Subset Synchronization of Transitive Automata

Vojtěch Vorel

Charles University Prague, Czech Republic

AFL 2014

Outline

1 Synchronization of a DFA

- DFA
- Classical Synchronization
- Subset Synchronization & The Result

2 Depth of Transformations

3 Proof Methods

Outline

Classical Synchronization

Subset Synchronization & The Result

2 Depth of Transformations

3 Proof Methods

Finite Automata

- *DFA* is a triple $A = (Q, \Sigma, \delta)$
 - Q ... finite set of *states*
 - Σ ... finite set of *letters* (the *alphabet*)
 - δ ... total function $Q \times \Sigma \rightarrow Q$ (transition function)

• Extended transition function:

$$\delta: 2^Q \times \Sigma^{\star} \to 2^Q$$

Finite Automata

- *DFA* is a triple $A = (Q, \Sigma, \delta)$
 - Q ... finite set of *states*
 - Σ ... finite set of *letters* (the *alphabet*)
 - δ ... total function $Q \times \Sigma \rightarrow Q$ (transition function)
- Extended transition function:

$$\delta: 2^Q \times \Sigma^\star \to 2^Q$$

Outline

- Classical Synchronization
- Subset Synchronization & The Result
- 2 Depth of Transformations
- 3 Proof Methods

Reset Words

•
$$w \in \Sigma^*$$
 is a *reset word* of A if

$$|\delta(Q,w)|=1,$$

i.e. if w acts like

If A has some reset word, we call it synchronizing.

Reset Words

•
$$w \in \Sigma^*$$
 is a *reset word* of A if

$$|\delta(Q,w)|=1,$$

i.e. if w acts like

• If A has some reset word, we call it *synchronizing*.

Shortest Reset Words

Černý conjecture:

- If A is synchronizing, it has a reset word of length at most $(|Q|-1)^2$
- Known upper bounds:
 - $\frac{1}{3}|Q|^{3}-n^{2}+\frac{5}{3}n-1$ (Kohavi, 1970)
 - $\frac{1}{6} |Q|^3 \frac{1}{6}n \qquad (Pin, 1983)$

Shortest Reset Words

Černý conjecture:

- If A is synchronizing, it has a reset word of length at most $(|Q|-1)^2$
- Known upper bounds:

$$\frac{1}{3}|Q|^{3}-n^{2}+\frac{5}{3}n-1$$
 (Kohavi, 1970)

 $\frac{1}{6}|Q|^3 - \frac{1}{6}n$ (Pin, 1983)

Outline

1 Synchronization of a DFA

- DFA
- Classical Synchronization
- Subset Synchronization & The Result
- 2 Depth of Transformations

3 Proof Methods

Subset Reset Words

•
$$w \in \Sigma^*$$
 is a reset word of $S \subseteq Q$ if

$$|\delta(S, w)| = 1,$$

i.e. if w maps states from S to a unique state.

■ If *S* has some reset word, we call it *synchronized*.

Subset Reset Words

•
$$w \in \Sigma^*$$
 is a reset word of $S \subseteq Q$ if

$$|\delta(S, w)| = 1,$$

i.e. if w maps states from S to a unique state.

• If S has some reset word, we call it *synchronized*.

Depth of Transformations

Proof Methods

Subset Reset Words: an Example

 $Q = \{0, 1, 2, 3, 4, 5\}$ $\Sigma = \{a, b\}$

Depth of Transformations

Proof Methods

Subset Reset Words: an Example

 $\begin{aligned} & Q = \{0, 1, 2, 3, 4, 5\} \\ & \Sigma = \{a, b\} \\ & S = \{1, 2, 4\} \end{aligned}$

w =

Depth of Transformations

Proof Methods

Subset Reset Words: an Example

 $\begin{aligned} & Q = \{0, 1, 2, 3, 4, 5\} \\ & \Sigma = \{a, b\} \\ & S = \{1, 2, 4\} \end{aligned}$

w = a

$$\delta(S,w) = 2$$

Depth of Transformations

Proof Methods

Subset Reset Words: an Example

 $\begin{aligned} & Q = \{0, 1, 2, 3, 4, 5\} \\ & \Sigma = \{a, b\} \\ & S = \{1, 2, 4\} \end{aligned}$

w = ab

$$\delta(S,w) = 2$$

Depth of Transformations

Proof Methods

Subset Reset Words: an Example

 $\begin{aligned} & Q = \{0, 1, 2, 3, 4, 5\} \\ & \Sigma = \{a, b\} \\ & S = \{1, 2, 4\} \end{aligned}$

w = abais a reset word of S

$$\delta(S, w) = 1$$

Synchronization of a DFA ○○○○○○○○●○

Subset Synchronization & The Result

Proof Methods

Bounds for Shortest Reset Words

	Classical Synchronization
Upper Bounds	$\mathcal{O}\Big(\mathcal{Q} ^3\Big)$
Lower Bounds	$\mathcal{O}\Big(\mathcal{Q} ^2\Big)$

Synchronization of a DFA ○○○○○○○○●○

Subset Synchronization & The Result

Bounds for Shortest Reset Words

	Classical Synchronization	Subset Synchronization
Upper Bounds	$\mathcal{O}\Big(Q ^3\Big)$	$2^{\mathcal{O}(Q)}$
Lower Bounds	$\mathcal{O}\Big(Q ^2\Big)$	$2^{\Omega(Q)}$

Bounds for Shortest Reset Words

Over constant-size alphabets:

	Classical Synchronization	Subset Synchronization
Upper Bounds	$\mathcal{O}\Big(Q ^3\Big)$	$2^{\mathcal{O}(Q)}$
Lower Bounds	$\mathcal{O}\Big(Q ^2\Big)$	

Bounds for Shortest Reset Words

Over constant-size alphabets:

	Classical Synchronization	Subset Synchronization
Upper Bounds	$\mathcal{O}\left(Q ^3\right)$	$2^{\mathcal{O}(Q)}$
Lower Bounds	$\mathcal{O}\Big(Q ^2\Big)$	Former: $2^{\Omega\left(\frac{ Q }{ \log Q }\right)}$ New: $2^{\Omega(Q)}$

Lower Bound Construction

Infinite series of DFA satisfying:

•
$$|Q|$$
 grows, $|\Sigma| = 2$

There is always a subset S ⊆ Q with a shortest reset word of length 2^{Ω(|Q|)}.

Transitivity

Lower Bound Construction

Infinite series of DFA satisfying:

•
$$|Q|$$
 grows, $|\Sigma| = 2$

There is always a subset S ⊆ Q with a shortest reset word of length 2^{Ω(|Q|)}.

Transitivity

Outline

1 Synchronization of a DFA

- DFA
- Classical Synchronization
- Subset Synchronization & The Result

2 Depth of Transformations

3 Proof Methods

• Full Transformation Monoid \mathcal{T}_n

- $\mathbf{G} \subseteq \mathcal{T}_n$
- $\langle \mathbf{G} \rangle \subseteq \mathcal{T}_n$
- Depth of $f \in \langle \mathbf{G} \rangle$

• Full Transformation Monoid \mathcal{T}_n

- $\mathbf{G} \subseteq \mathcal{T}_n$
- $\langle \mathbf{G} \rangle \subseteq \mathcal{T}_n$
- Depth of $f \in \langle \mathbf{G} \rangle$

- Full Transformation Monoid \mathcal{T}_n
- $\mathbf{G} \subseteq \mathcal{T}_n$
- $\langle \mathbf{G} \rangle \subseteq \mathcal{T}_n$
- Depth of $f \in \langle \mathbf{G} \rangle$

- Full Transformation Monoid \mathcal{T}_n
- $\mathbf{G} \subseteq \mathcal{T}_n$
- $\langle \mathbf{G} \rangle \subseteq \mathcal{T}_n$
- Depth of $f \in \langle \mathbf{G} \rangle$

Proof Methods

Depth of Transformations

Worst-Case Depth of $f \in \langle \mathbf{G} \rangle$

Worst-Case Depth of $f \in \langle \mathbf{G} \rangle$

Worst-Case Depth of $f \in \langle \mathbf{G} \rangle$

With constant-size G:

Proof Methods

Worst-Case Depth of $f \in \langle \mathbf{G} \rangle$

With constant-size G:

Upper Bounds	Trivial: <i>nⁿ</i>
Lower	Former: $2^{\Omega(\frac{n}{\log n})}$
Bounds	New: $2^{\Omega(n)}$

Lower Bound Construction

Infinite series of sets $\mathbf{G} \subseteq \mathcal{T}_n$ satisfying:

n is growing

• There is always a function $f \in \langle \mathbf{G} \rangle$ in depth $2^{\Omega(n)}$.

Using bad cases of subset synchronization:

DFA $A = ([n], \Sigma, \delta) \longrightarrow \mathbf{G} \subseteq \mathcal{T}_n$

Synchronized subset $S \subseteq [n] \longrightarrow f \in \langle \mathbf{G} \rangle$ constant on S

Lower Bound Construction

Infinite series of sets $\mathbf{G} \subseteq \mathcal{T}_n$ satisfying:

n is growing

• There is always a function $f \in \langle \mathbf{G} \rangle$ in depth $2^{\Omega(n)}$.

Using bad cases of subset synchronization:

$$\mathsf{DFA} \ A = ([n], \Sigma, \delta) \quad \longrightarrow \quad \mathbf{G} \subseteq \mathcal{T}_n$$

Synchronized subset $S \subseteq [n] \longrightarrow f \in \langle \mathbf{G} \rangle$ constant on S

Outline

1 Synchronization of a DFA

- DFA
- Classical Synchronization
- Subset Synchronization & The Result

2 Depth of Transformations

3 Proof Methods

Instability of Subsets

A subset $S \subseteq Q$ is *unstable* if:

- *S* is synchronized
- $(\exists w \in \Sigma^*)$
- $\delta(S, w)$ is not synchronized

Instability of Subsets

A subset $S \subseteq Q$ is *unstable* if:

- *S* is synchronized
- $(\exists w \in \Sigma^*)$
- $\delta(S, w)$ is not synchronized

Instability of Subsets

- A subset $S \subseteq Q$ is *unstable* if:
 - *S* is synchronized
 - $(\exists w \in \Sigma^{\star})$
 - $\delta(S, w)$ is not synchronized

 $\Sigma = \{0, 1, \kappa, \omega\}$ $v_i = \operatorname{bin}(i)\kappa \text{ (for } i \in \{0, \dots, n\}\text{)}$

Synchronization of a DFA

Reducing the Alphabet Size

 $\Sigma = \{0, 1, \kappa, \omega\}$ $v_i = \operatorname{bin}(i)\kappa \text{ (for } i \in \{0, \dots, n\}\text{)}$

Synchronization of a DFA

Reducing the Alphabet Size

Depth of Transformations

Proof Methods

 $\Sigma = \{0, 1, \kappa, \omega\}$ $v_i = \operatorname{bin}(i)\kappa \text{ (for } i \in \{0, \dots, n\}\text{)}$

Reducing the Alphabet Size

The Entire Construction

- DFA with 4-letter alphabets and subsets with exponential shortest r. w.
- A suitable method for making a DFA transitive.
- A suitable method for decreasing the alphabet size to 2.

The Entire Construction

- DFA with 4-letter alphabets and subsets with exponential shortest r. w.
- A suitable method for making a DFA transitive.
- A suitable method for decreasing the alphabet size to 2.

The Entire Construction

- DFA with 4-letter alphabets and subsets with exponential shortest r. w.
- A suitable method for making a DFA transitive.
- A suitable method for decreasing the alphabet size to 2.

Conclusion

Some subsets require strongly exponential reset words even in

transitive DFA with two-letter alphabets.

Some transformations have strongly exponential depth even

with respect to two generators.