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DFA

Finite Automata

DFA is a triple A = (Q,Σ,δ )

� Q ... finite set of states
� Σ ... finite set of letters (the alphabet)
� δ ... total function Q×Σ→ Q (transition function)

Extended transition function:

δ : 2Q ×Σ?→ 2Q
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Classical Synchronization

Reset Words

w ∈ Σ? is a reset word of A if

|δ (Q,w)|= 1,

i.e. if w acts like

If A has some reset word, we call it synchronizing.
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Classical Synchronization

Shortest Reset Words

Černý conjecture:
� If A is synchronizing, it has a reset word of length at most

(|Q|−1)2

Known upper bounds:
1
3 |Q|

3−n2+ 5
3n−1 (Kohavi, 1970)

1
6 |Q|

3− 1
6n (Pin, 1983)
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Subset Synchronization & The Result

Subset Reset Words

w ∈ Σ? is a reset word of S ⊆ Q if

|δ (S ,w)|= 1,

i.e. if w maps states from S to a unique state.

If S has some reset word, we call it synchronized.
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Subset Synchronization & The Result

Subset Reset Words: an Example

Q = {0,1,2,3,4,5}
Σ = {a,b}

w =
is a reset word of S
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Subset Synchronization & The Result

Lower Bound Construction

Infinite series of DFA satisfying:

|Q| grows, |Σ|= 2

There is always a subset S ⊆ Q with a shortest reset word of

length 2Ω(|Q|).

Transitivity
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Depth of Transformations

Worst-Case Depth of f ∈ 〈G〉

With constant-size G:

Upper
Bounds

Trivial: nn

Lower
Bounds

Former: 2Ω( n
logn )

New: 2Ω(n)
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Depth of Transformations

Lower Bound Construction

Infinite series of sets G⊆ Tn satisfying:

n is growing

There is always a function f ∈ 〈G〉 in depth 2Ω(n).

Using bad cases of subset synchronization:

DFA A = ([n] ,Σ,δ ) −→ G⊆ Tn

Synchronized subset S ⊆ [n] −→ f ∈ 〈G〉 constant on S
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Instability of Subsets

A subset S ⊆ Q is unstable if:
S is synchronized
(∃w ∈ Σ?)

δ (S ,w) is not synchronized
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The Entire Construction

DFA with 4-letter alphabets and subsets with exponential

shortest r. w.

A suitable method for making a DFA transitive.

A suitable method for decreasing the alphabet size to 2.
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Conclusion

Conclusion

Some subsets require strongly exponential reset words even in

transitive DFA with two-letter alphabets.

Some transformations have strongly exponential depth even

with respect to two generators.
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