ(q, w), x) for x ∈ I, w ∈ I? and δ(R,w) = {δ(r, w) , r ∈ R} for R ⊆ Q.

In order to work with the directed multigraphs, colorings, and the resulting
DFAs, we introduce the following formalisms:

Definition 2.2.

• A digraph is a tuple G = (Q,E, s, t), where Q is a finite set of vertices
and E is a finite set of edges, s : E → Q defines starts of edges, and
t : E → Q defines ends of edges. We extend these notions for the sets of
edges: s(F ) = {s(f) : f ∈ F} and t(F ) = {t(f) : f ∈ F}, F ⊂ E. For the
sake of simplicity we write (Q,E) instead of (Q,E, s, t). An edge e ∈ E
is outgoing from s(e) and incoming to t(e). Edges e, e′ ∈ E are parallel if
s(e) = s(e′) and t(e) = t(e′).

• A path from q ∈ Q to r ∈ Q in G is a sequence e1, e2, . . . , ed ∈ E such
that s(e1) = q, t(ed) = r, and s(ei) = t(ei−1) for each 2 ≤ i ≤ d. If d ≥ 1
and q = r, the path is a cycle. An empty path leads from each q ∈ Q to
itself. The length of a path e1, e2, . . . , ed is d, the number of its edges.

• We say that q ∈ Q reaches r ∈ Q and that r is reachable from q in G if
there is a path from q to r in G. If there is a path of length at most d,
then r is d-reachable from q.
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• The term dG(q, r) denotes the length of a shortest path from q ∈ Q to
r ∈ Q or ∞ if there is no such path.

• If G is fixed, r ∈ Q and k ≥ 0, we denote

Vk(r) = {q ∈ Q | d(q, r) = k} ,
V≤k(r) = {q ∈ Q | d(q, r) ≤ k} ,
V≥k(r) = {q ∈ Q | d(q, r) ≥ k} .

• If G is fixed, r ∈ Q and k ≥ 0, we denote

Uk(r) = {q ∈ Q | there is a path of length k from q to r} .

Definition 2.3.

• A digraph G has a constant outdegree m ∈ N if each q ∈ Q has exactly m
outgoing edges. For m ≥ 0, the symbol Gm denotes the class of digraphs
with constant outdegree m.

• A function δ[ ] : E → I with a finite alphabet I is a coloring of a digraph
G if:

– G has constant outdegree |I|, and
– for each e1, e2 ∈ E, e1 6= e2 it holds that s(e1) = s(e2)⇒ δ[e1] 6= δ[e2].

Note that for each vertex q ∈ Q, a coloring δ[] of G must be a bijection
from the outgoing edges of s onto the alphabet I. This allows us to define
the transition function of the unique DFA based on G and δ[] (vertices become
states). To emphasize this duality between colorings and transition functions,
we use the symbol δ for both:

1. Using square brackets, δ[e] ∈ I assigns a letter to an edge.
2. Using parentheses, δ(q, x) ∈ Q assigns a target state to a start state and

a letter.

More formally, for a coloring δ of G, we consider the DFA (Q, I, δ), where
δ(q, x) = r if and only if there is e ∈ E with s(e) = q, t(e) = r, and δ[e] = x.

Definition 2.4. Let w ∈ I? with |I| = m. A coloring δ is a w-coloring of G if
δ(q, w) = δ(r, w) for each q, r ∈ Q. By Gmw we denote the class of all digraphs
from Gm for which there exists a w-coloring.

We work with the following computational problem:

SRCW (Synchronizing road coloring with prescribed reset words)

Input: Alphabet I, digraph G ∈ G|I|, set W ⊆ I?

Output: Is there a w ∈W such that G ∈ G|I|w ?
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k\l 0 1 2 3 4 ≥ 5

1 P1 P2 P3 P4 P4 P4

2 P1 P2 P5 P5 P5 P5

3 P1 P2 P5 P5 P5 P5

4 P1 P2 P5 P5 P5 P5

≥ 5 P1 P2 P5 P5 P5 P5

Table 1: Classification of binary words of the form w = akbl with k ≥ 1, l ≥ 0

In this paper we study the restrictions of SRCW to various one-element sets
W , which means that we consider the complexity of the sets G|I|w themselves.

Restrictions are denoted by subscripts and superscripts: SRCWMk,w denotes
SRCW restricted to inputs with |I| = k, W = {w}, and G ∈ M, whereM is a
class of digraphs. If a digraph G has constant out-degree |I|, a vertex v ∈ Q is
called a sink vertex if there are |I| loops on v. By Z and SC we denote the class
of digraphs having a sink vertex and a family of strongly connected digraphs,
respectively.

Binary words are divided to the following classes as follows. The first five
classes cover words of the form akbl, as visualized in Tab. 1.

P1 =
{
ak, bk | k ≥ 0

}
,

P2 =
{
akb, bka | k ≥ 1

}
,

P3 = {abb, baa} ,
P4 =

{
abk, bak | k ≥ 3

}
,

P5 =
{
akbl, bkal | k, l ≥ 2

}
,

P6 = {a, b}? \ (P1 ∪ · · · ∪ P5) .

In our proofs we commonly assume that nonempty words start by a. The
results of the present paper are summarized in Tab. 2.

The following lemmas are simple observations concerning distances in di-
graphs:

Lemma 2.5. For each G, k and t we have

Vk(t) ⊆ Uk(t) ⊆ V≤k(t) .

Lemma 2.6. Let G = (Q,E) ∈ Gmuv with u, v ∈ I? and let δ be a uv-coloring
with δ(Q, uv) = {q}. Then

δ(Q, u) ⊆ U|v|(q) .

In the following, the symbol � is used for the polynomial-time many-to-one
reduction.
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general
digraphs

strongly
connected
digraphs

digraphs with
sink vertices

w ∈ P1 P (Cor. 4.2) P P

w ∈ P2 P (Th. 4.3) P P

w ∈ P3 NPC (Th. 4.4) P (Th. 6.7) P (Th. 5.1)

w ∈ P4 NPC ? P (Th. 5.1)

w ∈ P5 NPC NPC (Th. 6.8) NPC (Cor. 5.5)

w ∈ P6 NPC NPC (Th. 6.9) NPC (Cor. 5.5)

Table 2: Complexity of SRCW2,w according to the classification of binary words and special
classes of digraphs. NPC means NP-complete.

3. Special Satisfiability Problems

In our reductions we use two particular variants of a generalized satisfiability
problem. Let R : {0,1}p → {0,1} be a p-ary Boolean function (or equivalently
a Boolean relation). Having such R, we define the following computational task:

SAT(R)

Input: Finite set X of variables, finite set Φ ⊆ Xp of clauses.

Output: Is there an assignment ξ : X → {0,1} such that
R(ξ(z1) , . . . , ξ(zp)) = 1 for each (z1, . . . , zp) ∈ Φ?

In [21], even more general notion is introduced, concerning the problem
SAT(S) for any finite set S of boolean functions. For example, the classical
problem 3-SAT is equivalent to SAT(S) with S containing four types of clauses
- one for each possible number of negated literals. However, in this paper it is
enough to consider variants with a single type of clauses.

Specifically, we work with the following two boolean functions:

R1(x1, x2, x3, x4) = (x1 ∨ x2 ∨ x3 ∨ x4) ∧ (¬x1 ∨ ¬x2) ∧ (¬x3 ∨ ¬x4) ,

R2(x1, x2, x3, x4) = (x1 ⊕ x2) ∨ (x3 ⊕ x4) ,

where ⊕ denotes the exclusive disjunction. Let us prove, using a
straightforward simplification of the Schaefer Dichotomy Theorem [21], that
both SAT(R1) and SAT(R2) are NP-complete.

Definition 3.1. A function R : {0,1}p → {0,1} is
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• weakly negative if it is equivalent to a Horn formula,

• weakly positive if it is equivalent to a dual-Horn formula (i.e. a conjunction
of disjunctions, each having at most one negated literal),

• affine if it is equivalent to a system of linear equations over the two-element
field,

• bijunctive if it is equivalent to a formula in 2-CNF.

Theorem 3.2 (Schaefer Dichotomy Theorem). If R =
∧
iRi satisfies at least

one of the conditions below, then SAT(R) is polynomial-time decidable. Other-
wise, SAT(R) is NP-complete.

1. for all i, Ri(1, . . . ,1) = 1,
2. for all i, Ri(0, . . . ,0) = 1,
3. all Ri are weakly negative,
4. all Ri are weakly positive,
5. all Ri are affine,
6. all Ri are bijunctive.

Definition 3.3. Let R(x) = 1 for x ∈ {0,1}p. Then C ⊆ {1, . . . , n} is a change
set for R, x if

R(x⊕ eC) = 1

where eC ∈ {0,1}n, (eC)i = 1 exactly for i ∈ C.

Theorem 3.4 ([21]). A function R : {0,1}p → {0,1} is

• Affine if and only if for each x, y, z ∈ {0,1}p it holds that

if R(x) = 1, R(y) = 1, and R(z) = 1, then R(x⊕ y ⊕ z) = 1.

• Bijunctive if and only if for any x with R(x) = 1 and any change sets
C1, C2 for R, x it holds that C1 ∩ C2 is also a change set for R, x.

Corollary 3.5. SAT(R1) and SAT(R2) are NP-complete.

Proof. We just need to show that none of the conditions from Schaefer Di-
chotomy Theorem (Theorem 3.2) holds for R1 or R2. Indeed:

1. We have R1(1,1,1,1) = 0 and R2(1,1,1,1) = 0.
2. We have R1(0,0,0,0) = 0 and R2(0,0,0,0) = 0.
3. Any Horn formula is either satisfied by 0, . . . ,0 or contains a one-element

clause xj . The first case does not hold for R1, R2, and the second case
implies that xj = 1 in any satisfying assignment, which also does not hold
for R1, R2.

4. Any Horn formula is either satisfied by 1, . . . ,1 or contains a one-element
clause ¬xj . The first case does not hold for R1, R2, and the second case
implies that xj = 0 in any satisfying assignment, which also does not hold
for R1, R2.
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5. For R1 we apply Theorem 3.4 to the following assignments:

x = (1,0,0,0) ,

y = (0,1,0,0) ,

z = (0,0,0,1)

and we see that R1(x ⊕ y ⊕ z) = R1 (1,1,0,1) = 0, so R1 is not affine.
For R2 we take

x = (1,0,0,0) ,

y = (0,0,1,0) ,

z = (0,1,0,1)

and we see that R2(x⊕ y ⊕ z) = R2 (1,1,1,1) = 0, so R2 is not afine.
6. For R1 we apply Theorem 3.4 to the following setting:

x = (1,0,0,0) ,

C1 = {1, 2} ,
C2 = {1, 3} ,

hence

x⊕ eC1 = (0,1,0,0) ,

x⊕ eC2 = (0,0,1,0) ,

x⊕ eC1∩C2 = (0,0,0,0) ,

so R1 is not bijunctive. For R2 we take:

x = (1,0,0,1) ,

C1 = {1, 2, 3} ,
C2 = {2, 3, 4} ,

hence

x⊕ eC1
= (0,1,1,1) ,

x⊕ eC2
= (1,1,1,0) ,

x⊕ eC1∩C2
= (1,1,1,1) ,

which means that R2 is not bijunctive as well.
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4. SRCW in General Graphs

Lemma 4.1. Let G = (Q,E) ∈ Gm and k ≥ 0. Then G ∈ Gmak if and only if G
has a sink vertex q ∈ Q such that dG(r, q) ≤ k for each r ∈ Q.

Proof. As for the forward implication, let δ be an ak-coloring with δ
(
Q, ak

)
=

{q}. As δ
(
q, ak

)
= q, the vertex q lies on a cycle of edges labeled by a. For

each vertex r lying on this cycle, δ
(
r, ak

)
= r, hence the cycle must be a loop.

Checking that dG(r, q) ≤ k for each r ∈ Q is trivial.
As for the backward implication, we fix a tree T ⊆ E of shortest paths from

all the vertices to q, including one loop on q. A coloring δ with δ[e] = a if and
only if e ∈ T is a valid ak-coloring.

Corollary 4.2. For each w ∈ P1 (i.e. w = ak with k ≥ 0), SRCW2,w ∈ P.

Proof. For each q ∈ Q we can easily check whether q is a sink vertex and if it
is k-reachable from each r ∈ Q. According to Lemma 4.1, we answer yes if and
only if some q ∈ Q meets these conditions.

Theorem 4.3. For each w ∈ P2 (i.e. w = akb with k ≥ 1), SRCW2,w ∈ P.

Proof. For a fixed G and q ∈ Q denote

Q1 = {s ∈ Q | s has an outgoing edge leading to q} .

For each s ∈ Q1 fix an outgoing edge es leading to q. Let

T = {e ∈ E | s(e) ∈ Q1, t(e) ∈ Q1} \ {es | s ∈ Q1} ,
Q2 = {s ∈ Q1 | s lies on a cycle of edges in T} ,
Q3 = {s ∈ Q1 | there is a path in T from s to some r ∈ Q2} .

As usually, we also consider empty paths, thus Q2 ⊆ Q3. Let us prove that for
q ∈ Q the coloring δ with δ

(
Q, akb

)
={q} exists if and only if:

1. dG(s, q) ≤ k + 1 for each s ∈ Q.
2. For each s ∈ Q there exists r ∈ Q3 such that dG(s, r) ≤ k.

First, let us check the backward implication. For each r ∈ Q3, set δ[er] = b.
Then we fix a forest U ⊆ E of shortest paths from all the vertices of Q\Q3 into
Q3. Due to the second condition above, the paths within U have length at most
k. Set δ[e] = a for each e ∈ T . We have completely specified δ. Now, for any
s ∈ Q there is a prefix aj of akb such that δ

(
s, aj

)
∈ Q3 due to the edges from

U . Moreover, because each e ∈ T with s(e) ∈ Q3 has δ[e] = a, we have also
δ
(
s, ak

)
∈ Q3 using the definitions of Q2, Q3. Together, δ

(
s, akb

)
= q using the

edge er for r = δ
(
s, ak

)
.

As for the forward implication, the first condition is trivial. For the second
one, take any s ∈ Q and denote sj = δ

(
s, aj

)
for j ≥ 0. Clearly, sk ∈ Q1, but

we show also that sk ∈ Q3 and set r = sk in the second condition. Indeed,
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whenever sj ∈ Q1 for j ≥ k, we note that sj ∈ δ
(
s, ak−1

)
, thus sj+1 ∈ δ

(
s, ak

)
and thus sj+1 ∈ Q1 as well. Since j can grow infinitely, there must be a cycle
within Q1 reachable from sk, all colored with a. It remains to deduce that for
each j ≥ k, the edge from sj to sj+1 colored by a lies in T and thus sk ∈ Q3.

Indeed, if the edges outgoing from sj are not parallel, the one leading to q
must be esj and it must be colored by b because sj ∈ δ

(
Q, ak

)
. Thus, the other

outgoing edge lies in T . If the edges outgoing from sj are parallel, it makes no
difference which one is chosen to be es, and thus we can just assume that es is
colored by b and thus the other one lies in T .

Next, we present a simple reduction method for proving NP-completeness of
the problems SRCW2,abk , k ≥ 2, which covers the classes P3 and P4.

In a formula Φ = {C1, . . . , Cm}, Ci ∈ X4, 1 ≤ i ≤ m, we denote Cj =
(zj,1, zj,2, zj,3, zj,4) for each 1 ≤ j ≤ m and Φ[j, p] = i if zj,p = xi for each
1 ≤ p ≤ 4. In the figures depicting particular colorings bold lines stand for a
and dotted lines stand for b.

Theorem 4.4. For each w ∈ P3 ∪ P4 (i.e. w = abk with k ≥ 2), SRCW2,w ∈
NPC.

Proof. We perform a reduction from SAT(R1). For a given (X,Φ) with X =
{x1, . . . , xn}, Φ = {C1, . . . , Cm}, we construct a digraph G1(w,X,Φ) = (Q,E)
with |Q| = 3m+ 2n+ 3, independently of the particular value of k, see Fig. 1.
The vertices of G1(w,X,Φ) are: Cj ,C

′
j ,C
′′
j for each 1 ≤ j ≤ m, Vi,V

′
i for each

1 ≤ i ≤ n, and D0,D1,D2.

1. First, we show that for each abk-coloring δ of G1(w,X,Φ) there is a sat-
isfying assignment ξδ of Φ. The following are necessary key properties of
the coloring δ:

• D0 ∈ δ(Q, a). Indeed, if all the edges incoming to D0 were colored by
b, then we would observe that e.g. δ(V1, ab) = D0 and δ(C1, abb) =
D0. But as there is no loop on D0,D1,D2, δ

(
D0, b

i
)
6= δ

(
D0, b

i+1
)

for each j ≥ 0.

• The edges outgoing from D0,D1,D2 are colored according to some
of the variants in Fig 2. Indeed, suppose first that δ(D0, a) = D1.
Then δ(D1, b) = D2 because otherwise both possible values of δ(D2, a)
would imply that D0,D1,D2 ∈ δ(Q, a) and subsequently

∣∣δ(Q, abk)∣∣ 6=
1 for any k ≥ 0. We observe that the only remaining variants
for δ(D0, a) = D1 are (A) and (B). Symmetrically, supposing that
δ(D0, a) = D2 leads to variants (A’), (B’).

• D0 /∈ δ(Q, ab). Indeed, otherwise δ
(
D0, b

k
)

= δ
(
D0, b

k−1
)
which

contradicts with each of the variants above.

We fix the following assignment ξδ:
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1V1 V′

2V2 V′
nVn

D0

D1 D2

C1 C2

C′
1 C′′

1 C′
2 C′′

2

Cm

C′
m C′′

m

VΦ[1,2]

VΦ[1,1]

VΦ[1,4]

VΦ[1,3]

VΦ[2,2]

VΦ[2,1]

VΦ[2,4]

VΦ[2,3]

VΦ[m,2]

VΦ[m,1]

VΦ[m,4]

VΦ[m,3]

Figure 1: The digraph G1(w,X,Φ)

D0

D1 D2

D0

D1 D2

D0

D1 D2

D0

D1 D2

(A) (A′) (B) (B′)

Figure 2: Possible colorings of a part of G1(w,X,Φ)
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ξδ(xi) =

{
0 if δ(Vi, a) = D0,

1 if δ(Vi, b) = D0.
(1)

In order to check that ξδ is a satisfying assignment, we choose an arbitrary
clause Cj , 1 ≤ j ≤ m and apply the following reasoning.

• Obviously, there is i ∈ {Φ[j, 1] , . . . ,Φ[j, 4]} such that δ(Cj , ab) = Vi.
Notice also that there must be δ(Vi, b) = D0. If, for a contradiction,
δ(Vi, b) = V′i, then necessarily δ(V′i, b) = D0 and thus δ(V′i, abb) =
D0. We see that k ≥ 3, D0 ∈ δ(Q, abb), and D0 ∈ δ

(
Q, ab3

)
. Thus

δ
(
D0, b

k−2
)

= δ
(
D0, b

k−3
)
, but no loop colored by b is reachable

from D0 using edges labeled by b, which is a contradiction. Thus,
δ(Vi, b) = D0 and ξδ(xi) = 1.

• There are also i′ ∈ {Φ[j, 1] ,Φ[j, 2]} and i′′ ∈ {Φ[j, 3] ,Φ[j, 4]} such
that δ

(
C′j , a

)
= Vi′ and δ

(
C′′j , a

)
= Vi′′ . As D0 /∈ δ(Q, ab), it follows

that δ(Vi′ , b) 6= D0 and δ(Vi′′ , b) 6= D0. Thus, ξδ(xi′) = 0 and
ξδ(xi′′) = 0.

Together, we have checked that R1(ξδ(zj,1) , . . . , ξδ(zj,4)) = 1 and thus ξδ
satisfies Cj .

2. Second, from a satisfying assignment ξ of Φ we infer an abk-coloring δξ of
G1(w,X,Φ):

• The edges outgoing from D0,D1,D2 are colored according to the vari-
ant (A) above.

• For each 1 ≤ i ≤ n, we set

δξ(Vi, b) =

{
D0 if ξ(xi) = 1,

V′i otherwise,
(2)

δξ(V
′
i, b) =

{
D0 if ξ(xi) = 0,

Vi otherwise.
(3)

• For each 1 ≤ j ≤ m, the clause Cj is satisfied by ξ. Thus, there is
p ∈ {1, 2, 3, 4} such that ξ(zj,p) = 1, there is p′ ∈ {1, 2} such that
ξ(zj,p′) = 0, and there is p′′ ∈ {3, 4} such that ξ(zj,p′′) = 0. Let

δξ(Cj , a) =

{
C′j if i ∈ {1, 2} ,
C′′j if i ∈ {3, 4} ,

(4)

δξ
(
C′j , a

)
= VΦ[j,i′], (5)

δξ
(
C′′j , a

)
= VΦ[j,i′′]. (6)

We claim that for each q ∈ Q, δξ
(
q, abk

)
= D0 if k is even and δξ

(
q, abk

)
=

D1 if k is odd. This implies that
∣∣δ(Q, abk)∣∣ = 1:

• For q ∈ {D0,D1,D2} we check the claim easily.
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• If 1 ≤ i ≤ n, for q ∈ {Vi,V
′
i} it holds that δξ(q, a) = D0 or

δξ(q, abb) = D0, which implies the claim.
• For 1 ≤ j ≤ m, we know that δ(Cj , ab) = Vi with ξ(xi) = 1. Thus,
δ(Vi, b) = D0 and δ(Cj , abb) = D0.

• For q ∈
{

C′j ,C
′′
j

}
with 1 ≤ j ≤ m, we know that δ(q, a) = Vi′ with

ξ(xi′) = 0. Thus, δ(Vi′ , bb) = D0 and δ(q, abb) = D0.

5. SRCW in Graphs with Sink Vertices

Theorem 5.1. For each w ∈ P3∪P4 (i.e. w = abk with k ≥ 2), SRCWZ2,w ∈ P.

Proof. Let w = abk for k ≥ 2. Let G = (Q,E) ∈ G2 be a given digraph with
a sink vertex q ∈ Q. We suppose that Q ⊆ V G≤k+1(q) as otherwise the answer
is trivially no. Let H = {s ∈ Q | s reaches some r ∈ Vk+1(q)}. We show that
G ∈ G2

abk if and only if each s ∈ H has an outgoing edge e ∈ E with t(e) /∈ H.

1. For the forward implication, let δ be an abk-coloring of G. Now, suppose
for a contradiction that both the edges e and e′ outgoing from s0 have
t(e) , t(e′) ∈ H. Then s1 = δ(s0, a) ∈ H via some e0 ∈ {e, e′}. Let
e0, e1, . . . , ed be a path from s0 ∈ H to sd ∈ Vk+1(q). Let 0 ≤ c ≤ d be the
largest number with δ[ec] = a (we know that at least 0 has this property).
Then δ

(
s(ec) , ab

i
)
∈ Vk+1(q) for some i ≥ 0, which contradicts the fact

that δ
(
s(ec) , ab

k
)

= q.
2. For the backward implication, let U ⊆ E be a set containing for each
s ∈ H exactly one edge with s(e) = s and t(e) /∈ H. Moreover, let T ⊆ E
be a tree of the shortest paths from the vertices of Q\H to the sink vertex
q. Consider the following coloring:

δ[e] =

{
a if s(e) ∈ H, e ∈ U or s(e) /∈ H, e /∈ T,
b if s(e) /∈ H, e ∈ T or s(e) ∈ H, e /∈ U.

This is a valid construction as each s ∈ H and each s /∈ H has exactly one
outgoing edge in U or T respectively. From the definition of H it follows
that no edge starting within Q\H ends in H. Thus, the construction of δ
implies δ(Q, a) ⊆ Q\H.
Because Vk+1(q) ⊆ s(T ), T has height of at most k and thus δ

(
Q\H, bk

)
=

{q} and δ
(
Q, abk

)
= {q}.

Lemma 5.2. Let v ∈ I? be a factor of w ∈ I?, that is w = u1vu2 for some
u1, u2 ∈ I∗. Then SRCWZ2,v � SRCWZ2,w.

Proof. Suppose that w = u1vu2. Then the reduction takes a digraphG = (Q,E)
with a sink vertex q ∈ Q and produces G′ = (Q′, E′), which is obtained from G
in a following way:
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1. For each s ∈ Q, add a chain of |u1| vertices with consecutive pairs of
parallel edges, ending in s.

2. Remove the two loops on q.
3. Add a chain of |u2| vertices with consecutive pairs of parallel edges, start-

ing in q. The last vertex of the chain is the new sink vertex q′.

If δ is a v-coloring of G, it corresponds to a unique coloring δ′ of G′. For
each s ∈ Q′ and t = δ′(s, u1) we have t ∈ Q or t is some of the vertices added
in the step (3) above. In both cases it follows that δ(t, vu2) = q′. On the other
hand, if δ′ is a w-coloring of G′, it corresponds to a unique coloring δ of G. Each
s ∈ Q lies in δ′(Q′, u1), so for each s ∈ Q we have δ′(s, vu2) = q′. As each path
from s to q′ contains q, we have δ(s, v′) = q for some prefix v′ of vu2. As each
path from q to q′ is of length at least |u2|, we have |v′| ≤ |v| and thus v′ is a
prefix of v. It follows that δ(s, v′) = q and δ(s, v) = q.

Theorem 5.3. SRCWZ2,aabb ∈ NPC.

Proof. We perform a reduction from SAT(R2). For a given (X,Φ) with X =
{x1, . . . , xn}, Φ = {C1, . . . , Cm}, we construct a digraph G2(X,Φ) = (Q,E)
with |Q| = 8m + 5n + 1. The vertices of G2(X,Φ) are Cj,1, . . . ,Cj,8 for each
1 ≤ j ≤ m, V1, . . . ,Vn, and D1,D2,D3,D4, where D4 is a sink vertex, see Fig.
3.

1. First, we show that for each aabb-coloring δ of G2(X,Φ) there is a satis-
fying assignment ξδ of Φ. Let

ξδ(xi) =

{
0 if δ(Vi,1, a) = D4,

1 if δ(Vi,1, b) = D4.

In order to check that ξδ is a satisfying assignment, we choose an arbitrary
clause Cj , 1 ≤ j ≤ m and continue with the following steps:

• Observe that for each 1 ≤ i ≤ n, Vi /∈ δ(Q, aa). Indeed, if Vi ∈
δ(Q, aa) ⊆ δ(Q, a), then surely either D2 or D3 lies in δ(Q, aabb),
which is a contradiction.

• From the shape of a clause gadget it is obvious that some r ∈
{Cj,3,Cj,4} lies in δ(Q, aa). If r = Cj,3, then for some s, s′ ∈
{Cj,5,Cj,6} we have s ∈ δ(Q, aaa) ⊆ δ(Q, a) and s′ ∈ δ(Q, aab).
From the observation (a) it follows that δ(s, a) /∈ {Vi,1 | 1 ≤ i ≤ n},
and thus δ(s, a) = D4. Moreover, it is obvious that δ(s′, b) = D4.
Thus, δ(s, b) = Vi,1, Vi,1 ∈ δ(Q, aab) and δ(s′, a) = Vi′,1 for xi, xi′ ∈
{zj,1, zj,2}. It follows that δ(Vi,1, b) = D4 and δ(Vi′,1, a) = D4 and
thus ξ(zj,1) 6= ξ(zj,2). If r = Cj,4, the situation is symmetric and we
obtain ξ(zj,3) 6= ξ(zj,4). Together, R2(ξδ(zj,1) , . . . , ξδ(zj,4)) = 1 and
ξδ satisfies Cj .

2. Second, from a satisfying assignment ξ of Φ we infer an aabb-coloring δξ
of G(X,Φ).
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V1 V2 Vn

C1,1

C1,2

C1,3 C1,4

C1,6 C1,7 C1,8C1,5

D4

VΦ[1,2] VΦ[1,3] VΦ[1,4]VΦ[1,1]

Cm,1

Cm,2

Cm,3 Cm,4

Cm,6 Cm,7 Cm,8Cm,5

D4

VΦ[m,2] VΦ[m,3] VΦ[m,4]VΦ[m,1]

D1 D2 D3 D4

Figure 3: The digraph G2(X,Φ)
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Cj,1

Cj,2

Cj,3 Cj,4

Cj,6 Cj,7 Cj,8Cj,5

D4

VΦ[m,2] VΦ[m,3] VΦ[m,4]VΦ[m,1]

Cj,1

Cj,2

Cj,3 Cj,4

Cj,6 Cj,7 Cj,8Cj,5

D4

VΦ[m,2] VΦ[m,3] VΦ[m,4]VΦ[m,1]

Cj,1

Cj,2

Cj,3 Cj,4

Cj,6 Cj,7 Cj,8Cj,5

D4

VΦ[m,2] VΦ[m,3] VΦ[m,4]VΦ[m,1]

Cj,1

Cj,2

Cj,3 Cj,4

Cj,6 Cj,7 Cj,8Cj,5

D4

VΦ[m,2] VΦ[m,3] VΦ[m,4]VΦ[m,1]

(A) (B)

(C) (D)

Figure 4: Possible colorings of parts of G2(X,Φ)
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• For each 1 ≤ j ≤ m some of the following possibilities must hold:
(A) ξ(zj,1) = 0 and ξ(zj,2) = 1,
(B) ξ(zj,1) = 1 and ξ(zj,2) = 0,
(C) ξ(zj,3) = 0 and ξ(zj,4) = 1,
(D) ξ(zj,3) = 1 and ξ(zj,4) = 0,

Let δξ be defined on edges outgoing from Cj,1, . . . ,Cj,8 according to
a suitable variant depicted in Fig. 4.

• For each 1 ≤ i ≤ n, let δ(Vi,1, a) = D4 if ξ(xi) = 0, and δ(Vi,1, b) =
D4 otherwise.

This defines δξ on all edges that are not parallel. It remains to verify that
δξ is an aabb-coloring.

• Any path of length 4 from D1,D2,D3,D4 and V1, . . . ,Vn ends in D4.

• Take 1 ≤ j ≤ m and check which variant was used for a coloring of
Cj,1, . . . ,Cj,8. If (A) is the case, we have:

– δξ(r, aabb) = D4 holds immediately for r ∈ {Cj,1,Cj,3,Cj,4,Cj,6,Cj,7,Cj,8}.
– δξ(Cj,2, aab) = Vi,1, where zj,2 = xi and ξ(xi) = 1. Thus
δξ(Vi,1, b) = D4 and δξ(Cj,2, aabb) = D4.

– δξ(Cj,5, a) = Vi′,1, where zj,1 = xi′ and ξ(xi′) = 0. Thus
δξ(Vi,1, a) = D4 and δξ(Cj,5, aabb) = D4.

If (B), (C), or (D) is the case, the situation is symmetrical.

Theorem 5.4. For each k ≥ 1 SRCWZ2,abka ∈ NPC.

Proof. We perform a reduction from SAT(R1). For a given (X,Φ) with X =
{x1, . . . , xn}, Φ = {C1, . . . , Cm}, we construct a digraph G3(X,Φ) = (Q,E)
with |Q| = 3m+(k + 2)n+1, having a sink vertex D. The vertices of G3(X,Φ)
are Cj ,C

′
j ,C
′′
j for each 1 ≤ j ≤ m, Vi,j for each 1 ≤ i ≤ n, 1 ≤ j ≤ k + 2 and

D which is a sink vertex, see Fig. 5.

1. First, we show that for each abka-coloring δ of G3(X,Φ) there is a satis-
fying assignment ξδ of Φ. Let

ξδ(xi) =

{
0 if δ(Vi,k, b) = D,

1 if δ(Vi,k, a) = D.

In order to check that ξδ is a satisfying assignment, we choose an arbitrary
clause Cj , 1 ≤ j ≤ m and apply the following reasoning:

• Obviously, there is i ∈ {Φ[j, 1] , . . . ,Φ[j, 4]} such that δ(Cj , ab) = Vi,1

and thus also δ
(
Cj , ab

k
)

= Vi,k and δ(Vi,k, a) = D. We get ξδ(xi) =
1.
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C1 C2

V1,2

V1,k

C′
1 C′′

1 C′
2 C′′

2

Cm

C′
m C′′

m

V1,k+1

V1,k+2

V2,2

V2,k

V2,k+1

V2,k+2

Vn,2

Vn,k

Vn,k+1

Vn,k+2

V1,1 V2,1 Vn,1

D

VΦ[1,2]

VΦ[1,1]

VΦ[1,4]

VΦ[1,3]

VΦ[2,2]

VΦ[2,1]

VΦ[2,4]

VΦ[2,3]

VΦ[m,2]

VΦ[m,1]

VΦ[m,4]

VΦ[m,3]

Figure 5: The digraph G3(X,Φ)
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• There are also i′ ∈ {Φ[j, 1] ,Φ[j, 2]} and i′′ ∈ {Φ[j, 3] ,Φ[j, 4]} such
that δ

(
C′j , a

)
= Vi′,1 and δ

(
C′′j , a

)
= Vi′′,1. Thus also δ

(
C′j , ab

k−1
)

=

Vi′,k and δ
(
C′′j , ab

k−1
)

= Vi′′,k. The only paths of length 2 from Vi′,k

and Vi′′,k to D use the direct edge to D. Thus, δ(Vi′,k, b) = D and
δ(Vi′′,k, b) = D. It follows that ξδ(xi′) = 0 and ξδ(xi′′) = 0.

Together, R1(ξδ(zj,1) , . . . , ξδ(zj,4)) = 1 and ξδ satisfies Cj .
2. Second, from a satisfying assignment ξ of Φ we infer an abka-coloring δξ

of G3(X,Φ):

• For each 1 ≤ i ≤ n, we set

δξ(Vi,k, a) =

{
D if ξ(xi) = 1,

Vi,k+1 otherwise,

• For each 1 ≤ j ≤ m, the clause Cj is satisfied by ξ. Thus, there is p ∈
{1, 2, 3, 4} such that ξ(zj,p) = 1, there is p′ ∈ {1, 2} such that ξ(zj,p′) = 0,
and there is p′′ ∈ {3, 4} such that ξ(zj,p′′) = 0. Let

δξ(Cj , a) =

{
C′j if i ∈ {1, 2} ,
C′′j if i ∈ {3, 4} ,

δξ
(
C′j , a

)
= VΦ[j,i′],

δξ
(
C′′j , a

)
= VΦ[j,i′′].

We claim that for each s ∈ Q, δξ
(
s, abka

)
= D:

• For s = D and s ∈ {Vi,1, . . . ,Vi,k+2}, 1 ≤ i ≤ n, each path of length k+ 2
starting in s ends in D.

• For 1 ≤ j ≤ m we know that δ(Cj , ab) = Vi,1, δ
(
Cj , ab

k
)

= Vi,k with
ξ(xi) = 1. Thus, δ(Vi,k, a) = D and δ

(
Cj , ab

ka
)

= D.

• For s ∈
{

C′j ,C
′′
j

}
with 1 ≤ j ≤ m we know that δ(s, a) = Vi′,1, δ

(
s, abk−1

)
=

Vi′,k with ξ(xi′) = 0. Thus, δ(Vi′,k, b) = D and δ
(
s, abka

)
= D.

Corollary 5.5. For each w ∈ P5 ∪ P6, SRCWZ2,w ∈ NPC.

Proof. Observe that each w ∈ P5 has aabb as a factor, and each w ∈ P6 has a
factor of the form abka with k ≥ 1. Accordingly, we just apply Theorems 5.3
and 5.4.
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6. SRCW for Strongly Connected Graphs

Next, we deal with strong connectivity. Before presenting a polynomial-
time algorithm for the case of w = abb (i.e. w ∈ P3), we introduce a technical
definition and five simple lemmas that will be also used later in the proofs of
NP-completeness.

Definition 6.1. Let w ∈ I? and G ∈ G|I|. A w-coloring δ of G is an exact
w-coloring if q /∈ δ(Q, v) for each proper non-empty prefix v of w, where q =
δ(Q,w).

Lemma 6.2. Let w = abk and G ∈ G2. Then G has an exact w-coloring if
and only if there is q ∈ Q such that each s ∈ Q has an outgoing edge ending in
Vk(q).

Proof. First, fix an exact abk-coloring δ with δ
(
Q, abk

)
= {q}. Clearly (due to

Lemma 2.6), no e ∈ E with δ[e] = a has t(e) ∈ V≥k+1(q). Let 0 ≤ m ≤ k be
the least number such that some e ∈ E with δ[a] has t(e) ∈ Vm(q). Each vertex
r ∈ Vi(q) for 1 ≤ i ≤ m has an outgoing edge ending in Vi−1(q), and due to
minimality of m all these edges are colored by b. It follows that q ∈ δ(Q, abm).
As δ is exact, we get m = k. As each s ∈ Q has an outgoing edge labeled by a,
each s ∈ Q has an outgoing edge leading to Vk(q).

Second, let G and q ∈ Q meet the key condition. For each s ∈ Q we choose
some e ∈ E with s(e) = s, t(e) ∈ Vk(q) and set δ[e] = a. Then δ(Q, a) ⊆ Vk(q).
For each 1 ≤ i ≤ k, each s ∈ Vm(q) has an outgoing edge ending in Vi−1(q) and
these edges are labeled by b. Thus, δ

(
Q, abk

)
= {q}.

Lemma 6.3. Let G ∈ G2
abk∩SC and let δ be a non-exact coloring with δ

(
Q, abk

)
=

{q}. Then for each r ∈ Q there is 0 ≤ d ≤ k with r ∈ δ
(
Q, abd

)
.

Proof. Choose r ∈ Q and fix a shortest path e1, . . . , eh from s(e1) = q to t(eh) =
r. Let 1 ≤ i ≤ h be the greatest number with δ[ei] = a.

• If there is no such i, for each j > h denote by ej the unique edge with
s(ej) = t(ej−1) and δ[ej ] = b. Let h ≥ h be the least number such that
eh+1 ∈

{
e1, . . . , eh

}
. Informally, we have elongated the path labeled by b

and reached a cycle. As δ is non-exact, let abl with l ≥ 0 be the nonempty
proper prefix of w with q ∈ δ

(
Q, abl

)
. It follows that δ

(
q, bk−l

)
= q, thus

q lies on a cycle labeled by b and thus t
(
eh
)

= q and h ≤ k − l. We get
r ∈ δ

(
Q, abl+h

)
and d = l + h ≤ k.

• If i < h − k, we get δ
(
s(ei) , ab

k
)

= t(ei+k) and thus t(ei+k) = q. This is
a contradiction as q does not lay on a shortest path from q to r.

• If i ≥ h− k, we get δ
(
s(ei) , ab

h−i) = t(eh) = r and d = h− i ≤ k.

Lemma 6.4. Let G ∈ G2
abk∩SC and let δ be a non-exact coloring with δ

(
Q, abk

)
=

{q}. Then V≥k+1(q) = ∅.
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Proof. For a contradiction, let r ∈ V≥k+1(q). According to Lemma 6.3, suppose
that r ∈ δ

(
Q, abd

)
for 0 ≤ d ≤ k. This easily contradicts Lemma 2.6 as there is

no path of length at most k from r to q.

Lemma 6.5. Let G ∈ G2
abk∩SC and let δ be a non-exact coloring with δ

(
Q, abk

)
=

{q}. Let m ≤ k and s ∈ Vm(q). Then s /∈ δ
(
Q, bk−m+1

)
.

Proof. For a contradiction, let δ
(
r, bk−m+1

)
= s for s ∈ Vm(q). According to

Lemma 6.3, suppose that r ∈ δ
(
Q, abd

)
for d ≤ k and thus s ∈ δ

(
Q, abd+k−m+1

)
.

Lemma 2.6 implies that s ∈ V≤m−d−1(q). However, V≤m−d−1(q) ∩ Vm(q) = ∅,
so we get a contradiction.

Lemma 6.6. Let G ∈ G2
abk∩SC and let δ be a non-exact coloring with δ

(
Q, abk

)
=

{q}. Then Vk(q) ⊆ δ(Q, a).

Proof. Choose r ∈ Vk(q). According to Lemma 6.3, suppose that r ∈ δ
(
Q, abd

)
for d ≤ k. If d > 0, we get a contradiction with Lemma 2.6 (there is no path of
length at most k − 1 from r to q). Thus, d = 0 and r ∈ δ(Q, a).

Theorem 6.7. For each w ∈ P3 (i.e. w = aab) SRCWSC2,w ∈ P.

Proof. For each q ∈ Q we apply the following procedure. First, we use Lemma
6.2 to check whether δ(Q, abb) = {q} for some exact abb-coloring δ. If not,
we will look for a non-exact one. If V≥3(q) 6= ∅, according to Lemma 6.4 we
can answer no. Otherwise, Q ⊆ V≤2(q). We check whether q has a loop. If
so, Lemma 4.1 says that there is a coloring δ with δ(Q, bb) = {q} and thus
δ(Q, abb) = {q}, we answer yes. So, assume that q has no loop.

Any coloring δ that may remain to be found has q ∈ δ(Q, a). To see this,
assume the opposite and choose an arbitrary e ∈ E with δ[e] = a, thus t(e) 6= q.
We have t(e) /∈ V1(q) because each t ∈ V1(q) has an outgoing edge leading to q
colored by b. Hence δ(t, ab) = q, but q has no loop. Thus, each e with δ[e] = a
has t(e) ∈ V2(q) and there is an exact coloring according to Lemma 6.2, which
is a contradiction.

Using the observation above and Lemma 6.6 we obtain {q}∪V2(q) ⊆ δ(Q, a)
for any possible remaining coloring δ. We encode the structure of G to a propo-
sitional formula Ψ with |E| variables, xe for each e ∈ E. Let Ψ be the conjuction
of the following subformulas:

1) xe ⊕ xf for each e, f ∈ E with s(e) = s(f)

2) xe for each e ∈ E with t(e) ∈ V2(q)

3) xe → xf for each path e, f ∈ E with t(f) = q

4) xe ∨ xf for each path e, f ∈ E with t(e) 6= q, t(f) 6= q

This encoding can be done in a polynomial time, since the length of the
formula is bounded by the polynomial of |E| and |Q|: the number of formulas
of type 1) is O(|Q|), because each formula is related to some state. The number
of formulas of type 2) is O(|E|), as each of them is related to some edge. The
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number of formulas of type 3) and 4) is O(|E|2), since they represent different
paths of length 2. So, in total, the number of subformulas is O(|Q|+ |E|2).

We show that Ψ is satisfiable if and only if there exists an abb-coloring of G
with the properties enforced so far. Specifically, assignments of Ψ correspond
to the colorings of G in the sense that a variable xe stands for the proposition
δ[e] = a.

First, let δ be an abb-coloring of G. Let ξ be the assignment with ξ(xe) = 1
if and only if δ[e] = a.

1. The formulas of (1) are satisfied as δ is a coloring.
2. The formulas of (2) hold due to Lemma 6.5 with m = k = 2.
3. As for formulas of (3), let ξ(xe) = 1 and ξ(xf ) = 0. Thus, δ[e] = a,
δ[f ] = b, and q ∈ δ(Q, ab), which contradicts the assumption of no loop
on q.

4. As for the formulas of (4), let ξ(xe) = ξ(xf ) = 0 and thus δ[e] = δ[f ] = b.
According to Lemma 6.3 s(e) ∈ δ

(
abd
)
for d ≤ 2. If d ≤ 1, we get t(f) ∈

δ(Q, abb) or t(e) ∈ δ(Q, abb), which contradicts with the abb-coloring of δ.
If d = 2 we get s(e) ∈ δ(Q, abb) and thus s(e) = q. But we have enforced
that q ∈ δ(Q, a), thus t(f) ∈ δ(Q, abb), which is again a contradiction.

Second, let ξ be a satisfying assignment of Ψ. Let δ[e] = a if and only if
ξ(xe) = 1. Choose s ∈ Q and denote t = δ(s, ab). Let e be the incoming edge
of t with δ[e] = b.

1. Suppose that t ∈ V1(q). If both outgoing edges of t lead to q , we have
δ(t, b) = q. If t has an outgoing edge f not leading to q, according to
the fact that the formulas (4) are satisfied we get δ[f ] = a. As t has
necessarily an outgoing edge leading to q, that edge is colored by b and
we get δ(t, b) = q.

2. If t ∈ V2(q), the fixed edge e with δ[e] = b incomes to V2(q), which
contradicts the fact that the formulas (2) are satisfied.

3. If t = q, we have δ[e] = a and δ[f ] = b for f with t[f ] = q, ξ(xe) = 1
and ξ(xf ) = 0. This contradicts the assumption that the formulas (3) are
satisfied.

Theorem 6.8. For each w ∈ P5 (i.e. w = akbl with k, l ≥ 2) SRCWSC2,w ∈ NPC.

Proof. We perform a reduction from SAT(R1) by constructing a strongly con-
nected digraph G4(w,X,Φ) that includes a structure similar to the digraph
G1(w,X,Φ) from the proof of Theorem 4.4.

Specifically, vertices of G4(w,X,Φ) = (Q,E) are:

1. Cj ,C
′
j ,C
′′
j for each 1 ≤ j ≤ m and Vi,V

′
i for each 1 ≤ i ≤ n (by Q1 ⊆ Q

we denote the set of these vertices and we set α = 3m+ 2n = |Q1|),
2. D0, . . . ,Dl−2, E0, . . . ,El−1, B,
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D0

D1

Dl−4

Dl−3

El−1El−2E0 E1B Dl−2

Fα,1

Fα-1,k-3

Fα,k-2Fα,k-3Hα

Hα−1

F2,1

F1,k-3F1,1

H2

H1 F1,k-2

F2,k-2F2,k-3

Fα-1,k-2Fα-1,1

Q1

Figure 6: The digraph G4(w,X,Φ)
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3. Hi, Fi,j for each 1 ≤ i ≤ α and 1 ≤ j ≤ k − 2. From each Fi,k−2, both
outgoing edges lead to ti, where t1, . . . , tα is a fixed enumeration of all
vertices from Q1.

The edges are defined in Fig. 6. For small values of k, l, some of the depicted
vertices and edges are not present: If l = 2, we have D0 = Dl−2 and the outgoing
edges of this vertex lead to El−1,B. If k = 2, no Fi,j exists and each Hi has an
outgoing edge leading directly to ti.

First, suppose that G4(w,X,Φ) has a w-coloring δ. The following are nec-
essary properties of any such coloring:

1. It holds that δ(Q,w) = {Dl−2}. Indeed:

• From F1,1, only vertices from Q1, {D0, . . . ,Dl−2}and {El−1} are pos-
sibly reachable by paths of length (k + l).

• From E0, no vertex from Q1 nor {D0, . . . ,Dl−3} is reachable by such
paths.

• From H1, El−1 is not reachable by such paths.

2. Each Hi for 1 ≤ i ≤ α has δ(Hi, a) = Fi,1. Indeed, in the opposite case,
Lemma 2.6 requires H(i+1) mod α ∈ V≤k+l−1(q), which is false.

3. It follows that Q1 ⊆ δ
(
Q, ak−1

)
and thus δ

(
Q1, ab

l
)

= {Dl−2}.

As in the proof of Theorem 4.4, there is no loop on Dl−2, thus δ
(
D0, b

l−1
)
6=

Dl−2 and D0 /∈ δ(ab). The situation within Q1 is similar to the one from the
proof of Theorem 4.4 and we can use the construction (1) of an assignment ξ
and employ literally the same arguments to show that ξ satisfies Φ.

Second, suppose that ξ is a satisfying assignment of Φ. Then, a w-coloring
δξ is constructed as follows:

1. The edges outgoing from Q1 are colored according to (2)...(6) as in the
proof of Theorem 4.4.

2. The other edges are colored according to Fig. 7.

Observe that δ
(
Q, ak−1

)
⊆ Q1∪{D0,B,E0}, while obviously δ

(
{D0,B,E0} , abl

)
=

{Dl−2} and for each s ∈ Q1 we have δ(s, a) = D0 or δ(s, abb) = D0 accord-
ing to the final part of proof of Theorem 4.4. It remains to observe that
δ
(
D0, b

l
)

= Dl−2 and δ
(
D0, b

l−2
)

= Dl−2.

Theorem 6.9. For each w ∈ P6, SRCWSC2,w ∈ NPC.

Proof. For each w ∈ P6 we perform a reduction from the NP-complete problem
SRCWZ2,w (see Corollary 5.5) to SRCWSC2,w. As usual, we suppose that w starts
with a. In certain parts of the following general construction we distinguish two
cases:

(A) w ends with a,
(B) w ends with b.
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D0

D1

Dl−4

Dl−3

El−1El−2E0 E1B Dl−2

Fα,1

Fα-1,k-3

Fα,k-2Fα,k-3Hα

Hα−1

F2,1

F1,k-3F1,1

H2

H1 F1,k-2

F2,k-2F2,k-3

Fα-1,k-2Fα-1,1

Figure 7: A part of a coloring of G4(w,X,Φ)

G1

F2,1

Fα,βFα,β−1Fα,1

F1,βF1,β−1F1,1

F2,βF2,β−1H2

Hα

H1

D1D2D|w| D|w|−1

q

Figure 8: The digraph G5(w,G1), variant (A)
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G1

F2,1

Fα,βFα,β−1Fα,1

F1,βF1,β−1F1,1

F2,βF2,β−1H2

Hα

H1

D1D2D|w|E1E|w| E2

q

Figure 9: The digraph G5(w,G1), variant (B)

Let G1 = (Q1, E1) be an instance of SRCWZ2,w with a sink vertex q ∈ Q1.
Denote α =|Q1| and fix the unique γ, β ≥ 1 such that aγbβa is a prefix of
w. As w ∈ P6, the existence of γ and β is guaranteed. We build a digraph
G5(w,G1) = (Q,E) by removing one of the loops on q in G1 and adding certain
vertices and edges to the resulting digraph. The resulting structure ofG5(w,G1)
depends on which of the cases (A), (B) is met by w.

1. In any case we add vertices Hi, Fi,j for each 1 ≤ i ≤ α and 1 ≤ j ≤ β.
2. In the case (A) we add vertices D1, . . . ,D|w|.
3. In the case (B) we add the vertices D1, . . . ,D|w| and E1, . . . ,E|w|.

See Figures 8 and 9.
First, assume that G5(w,G1) has a w-coloring δ. Except for loops on q, each

edge of E1 is present in E, so δ induces a coloring δ1 of G1. In G5(w,G1), only
the vertices q, D1, . . . ,D|w| are |w|-reachable from q. Thus δ(Q,w) = {r}, where
r is one of these vertices. From the structure of G5(w,G1) it follows easily that
for each s ∈ Q1 there is a prefix w′ of w such that δ(s, w′) = q. This implies
that δ1(Q,w) = {q}, i.e. δ1 is a w-coloring of G1.

Second, assume that G1 has a w-coloring δ1. We extend δ1 to a coloring δ
of G5(w,G1) as follows:

• The edges outgoing from Hi, Fi,j , 1 ≤ i ≤ α, 1 ≤ j ≤ β are colored
according to Fig. 10.

• The edges outgoing from D1, . . . ,D|w| (and from E1, . . . ,E|w| if used) are
colored according to Figures 11 and 12.
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G1

F2,1

Fα,βFα,β−1Fα,1

F1,βF1,β−1F1,1

F2,βF2,β−1H2

Hα

H1

q

Figure 10: A coloring of a part of G5(w,G1)

H1

D1D2D|w| D|w|−1

q

Figure 11: A coloring of a part of G5(w,G1) in the case (A)

H1

D1D2D|w|E1E|w| E2

q

Figure 12: A coloring of a part of G5(w,G1) in the case (B)
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Observe that in the case (A) δ(q, u) = q for any u ending with a and in the
case (B) δ(q, u) = q for any uv ending with b. Together, for any suffix u of w
we have δ(q, u) = q.

Finally, choose any s ∈ Q.

• If s ∈ Q1, there is the shortest prefix v of w with δ(s, v) = q, so we can
easily use the above observation.

• If s = Di for 1 < i < |w| and (A) is the case, we get δ(s, a) = q and use
the above observation.

• If s = Di or s = Ei for 1 < i < |w| and (B) is the case, we get δ(s, aγb) ∈
{q,E2} and δ

(
s, aγbβa

)
= D1. As w ends by b, we easily see that δ(s, v) =

D0 for a prefix v of w, and conclude using the above observation.

• If s = Hi or s = Fi,j for 1 ≤ i ≤ α, 1 ≤ j ≤ β, we see that δ
(
s, aγbβa

)
= q

and use the above observation.

Conclusion

In this paper we investigated the complexity issues for a road-coloring version
of a synchronizing problem parameterized by a given word: "Given an admissible
graph and a word w ∈ I?, is there a coloring such that w is a reset word of the
resulting automaton?". Notice that the "classical" version of this problem:
"Given an automaton A and a word w ∈ I∗ check if w is a synchronizing word
for A" is obviously in P, as we just need to find whether δ(Q,w) is a singleton.

In a road-coloring version of this problem things look different. For some
words the problem remains in P, but for a broad class of words it become NP-
complete. This means that the road-coloring versions are usually much harder
than their original "automata" versions. The other interesting thing is that the
complexity may depend on whether we deal with strongly connected digraphs
or not (see Theorems 4.4 and 6.7).

We were not able to find the complexity in one case (w ∈ P4 for strongly
connected digraphs), so the problem remains open. Nevertheless, the results
presented in this paper show that the world of the road-coloring types of prob-
lems is much more complicated than in the case of classical synchronization of
finite automata and full of unexpected, surprising results.
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