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1 Introduction

In a system described by a deterministic finite automaton A = (Q,Σ, δ), uncertainty corresponds
to a set of possible states S ⊆ Q. A reset word is an input sequence w ∈ Σ∗ that maps all the
states of S to a single state, i.e., |δ(S,w)| = 1. The process of modifying and reducing the current
uncertainty by applying the letters of w is referred to as synchronization. We ask:

1. For a given DFA with a given uncertainty, does there exist a reset word?
2. For a given DFA with a given uncertainty, what is the minimum length of reset words?
3. For a given n, what is the greatest minimum length between all n-state DFA?

The special case of S = Q is widely studied within the pursuit of resolving the Černý conjecture.
In this case, shortest reset words are at most of cubic length in the number of states and their
existence can be tested in polynomial time (see, e.g., [7]).

In the general scope of S ⊆ Q, the lengths of shortest reset words become exponential and the
testing becomes PSPACE-complete. Though these facts became classical during the last century,
the field was not explored with enough precision. This contribution presents recent results [8, 9]
that give answers to the following key questions:

1. Is there a polynomial (or at least 2o(n)) upper bound on the length of shortest reset words in
strongly connected n-state DFA?

2. Is there a 2o(n) upper bound on the length of shortest reset words in n-state DFA with a fixed
alphabet?

Note that 2O(n) is a general upper bound following from the number of possible uncertainties.
Unfortunately, both the above questions turn out to have negative answers. Moreover, the new
2Ω(n) lower bound involves DFA that combine both the restrictions, i.e., are strongly connected
and binary [8].

Minimum lengths of reset words form an important special case of depths in transformation
semigroups, which are the worst-case lengths of shortest expressions needed to compose a given
f ∈ Tn from the members of a given G ⊆ Tn [6].

2 Decreasing the Alphabet Size

As it was remarked in 1976 by Burkhard [1], for any m ≥ k ≥ 1 one can construct a DFA (Q,Σ, δ)
with |Q| = m+2 and |Σ| =

(
m
k

)
such that the shortest reset words for an uncertainty S ⊆ Q have

length
(
m
k

)
. The key ideas are:

1. Use two sink states D,D and set D ∈ S. Thus, D remains in the uncertainty all the time, while
D must remain outside.

2. List all the size-k possible uncertainties on the other m states and assign them to the members
of Σ. Let the first subset be included in S. Transitions leading to D enforce an order in which
all the letters must be applied. Finally the last subset can be mapped to D all at once.
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Fixing k = n
2 and using Stirling’s approximation, we check that

(
n
n/2

)
= θ(2n/

√
n) and obtain a

lower bound Ω(2n/
√
n), i.e., 2Ω(n) on the length of reset words. The first idea above is a key tool

that remains involved in all the later improvements. In particular, some of them were originally
formulated in the scope of careful synchronization of partial finite automata. Such constructions
can be straightforwardly modified to our scope by adding the two sink states to each automaton
(see [8, Lemma 1]).

A more sophisticated method, which we call radix construction, was first described in [3] and
produces 2Ω(n) lower bounds using only linear-size alphabets. In the most simple variant, the DFA
consist of two sink states D and D and a number of two-state components. As far as exactly
one state of each component lies in the uncertainty, one can see the uncertainty as the binary
representation of a non-negative integer. For each component, i.e., each digit, there is a letter in
Σ whose application corresponds to setting that digit from 0 to 1 and setting the less significant
digits from 1 to 0. Transitions leading to D enforce that the only letter that can be applied is the
one that increases the represented integer by one. Until the represented number is the greatest
possible, a special letter that maps the whole uncertainty to D cannot be applied.

With adding auxiliary states to each component, one can employ a binary encoding of the
indices of digits, thus obtaining a binary DFA with properties similar to the one described above.
The additional states form a kind of decision trees of size proportional to log n per component.
Due to the additional states, only 2θ(

n
log n ) lower bounds on length of reset words is obtained [4].

alphabet
size

strong
connectivity

min. length
of reset words

Subset listing construction [1] 2θ(n) no 2θ(n)

Basic radix construction [3] θ(n) no 2θ(n)

High-order permutation construction [2] 2 no 2θ(
3√n logn)

Extended radix construction [4] 2 no 2
θ
(

n
log n

)

New radix construction [8] 2 no 2θ(n)

New radix construction + swapping [8] 2 yes 2θ(n)

Table 1. Length of shortest reset words in n-state DFA – history of lower bounds

In order to obtain a series of binary n-state automata and uncertainties with shortest reset
words of length 2Ω(n), additional ideas were necessary [8]:

1. All the components are joint to a long cycle according to a De Bruijn sequence, which encodes
their unique indices. Instead of adding many states to each component, many components are
utilized for performing an operation in a single component.

2. A single special component is added in order to guarantee that in each log n-th step a special
letter occurs that restores the original roles of the components.

3 Strong Connectivity

Automata with multiple sink states seem quite artificial, but all the classical lower bound relied
heavily on them. It was very unclear whether the situation is similar in the scope of strongly con-
nected DFA. The classical constructions used the two sink states to force application of particular
letters during the synchronization. A common step in the proof looks like „The letter x cannot be
applied since that would make D active, while D is active all the time”. We developed the following
alternative mechanism [8]:

A congruence ρ is a swap congruence of a DFA if, for each equivalence class C of ρ and each
letter x ∈ Σ, the restricted function δ : C × {x} → Q is injective. The key property of a swap
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congruence ρ is that an uncertainty S lack reset words whenever it contains distinct states r and
s with rρs. A reduction turns an arbitrary DFA with a given uncertainty to a strongly connected
case, where:

1. there are two copies of the original automaton and two additional states E,E;
2. the number of letters is increased by the number of former strongly connected components;
3. the new uncertainty contains one copy of the original one plus the state E.

There is a fixed swap congruence where each equivalence class, besides of the class
{
E,E

}
, consists

of the two copies of an original state. The additional letters make the resulting DFA strongly
connected, but their possible effective application during synchronization makes both E and E
appear in the resulting uncertainty. Thus, though the resulting DFA is strongly connected, the
only reset words correspond to reset words of the original DFA.

4 A Note on Depths in Transformation Semigroups

It has been pointed out by Arto Salomaa [6] in 2001 that very little is known about the minimum
length of a composition needed to generate a trasformation from a given set of generators. We
denote by Tn the semigroup of all transformations of {1, . . . , n}. Given G,F ⊆ Tn, we are interested
in the length k of a shortest sequence g1, . . . , gk ∈ G such that g1 ◦ · · · ◦ gk ∈ F. There is a trivial
upper bound n! given by the size of Tn. Arto Salomaa refers to a single nontrivial lower bound,
namely ( 3

√
n)!. In fact, he omits the 2Ω(n) lower bounds for synchronization, which apply easily to

the scope of depths.
Recently, a tight bound of the form 2ne

√
(n/2) lnn(1+o(n)) was settled by Panteleev [5].
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