Complexity of a Problem Concerning Reset Words for Eulerian Binary Automata

Vojtěch Vorel

Charles University Prague, Czech Republic

LATA 2014

Outline

1 General Introduction

- Finite Automata and Synchronization
- Computational Tasks

2 NP-Completeness of SYN

3 Present Result

Outline

Finite Automata and Synchronization

Computational Tasks

2 NP-Completeness of SYN

3 Present Result

Finite Automata

• Automaton is a triple $A = (Q, X, \delta)$

- Q ... finite set of *states*
- X ... finite set of *letters* (the *alphabet*)
- δ ... total function $Q \times X \rightarrow Q$ (transition function)

Extended transition function:

$$\delta: 2^Q \times X^{\star} \rightarrow 2^Q$$

Finite Automata

- Automaton is a triple $A = (Q, X, \delta)$
 - Q ... finite set of *states*
 - X ... finite set of *letters* (the *alphabet*)
 - δ ... total function Q imes X o Q (transition function)
- Extended transition function:

$$\delta: 2^Q \times X^{\star} \to 2^Q$$

General Introduction 00●0000 Finite Automata and Synchronization NP-Completeness of SYN

Present Result

Reset Words

• $w \in X^*$ is a *reset word* of A if

$$|\delta(Q,w)|=1,$$

i.e. if

$$(\forall q \in Q) q \stackrel{w}{\longrightarrow} r$$

for some $r \in Q$.

■ if A has some reset word, we call it synchronizing

General Introduction 000000 Finite Automata and Synchronization NP-Completeness of SYN 00000 Present Result

Reset Words

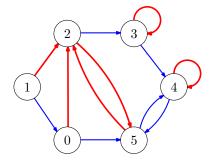
• $w \in X^*$ is a *reset word* of A if

$$|\delta(Q,w)|=1,$$

i.e. if

$$(\forall q \in Q) q \stackrel{w}{\longrightarrow} r$$

for some $r \in Q$.


• if A has some reset word, we call it synchronizing

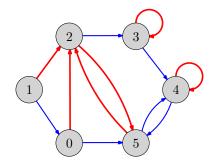
Present Result

Finite Automata and Synchronization

Reset Words: an Example

 $Q = \{0, 1, 2, 3, 4, 5\}$ $X = \{a, b\}$

General Introduction

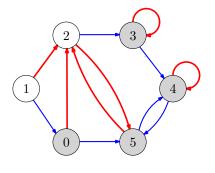

Present Result

Finite Automata and Synchronization

Reset Words: an Example

 $Q = \{0, 1, 2, 3, 4, 5\}$ $X = \{a, b\}$

w =


General Introduction

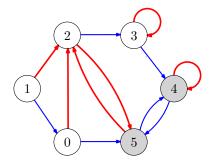
Present Result

Reset Words: an Example

 $Q = \{0, 1, 2, 3, 4, 5\}$ $X = \{a, b\}$

w = b

$$\delta(Q,w) = 4$$


General Introduction

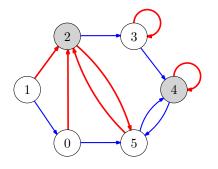
Present Result

Reset Words: an Example

 $Q = \{0, 1, 2, 3, 4, 5\}$ $X = \{a, b\}$

w = bb

$$\delta(Q,w) = 2$$


General Introduction 0000000

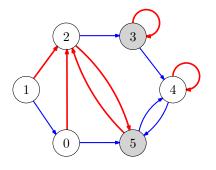
Present Result

Reset Words: an Example

 $Q = \{0, 1, 2, 3, 4, 5\}$ $X = \{a, b\}$

w = bba

$$\delta(Q,w) = 2$$


General Introduction 0000000

Present Result

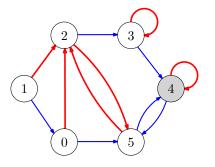
Reset Words: an Example

 $Q = \{0, 1, 2, 3, 4, 5\}$ $X = \{a, b\}$

w = bbab

$$\delta(Q,w) = 2$$

.


General Introduction 000●000 Present Result

Finite Automata and Synchronization

Reset Words: an Example

 $Q = \{0, 1, 2, 3, 4, 5\}$ $X = \{a, b\}$

w = bbabbis a reset word

$$\delta(Q,w) = 1$$

Short Reset Words

Černý conjecture:

- If A is synchronizing, it has a reset word of length at most $\left(|Q|-1\right)^2$
- Known bounds:
 - $\frac{1}{3}|Q|^3 n^2 + \frac{5}{3}n 1$ (Kohavi, 1970)
 - $= \frac{1}{6} |Q|^3 \frac{1}{6}n \qquad (Pin, 1983)$
 - $\frac{7}{48}|Q|^{3}+\frac{1}{8}n^{2}-\frac{1}{3}n$ (Trakhtman, 2011)

Short Reset Words

Černý conjecture:

• If A is synchronizing, it has a reset word of length at most $(|Q|-1)^2$

Known bounds:

- $\frac{1}{3}|Q|^3 n^2 + \frac{5}{3}n 1$ (Kohavi, 1970)
- $\frac{1}{6}|Q|^3 \frac{1}{6}n$ (Pin, 1983)
- $\frac{7}{48}|Q|^{3}+\frac{1}{8}n^{2}-\frac{1}{3}n$ (Trakhtman, 2011)

Outline

1 General Introduction

Finite Automata and Synchronization

Computational Tasks

2 NP-Completeness of SYN

3 Present Result

EX-SYN: Given an automaton A, decide if it has **any** reset word.

Solvable in polynomial time

MIN-SYN: Given an automaton A and a number d, decide if d is the length of **shortest** reset words of A.

Both NP-hard and coNP-hard

- SYN: Given an automaton A and a number d, decide if A has a reset word **of length at most** d.
 - NP-complete

EX-SYN: Given an automaton A, decide if it has **any** reset word.

Solvable in polynomial time

MIN-SYN: Given an automaton A and a number d, decide if d is the length of **shortest** reset words of A.

Both NP-hard and coNP-hard

- SYN: Given an automaton A and a number d, decide if A has a reset word **of length at most** d.
 - NP-complete

General Introduction 000000 Computational Tasks

EX-SYN: Given an automaton A, decide if it has **any** reset word.

Solvable in polynomial time

MIN-SYN: Given an automaton A and a number d, decide if d is the length of **shortest** reset words of A.

Both NP-hard and coNP-hard

SYN: Given an automaton A and a number d, decide if A has a reset word of length at most d.

EX-SYN: Given an automaton A, decide if it has **any** reset word.

Solvable in polynomial time

MIN-SYN: Given an automaton A and a number d, decide if d is the length of **shortest** reset words of A.

Both NP-hard and coNP-hard

SYN: Given an automaton A and a number d, decide if A has a reset word **of length at most** d.

EX-SYN: Given an automaton A, decide if it has **any** reset word.

Solvable in polynomial time

MIN-SYN: Given an automaton A and a number d, decide if d is the length of **shortest** reset words of A.

Both NP-hard and coNP-hard

SYN: Given an automaton A and a number d, decide if A has a reset word of length at most d.

EX-SYN: Given an automaton A, decide if it has **any** reset word.

Solvable in polynomial time

MIN-SYN: Given an automaton A and a number d, decide if d is the length of **shortest** reset words of A.

Both NP-hard and coNP-hard

- SYN: Given an automaton A and a number d, decide if A has a reset word of length at most d.
 - NP-complete

EX-SYN: Given an automaton A, decide if it has **any** reset word.

Solvable in polynomial time

MIN-SYN: Given an automaton A and a number d, decide if d is the length of **shortest** reset words of A.

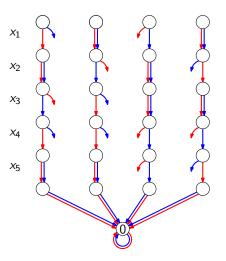
Both NP-hard and coNP-hard

SYN: Given an automaton A and a number d, decide if A has a reset word of length at most d.

Reductions from SAT

Propositional formula φ in CNF \downarrow Automaton A and number d

such that


First Method

$$\varphi = (x_1 \lor \overline{x_3} \lor x_4) \land (\overline{x_2} \lor x_3 \lor x_4) \land (\overline{x_1} \lor \overline{x_4} \lor \overline{x_5}) \land (x_2 \lor \overline{x_4} \lor x_5)$$

$$X = \{1, 0\}$$

d = 5

Is there a reset word of length 5?

d

$$\varphi = (x_1 \lor \overline{x_3} \lor x_4) \land (\overline{x_2} \lor x_3 \lor x_4) \land (\overline{x_1} \lor \overline{x_4} \lor \overline{x_5}) \land (x_2 \lor \overline{x_4} \lor x_5)$$

$$\downarrow$$

$$X = \{x_1, \dots, x_n, \overline{x_1}, \dots, \overline{x_n}\}$$

$$d = 5$$

$$Is there a reset word of length 5?$$

$$x_4, \overline{x_4}$$

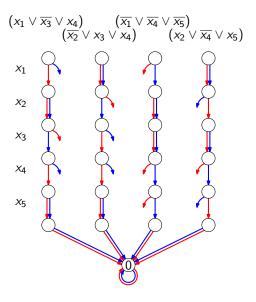
$$x_2, \overline{x_5}$$

$$x_5, \overline{x_5}$$

$$(0)$$

An automaton $A = (Q, X, \delta)$ is **Eulerian** if each state has |X| incoming transitions.

General Introduction 0000000


NP-Completeness of SYN

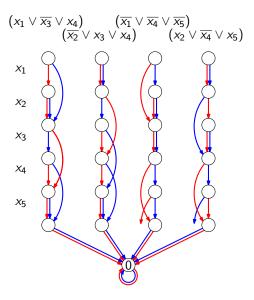
Present Result

Eulerian automata

X =	$\{1, 0\}$
-----	------------

d=5

General Introduction 0000000

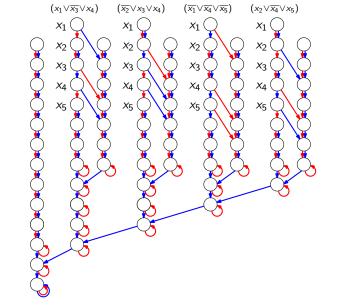

NP-Completeness of SYN

Present Result

Eulerian automata

X =	{ 1 ,	0}
-----	--------------	----

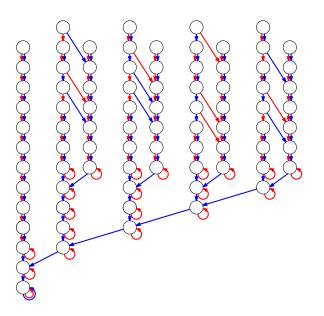
d=5



General Introduction 0000000

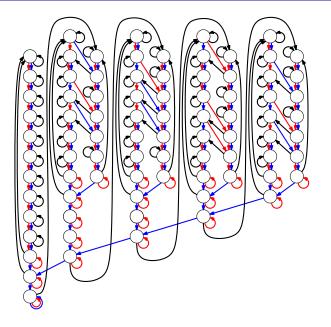
NP-Completeness of SYN

Present Result


Eulerian automata

$$X = \{1, 0\}$$

d = 12


Eulerian automata

$$X = \{1, 0\}$$

d = 12

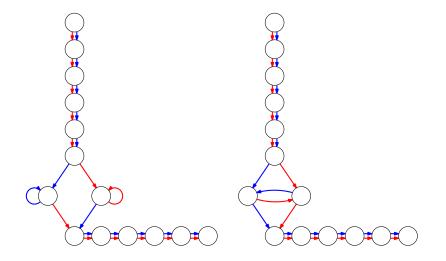
Eulerian automata

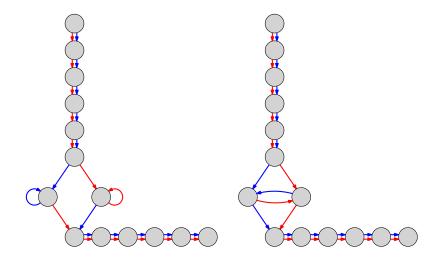
$$X = \{\mathbf{1}, \mathbf{0}, c$$

d = 12

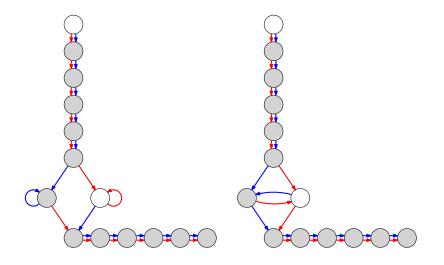
SYN is NP-complete even if restricted to Eulerian automata with a two-letter alphabet.

Present Result

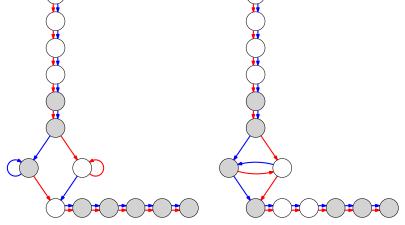

NP-Completeness of SYN 00000


Present Result

Proof Ideas

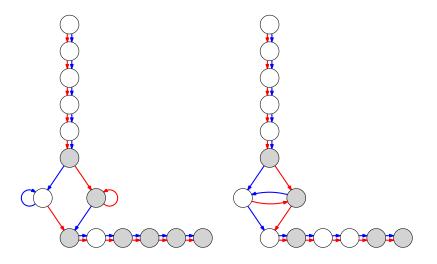

• φ in 3-CNF

- Recording
- Testing


General Introduction	NP-Completeness of SYN	Present Result
0000000	00000	00000
Recording		
w = a		

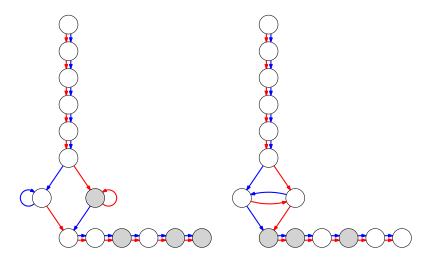
	eteness of SYN	Present Result ○○●○○○
Recording		
w = ab		
	\bigcirc	
\bigcirc	\square	
\bigcirc	\bigcirc	
\bigcirc	\bigcirc	
\bigcirc	\bigcirc	
Ŕ	<u> </u>	

		eteness of SYN	Present Result ○○●○○○
Recording			
w = a <mark>b</mark> a			
\sim	\sum		


General Introduction 0000000	NP-Completeness of SYN 00000	Present Result 00●000
Recording		
w = abaa		
	$\overline{\Theta}$	

Present Result

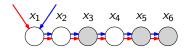
Recording

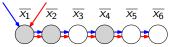


General Introduction 0000000	NP-Completeness of SYN 00000	Present Result ○○●○○○
Recording		
w = abaabb		

Present Result

Recording




	00000
Recording	
w = abaabbb	

General Introd 0000000	uction	NP-Completeness of SYN 00000	Present Result ○○●○○○
Recording			
w =	abaabbb		

Present Result

Testing

	NP-Completeness of SYN 00000	Present Result 000●00
Testing		
	$) \qquad \overrightarrow{x_1} \qquad \overrightarrow{x_2} \qquad \overrightarrow{x_3} \qquad \overrightarrow{x_4} \qquad \overrightarrow{x_5} \qquad \overrightarrow{x_6} \\ \qquad $	

....

```
recording part (fix an assignment)
```

```
• transpose part a^k
```

```
test part (prove that the assignment works)
```

	NP-Completeness of SYN 00000	Present Result 000●00
Testing		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
0+0+0+0+0+0		

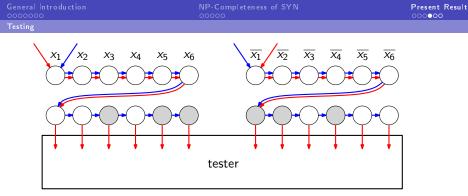
- recording part (fix an assignment)
- transpose part a^k

test part (prove that the assignment works)

....

	NP-Completeness of SYN 00000	Present Result 000●00
Testing		
	$\overline{x_1} \overline{x_2} \overline{x_3} \overline{x_4} \overline{x_5} \overline{x_6}$	

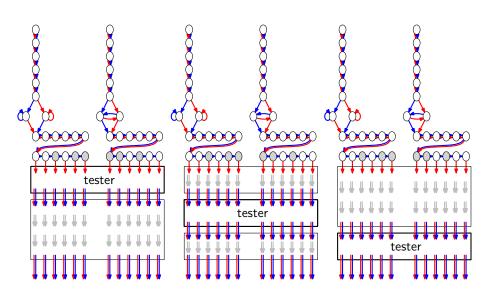
....

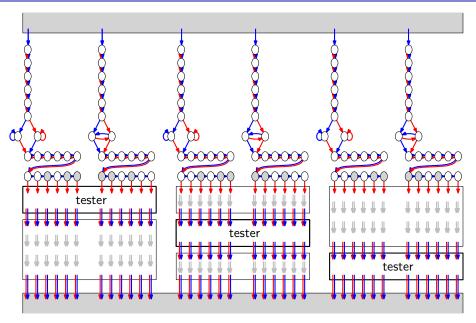

- recording part (fix an assignment)
- transpose part a^k

```
test part (prove that the assignment works)
```

						NP-Completeness of SYN 00000							Presen 000●0	t Resul	
Testing															
		(3 X	×4 x	(5) (5	×6		\overline{x}					ks x	6		
($) \cdot ($)•()•()•(\sum		$\left(\right)$)-()•()•()•()•($\left(\right)$		
					ł	test	er	,							

. . . .


- recording part (fix an assignment)
- transpose part a^k
- test part (prove that the assignment works)


- recording part (fix an assignment)
- transpose part a^k
- test part (prove that the assignment works)

...

Testing

Testing

Summary

- A *reset word* takes all the states to some unique state.
- SYN Does A have a reset word of length at most d?
- SYN is NP-complete (Eppstein, 1990).
- Does it remain NP-hard if restricted to Eulerian automata with a constant-size alphabet?
 - For a 3-letter alphabet it does (Martyugin, 2011).
 - For a 2-letter alphabet it does as well.