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Abstract. First, we show that universality and other properties of gen-
eral jumping finite automata are undecidable, which answers questions
asked by Meduna and Zemek in 2012 [12]. Second, we close a study
started by Černo and Mráz in 2010 [3] by proving that a clearing restart-
ing automaton using contexts of length two can accept a binary non-
context-free language.

1 Introduction

In 2012, Meduna and Zemek [12,13] introduced general jumping finite automata
as a model of discontinuous information processing in modern software. A gen-
eral jumping finite automaton (GJFA) is described by a finite set Q of states, a
finite alphabet Σ, a finite set R of rules from Q×Σ∗ ×Q, an initial state q0 ∈ Q,
and a set F ⊆ Q of final states. In a step of computation, the automaton switches
from a state r to a state s using a rule (r, v, s) ∈ R and deletes a factor equal to v
from any part of the input word. A rule (r, v, s) and an occurrence of the factor v
are chosen nondeterministically (in other words, the read head can jump to any
position). A word w ∈ Σ∗ is accepted if the GJFA can reduce w to the empty
word while passing from the initial state to an accepting state. The boldface
term GJFA refers to the class of languages accepted by GJFA. The initial work
[12,13] deals mainly with closure properties of GJFA and its relations to clas-
sical language classes (the publications [12,13] contain flaws, see [17]). It turns
out that the class GJFA is not closed under operations related to continuous
processing (concatenation, Kleene star, homomorphism, inverse homomorphism,
shuffle) nor some Boolean closure operations (complementation, intersection).
The class is incomparable with both regular and context-free languages. It is a
proper subclass of both context-sensitive languages and of the class NP, while
there exist NP-complete GJFAlanguages (see [5], which is an extended version
of [6]).

On the other hand, the concept of restarting automata [10,14] is motivated by
reduction analysis and grammar checking of natural language sentences. In 2010,
Černo and Mráz [3] introduced a subclass named clearing restarting automata
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(cl-RA) in order to describe systems that use only very basic types of reduction
rules (see also [2]). Clearing restarting automata may delete factors according
to contexts and endmarks, but, unlike GJFA and classical restarting automata,
they are not controlled by states and rules. A key property of a cl-RA is the
maximum length k of context used. For k ≥ 0, a k-clearing restarting automaton
(k -cl-RA) is described by a finite alphabet Σ and a finite set I of instructions of
the form (uL, v, uR), where v ∈ Σ∗, uL ∈ Σk∪¢Σk−1, and uR ∈ Σk∪Σk−1$. The
words uL, uR specify the left and right context for consuming a factor v, while ¢
and $ stand for the left and right end of input, respectively. A word is accepted
by a cl-RA if it may be completely consumed using a series of instructions.
The class of languages accepted by cl-RA is not closed under complementation,
intersection, or union [3]. It forms a superset of regular languages, a subset of
context-sensitive languages, and is incomparable with context-free languages [3].

Tough both the formalisms are defined as acceptors, they may be equiva-
lently treated as generative systems. Moreover, they share important properties
with insertion systems [16] (possibly graph-controlled [1]) and semi-contextual
grammars [15] (possibly using regular control without appearance checking [11]),
as we briefly discuss in the conclusion. The present paper consists of two main
parts:

In Sect. 3 we show that, given a GJFA M with an alphabet Σ, it is undecid-
able whether M accepts the universal language Σ∗. In other words, universality
of GJFA is undecidable. As a direct consequence, the more general problems
of equivalence and inclusion are undecidable for GJFA as well. Decidability of
these tasks was listed as an open problem in [12,13].

In Sect. 4 we deal with expressive power of cl-RA with short contexts and
small alphabets, as it was addressed in [3]. The authors showed that a language
accepted by a 2 -cl-RA may not be context-free, but the example automata
required at least six-letter alphabets, so they asked what is the least sufficient
alphabet size. We provide a binary example, which forms a tight bound.

2 Preliminaries

We use the notion of insertion as it was defined, e.g., in [4,7,9]:

Definition 1. Let K,L ⊆ Σ∗ be languages. The insertion of K to L is

L ← K = {u1vu2 | u1u2 ∈ L, v ∈ K} .

More generally, for each k ≥ 1 we denote

L ←k K =
(
L ←k−1 K

) ← K,

L ←∗ K =
⋃

i≥0

L ←i K,

where L ←0 K stands for L. In expressions with ← and ←∗, a singleton set {w}
may be replaced by w.
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A chain L1 ← L2 ← · · · ← Ld of insertions is evaluated from the left, e.g.,
L1 ← L2 ← L3 means (L1 ← L2) ← L3. The empty word is denoted by ε.

As described above, a GJFA is a quintuple M = (Q,Σ,R, q0, F ). For a rule
(r, v, s) ∈ R with r, s ∈ Q, the word v ∈ Σ∗ is called the label of the rule.
A sequence

(r1, v1, s1) , (r2, v2, s2) , . . . , (rk, vk, sk)

of rules from R is a path if k ≥ 1 and si = ri+1 for 1 ≤ i ≤ k − 1. The
sequence v1, v2, . . . , vk is the labeling of the path. The path is accepting if r1 = q0
and sk ∈ F . The original definition [12,13] of the language L(M) accepted
by M is based on configurations that specify positions of the read head (i.e.,
starting positions of the factor to be erased in the next step). For our proofs, this
type of configurations is useless, whence we directly use the following generative
characterization [17, Corollary 1] of L(M) as a definition:

Definition 2. Let M = (Q,Σ,R, s, F ) be a GJFA and w ∈ Σ∗. Then w ∈ L(M)
if and only if w = ε and s ∈ F , or

w ∈ ε ← vd ← vd−1 ← · · · ← v2 ← v1, (1)

where d ≥ 1 and v1, v2, . . . , vd is a labeling of an accepting path in M .

If a GJFA M = (Q,Σ,R, s, F ) is clear, we write (r, w) � (s, u) for r, s ∈ Q and
u, v ∈ Σ∗ if w ∈ u ← v for some (r, v, s) ∈ R.

In the case of clearing restarting automata we include the original definition,
which builds on context rewriting systems [3]:

Definition 3. For k ≥ 0, a k-context rewriting system is a tuple M = (Σ,Γ, I),
where Σ is an input alphabet, Γ ⊇ Σ is a working alphabet not containing the
special symbols ¢ and $, called sentinels, and I is a finite set of instructions of
the form

(uL, v → t, uR) ,

where uL is a left context, uL ∈ Γ k ∪ ¢Γ k−1, uR is a right context, uR ∈
Γ k ∪ Γ k−1$, and v → t is a rule, v, t ∈ Γ ∗. A word w = u1vu2 can be rewritten
into u1tu2 (denoted by u1vu2 →M u1tu2) if and only if there exists an instruction
(uL, v → t, uR) ∈ I such that uL is a suffix of ¢u1 and uR is a prefix of u2$.

We use the star in �
∗,→∗,
∗ and other symbols to denote reflexive-transitive

closures of binary relations.

Definition 4. For k ≥ 0, a k-clearing restarting automaton (k -cl-RA) is a
system M = (Σ, I), where M ′ = (Σ,Σ, I) is a k-context rewriting system such
that for each i = (uL, v → t, uR) ∈ I it holds that v ∈ Σ+ and t = ε. Since t
is always the empty word, the notation i = (uL, v, uR) is used. A k -cl-RA M
accepts the language

L(M) = {w ∈ Σ∗ | w �∗
M ε} ,

where �M denotes the rewriting relation →M ′ of M ′. The term L(k -cl-RA)
denotes the class of languages accepted by k -cl-RA.

The generative approach is formalized by writing w2 
 w1 instead of w1 � w2.
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3 Undecidability in General Jumping Finite Automata

Theorem 5. Given a GJFA M = (Q,Σ,R, s, F ), it is undecidable whether
L(M) = Σ∗.

Let us prove the theorem. Given a context-free grammar G with terminal alpha-
bet ΣT, it is undecidable whether L(G) = Σ∗

T [8]. We present a reduction from
this problem to the universality of GJFA. Assume that the given grammar G

– has non-terminal alphabet ΣN and a start symbol AS ∈ ΣN,
– accepts the empty word ε, and
– is given in Greibach normal form [8], i.e., the rules are AS → ε and Ai → ui,

where Ai ∈ ΣN and ui ∈ ΣTΣ∗
N for i ∈ {1, . . . ,m}, m ≥ 0.

Note that any context-free grammar that accepts ε can be algorithmically con-
verted to the form above. Next, we construct a GJFA MG = (Q,Γ,R, s, F ) as
follows, denoting ΣB = {b1, . . . , bm}:

Q = {q0, q1, q2, q3, q4} ,

Γ = ΣT ∪ ΣN ∪ ΣB,

s = q0, F = {q2, q4}. The set R of rules is defined in Fig. 1. In this figure, each
arrow labeled with a finite set S ⊆ Γ ∗ stands for |S| rules, each labeled with a
word v ∈ S. The following finite sets are used:

PBU = {biui | i = 1, . . . ,m} ,

PNB = {Aibi | i = 1, . . . , m} ,

PC = {xA1 | x ∈ ΣT}
∪ {Aibi | i = 1, . . . ,m}
∪ {biAi+1 | i = 1, . . . ,m − 1}
∪ {bmx | x ∈ ΣT} .

ε ΣN ∪ ΣB ∪ {ε}

q0 q4

q1

q3

ε AS

ΣBΣN ∪ ΣT

PBU ∪ PNB

q2
Γ2 \ PC

Γ

Fig. 1. The GJFA MG corresponding to a context-free grammar G
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For a word w ∈ Γ ∗ we denote with wT and wN,B the projections of w to
subalphabets ΣT and ΣN ∪ΣB respectively1 Let us show that L(G) = Σ∗

T if and
only if L(MG) = Γ ∗.
First, suppose that L(G) = Σ∗

T and take an arbitrary w ∈ Γ ∗. Describe a
derivation of wT by G using v0, v1, . . . , vd ∈ (ΣT ∪ ΣN)∗, d ≥ 1, where

v0 = AS,

vd = wT,

vk = vp,kAikvs,k,

vk+1 = vp,kuikvs,k

for each k ∈ {0, . . . , d − 1}. For k ∈ {0, . . . , d}, we define inductively a word wk ∈
Γ ∗ and a mapping σk from each occurrence of x ∈ ΣN in vk to an occurrence
of the same x in wk. First, w0 = AS and σ0 is trivial. Next, take 0 ≤ k ≤ d − 1
and write wk = wp,kAikws,k such that the Aik right after wp,k is the σk-image
of the Aik right after vp,k in vk. Then define

wk+1 = wp,kAikbikuikws,k

and let σk+1 extend σk with mapping the occurrences of x ∈ ΣN within the factor
uik in vk+1 to the corresponding occurrences within the same factor in wk+1.
Informally, the words w0, . . . , wd describe the derivation of wT with keeping
all the used nonterminals, i.e., Aik is rewritten with Aikbikuik instead of uik .
Observe that (q1, wd) �

∗ (q1, AS) using the rules labeled with words from PBU.
Also observe that, due to Greibach normal form, wd ∈ (ΣT ∪ ΣTΣNΣB)∗, i.e.,
the factors from ΣNΣB are always separated with letters from ΣT.

Distinguish the following cases:

– If w does not have a factor from Γ 2\PC, all two-letter factors of w belong to
PC, which implies that w is a factor of a word from (ΣTt)∗, where

t = A1b1A2b2 · · · Ambm. (2)

• If w starts with a letter from ΣT∪ΣN and ends with a letter from ΣT∪ΣB,
then (q1, w) �

∗ (q1, wd) using the rules labeled with words from PNB.
Because (q1, wd) �

∗ (q1, AS), we conclude that w ∈ L(MG).
• Otherwise, w starts with a letter from ΣB or ends with a letter from ΣN.

Then
wN,B ∈ ΣB (ΣNΣB)∗ ∪ (ΣNΣB)∗

ΣN ∪ ΣB (ΣNΣB)∗
ΣN

and we observe that (q0, w) � (q3, w) �
∗ (q3, wN,B) � (q3, u) for some

u ∈ ΣN ∪ ΣB ∪ {ε}. As (q3, u) � (q4, ε), we get w ∈ L(MG).
– If w has a factor u ∈ Γ 2\PC, write w = wpuws and observe

(q0, wpuws) � (q2, wpws) �
∗ (q2, ε) ,

implying w ∈ L(MG).
1 A projection to Γ ′ ⊆ Γ is given by the homomorphism that maps x ∈ Γ to x if

x ∈ Γ ′ or to ε otherwise.
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Second, suppose that L(MG) = Γ ∗ and take an arbitrary v = x1x2 · · · xn ∈ Σ∗
T

with x1, . . . , xn ∈ ΣT. Let w = (x1t) (x2t) · · · (xn−1t) (xnt), with t defined in (2).
We have w ∈ L(MG). Observe that:

– The word w does not contain a factor from Γ 2\PC.
– By deleting factors from ΣBΣN ∪ΣT, the word w cannot become a word from

ΣN ∪ ΣB ∪ {ε}.

Thus, w is accepted by M using a path through the state q1 ending in the state
q4. In other words, w can be obtained by inserting words from PBU ∪ PNB to
AS. During that process, once an occurrence of bi fails to be preceded by Ai,
this situation lasts to the very end, which is a contradiction. It follows that
biui ∈ PBU can be inserted only to the right of an occurrence of Ai that is not
followed by bi. This corresponds to rewriting Ai with ui, so we can observe that
the whole looping on q1 (viewed backwards) corresponds to generating wT = v
from AS using the rules of G. �

Because it is easy to construct a GJFA accepting Σ∗, universality is a special
case of both equivalence and inclusion. Thus, the following claim is trivial:

Corollary 6. Given GJFA M1 and M2, it is undecidable both whether L(M1) =
L(M2) and whether L(M1) ⊆ L(M2).

4 Clearing Restarting Automata with Small Contexts

Recall that the following facts were formulated and proved in [3]:

1. For each k ≥ 3, the class L(k -cl-RA) contains a binary language that is not
context-free.

2. The class L(2 -cl-RA) contains a language L ⊆ Σ∗ with |Σ| = 6 that is not
context-free.

3. The class L(1 -cl-RA) contains only context-free languages.

Moreover, for each k ≥ 1, all the unary languages lying in L(k -cl-RA) are
regular [3]. The present section is devoted to proving the following theorem,
which completes the results listed above.

Theorem 7. The class L(2 -cl-RA) contains a binary language that is not
context-free.

In order to prove Theorem7, we define two particular rewriting systems:

1. A 1-context rewriting system RuV = ({u,V} , {u,V} , IuV). The set IuV is
listed in Table 1.

2. A 2-clearing restarting automaton R01 = ({0, 1} , I01). The set I01 is listed in
Table 2.

Note that headings of the tables provide identifiers of rules. We write →uV for
the rewriting relation of RuV and 
01 for the “generative” relation of R01.
The key feature of the system RuV is:
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Table 1. The rules IuV

0 (¢, ε → uu, $)

1 (¢, u → uuV, ε)

2 (ε, Vu → uuuV, ε)

3 (ε, Vu → uuuu, $)

Table 2. The rules I01

a b c d

0 (¢, 00, $) - - -

1 (¢, 10, 00) (¢, 00, 10) - -

2 (01, 10, 00) (00, 11, 01) (11, 00, 10) (10, 01, 11)

3 (01, 10, 0$) (00, 11, 0$) - -

Lemma 8. Let w ∈ L(RuV) ∩ {u}∗. Then |w| = 2 · 3n for some n ≥ 0.

The proof is postponed to Sect. 4.1. Next, we define:

1. A length-preserving mapping ϕ : {0, 1}∗ → {u,V}∗ as ϕ(x1 . . . xn) =
x1 . . . xn, where

xk =

{
V if 1 < k < n and xk−1 = xk+1

u otherwise

for each k ∈ {1, . . . , n}.
2. A regular language K ⊆ {0, 1}∗:

K =
{
w ∈ {0, 1}∗ | w has none of the factors 000, 010, 101, 111

}
.

The following is a trivial property of ϕ and K. Informally, ϕ(u) marks by V the
positions where a defect occurs in u ∈ {0, 1}∗. A defect is a position that violates
the form . . . 00110011 . . . , i.e., a position whose neighbours are equal:

Lemma 9. Let u ∈ {0, 1}∗. Then u ∈ K if and only if ϕ(u) ∈ {u}∗.

We index the rules from IuV and I01 by the rows of Tables 1 and 2, i.e., by types 0
to 3. For a string w = x1x2 . . . xd, where x1, x2, . . . , xd are letters, and for integers
i, j with 1 ≤ i ≤ j ≤ d, we denote w[i, j] = xixi+1 . . . xj and w[i, . . . ] = w[i, d].

The next lemma describes how the systems R01 and RuV are related. Infor-
mally, a rule of the type 2 from I01 can be applied only right after a defect in
u ∈ {0, 1}∗. This creates another defect on the right, i.e., a factor x1x2y1y2 of
u with defect on x2 is replaced with x1x2z1z2y1y2 with defect on y1. This cor-
responds to applying the rule Vu → uuuV to the defect markers. A rule of the
type 1 from I01 can introduce a new defect near the beginning of u ∈ {0, 1}∗,
while a rule of type 3 from I01 can remove a defect near to the end:

Lemma 10. Let u, v ∈ {0, 1}∗. If u 
01 v, then ϕ(u) →uV ϕ(v).

Proof. For u = v the claim is trivial, so we suppose u �= v. Denote m = |u|. As
u can be rewritten to v using a single rule of R01, we can distinguish which of
the rule types is used:
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(0) If the rule 0 is used, we have u = ε and v = 00. Thus ϕ(u) = ε and ϕ(v) = uu.
(1) If a rule (¢, z1z2, y1y2) of the type 1 is used, we see that v has some of the

prefixes 1000, 0010 and so ϕ(v) starts with uuV. Trivially, ϕ(u) starts with
u. Because u[1, . . . ] = v[3, . . . ], we have ϕ(u)[2, . . . ] = ϕ(v)[4, . . . ] and we
conclude that applying the rule (¢,u → uuV, ε) rewrites ϕ(u) to ϕ(v).

(2) If a rule (x1x2, z1z2, y1y2) of the type 2 is used, we have

u[k, k + 3] = x1x2y1y2,

v[k, k + 5] = x1x2z1z2y1y2

for some k ∈ {1, . . . ,m − 3}. As x1x2y1y2 equals some of the factors 0100,
0001, 1110, 1011, we have

ϕ(u)[k + 1, k + 2] = Vu.

As x1x2z1z2y1y2 equals some of the factors 011000, 001101, 110010, 100111,
we have

ϕ(v)[k + 1, k + 4] = uuuV.

Because u[1, k + 1] = v[1, k + 1] and u[k + 2, . . . ] = v[k + 4, . . . ], we have

ϕ(u)[1, k] = ϕ(v)[1, k] ,
ϕ(u)[k + 3, . . . ] = ϕ(v)[k + 5, . . . ] .

Now it is clear that the rule (ε,Vu → uuuV, ε) rewrites ϕ(u) to ϕ(v).
(3) If a rule (x1x2, z1z2, y$) of the type 3 is used, we have

u[m − 2,m] = x1x2y,

v[m − 2,m + 2] = x1x2z1z2y.

As x1x2y equals some of the factors 010, 000, we have

ϕ(u)[m − 1,m] = Vu.

As x1x2z1z2y equals some of the factors 01100, 00110, we have

ϕ(v)[m − 1,m + 2] = uuuu.

Because u[1,m − 1] = v[1,m − 1], we have

ϕ(u)[1,m − 2] = ϕ(v)[1,m − 2] ,

Now it is clear that the rule (ε,Vu → uuuu, $) rewrites ϕ(u) to ϕ(v). �
Corollary 11. If u ∈ L(R01), then ε →∗

uV ϕ(u).

Proof. Follows from the fact that ϕ(ε) = ε and a trivial inductive use of
Lemma 10. �
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Note that L(R01) contains, e.g., 00 and 100110. Informally, the claims above
imply that L(R01) contains only words without defects and that each word from
L(R01) is obtained from 00 by adding defects to the beginning and pushing them
to the end, while the length of the word is tripled for each processed defect. It
remains to show that a defect can be always avoided. It turns out to be convenient
to describe simultaneous processing of two defects that are close to each other.

The last part of the proof of Theorem7 relies on the following lemma, whose
proof is postponed to Sect. 4.2:

Lemma 12. For each α ≥ 0 and β ≥ 1 it holds that

00 (1100)α 10 (0011)β 00 
∗
01 00 (1100)α+9 10 (0011)β−1 00.

Corollary 13. For each γ ≥ 0 it holds that

0010 (0011)γ 00 
∗
01 00 (1100)9γ 1000.

Proof. As the left-hand side equals 00 (1100)0 10 (0011)γ 00 and the right-hand
side equals 00 (1100)9γ 10 (0011)0 00, the claim follows from Lemma 12 applied γ
times. �
Corollary 14. The language L(R01) ∩ K is infinite.

Proof. We show that for each k ≥ 0,

00 (1100)
2·9k−2

4 ∈ L(R01) .

In the case of k = 0 we just check that 00 ∈ L(R01). Next, we suppose that the
claim holds for a fixed k ≥ 0 and show that

00 (1100)
2·9k−2

4 
∗
01 00 (1100)

2·9k+1−2
4 .

Using the rules 1a and 1b we get

00 (1100)
2·9k−2

4 
01 1000 (1100)
2·9k−2

4 
01 001000 (1100)
2·9k−2

4 ,

while Corollary 13 continues with

0010 (0011)
2·9k−2

4 00 
∗
01 00 (1100)

2·9k+1−18
4 1000.

Finally, denoting p = 00 (1100)
2·9k+1−18

4 , using rules 3b, 2a, 2b, 2d, 2c, and 3a
respectively, we get

p1000 
01 p100110 
01 p11000110 
01 p (1100) 110110 
01 p (1100) 11001110 
01


01 p (1100) (1100) 110010 
01 p (1100) (1100) (1100) 1100 = 00 (1100)
2·9k+1−2

4 .

�
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We conclude the proof of Theorem7 by pointing out that Lemmas 8, 9, and 10
say that for each w ∈ {0, 1}∗ we have

w ∈ L(R01) ∩ K ⇒ ϕ(w) ∈ L(RuV) ∩ {u}∗ ⇒ (∃n ≥ 0) |w| = 2 · 3n.

This, together with the pumping lemma for context-free languages and the
infiniteness of L(R01)∩K, implies that L(R01)∩K is not a context-free language.
As the class of context-free languages is closed under intersections with regular
languages, L(R01) is not context-free either.

4.1 Proof of Lemma 8

We should show that w ∈ L(RuV) ∩ {u}∗ implies |w| = 2 · 3n for some n ≥ 0.
Let Φ : {u,V}∗ → N be defined inductively as follows:

Φ(ε) = 0,
Φ

(
ukw

)
= k + Φ(w) ,

Φ(Vw) = 1 + 3 · Φ(w)

for each k ≥ 1 and w ∈ {u,V}∗. Observe that we have assigned a unique value
of Φ to each word from {u,V}∗. Next, we describe effects of the rules of RuV to
the value of Φ.
(0) The rule 0 can only rewrite w1 = ε to w2 = uu. We have Φ(w1) = 0 and

Φ(w2) = 2.
(1) The rule 1 rewrites w1 = uw to w2 = uuVw for some w ∈ {u,V}∗. We have

Φ(w1) = 1 + Φ(w) and Φ(w2) = 3 + 3 · Φ(w). Thus, Φ(w2) = 3 · Φ(w1).
(2) The rule 2 rewrites w1 = wVuw to w2 = wuuuVw for some w,w ∈ {u,V}∗.

We have
Φ(Vuw) = Φ(uuuVw) = 4 + 3 · Φ(w) .

It follows that Φ(w1) = Φ(w2).
(3) The rule 3 rewrites w1 = wVu to w2 = wuuuu for some w ∈ {u,V}∗. We

have Φ(Vu) = Φ(uuuu) = 4 and thus Φ(w1) = Φ(w2).

Together, each w ∈ L(RuV) has Φ(w) = 2 · 3n for some n ≥ 0. As Φ(w) = |w| for
each w ∈ {u}∗, the proof is complete. �

4.2 Proof of Lemma 12

We should prove that

00 (1100)α 10 (0011)β 00 
∗
01 00 (1100)α+9 10 (0011)β−1 00

for α ≥ 0, β ≥ 1. Let p = 00 (1100)α, q = (0011)β−1 00, and derive the claim as
follows:

p10 (0011) q 
b p10011011q 
a

p1100011011q 
b p (1100) 11011011q 
d

p (1100) 1100111011q 
d p (1100)2 11100111q 
c

p (1100)2 1100100111q 
a p (1100)3 11000111q 
b

p (1100)4 110111q 
c p (1100)4 11011001q 
d
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p (1100)4 1100111001q 
c p (1100)5 11001001q 
a

p (1100)6 110001q 
a p (1100)7 0110q 
b

p (1100)7 110110q 
d p (1100)7 11001110q 
c

p (1100)8 110010q,

where uses of particular rules of the type 2 are indicated by typing 
a,
b,
c,
d

instead of 
01. �

5 Conclusions and Remarks

We made a progress in studying basic properties of two recently introduced
formalisms. Even if these particular models do not find application in practice,
our results may be of key importance for designing suitable modifications.

The maximum length of labels is a key property of a GJFA. It remains open
whether our undecidability results hold if restricted to GJFA with labels of a
fixed maximum length. In jumping finite automata, i.e., GJFA with labels of
length one, the problems become decidable (see [5] for a thorough survey).

Note that there is a group of older models that can be, in fact, put to a
common framework with GJFA and cl-RA, immediately sharing some properties
following from our new results:

– Insertion systems [16] were introduced in the scope of DNA computing. They
generate sequences by inserting factors according to contexts of restricted
lengths. Their generalization to graph-controlled [1] insertion systems together
with contexts of zero length corresponds to the expressive power of GJFA.
Using the notation of [1], we have LStP∗

(
ins0,0

∗
)

= GJFA. Another (historical)
work introduces regular control semi-contextual grammars without appearance
checking [11]. Again, the variant with forbidden contexts (with a language
class denoted by C0) is equivalent to GJFA. Our results imply that universality,
inclusion, and equivalence are undecidable for these models as well.

– Up to explicit endmarking, insertion systems and the basic variant of semi-
contextual grammars [15], both with contexts bounded by some k ≥ 1, are
equivalent to k -cl-RA. More precisely, each language from the class denoted by
INSk

∗ or Jk is accepted by a k -cl-RA, while for each k -cl-RA M , the language¢L(M) $ lies in INSk
∗ = Jk. Thus, we can conclude that the class INS2

∗ = J2

contains non-context-free binary languages.

The remarks above are hard to present in more depth because the original defi-
nitions of insertions systems and semi-contextual grammars use non-compatible
notational paradigms. Once these definitions are understood, the claims are very
easy to check (see [17]).
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