Complexity of Road Coloring with Prescribed Reset Words

Vojtěch Vorel

Adam Roman

Charles University Prague, Czech Republic Jagiellonian University Krakow, Poland

LATA 2015

Deterministic Finite Automata

- DFA: a triple $A = (Q, \Sigma, \delta)$
 - Q ... finite set of *states*
 - Σ ... finite set of *letters* (the *alphabet*)
 - δ ... total function $Q \times \Sigma \rightarrow Q$ (*transition function*)

Reset Words

•
$$w \in \Sigma^{\star}$$
 is a *reset word* of a DFA if $\delta(s_1, w) = \delta(s_2, w)$ for each $s_1, s_2 \in Q$.

• A DFA is *synchronizing* if it has some reset word.

Reset Words

•
$$w \in \Sigma^{\star}$$
 is a *reset word* of a DFA if $\delta(s_1, w) = \delta(s_2, w)$

for each $s_1, s_2 \in Q$.

• A DFA is *synchronizing* if it has some reset word.

Road Coloring

directed multigraph with constant out-degree k

 \downarrow

DFA with $|\Sigma| = k$

Road Coloring

directed multigraph with constant out-degree k

 \downarrow

synchronizing DFA with $|\Sigma| = k$

Road Coloring

$\begin{array}{c} \mbox{road colorable} \\ \mbox{directed multigraph with constant out-degree } k \end{array}$

 \downarrow

synchronizing DFA with $|\Sigma| = k$

Admissible Graphs

FACT. Each road colorable graph is aperiodic.

DEFINITION. k-admissible \equiv aperiodic and having constant out-degree k

Admissible Graphs

FACT.

Each road colorable graph is aperiodic.

DEFINITION.

k-admissible \equiv aperiodic and having constant out-degree k

Given an |Σ|-admissible graph G, is there a synchronizing coloring δ of G?

- 2 Given an |Σ|-admissible graph G and an integer k ≥ 1, is there a coloring δ of G with a reset word of length ≤ k?
- Given an |Σ|-admissible graph G and a word w ∈ Σ*,
 is there a coloring δ of G with reset word w?

- Given an |Σ|-admissible graph G,
 is there a synchronizing coloring δ of G?
- 2 Given an |Σ|-admissible graph G and an integer k≥ 1, is there a coloring δ of G with a reset word of length ≤ k?
- Given an |Σ|-admissible graph G and a word w ∈ Σ*,
 is there a coloring δ of G with reset word w?

1 Given an $|\Sigma|$ -admissible graph *G*,

is there a synchronizing coloring δ of G?

- 2 Given an |Σ|-admissible graph G and an integer k ≥ 1, is there a coloring δ of G with a reset word of length ≤ k?
- 3 Given an |Σ|-admissible graph G and a word w ∈ Σ^{*}, is there a coloring δ of G with reset word w?

1 Given an $|\Sigma|$ -admissible graph G,

is there a synchronizing coloring δ of G?

- 2 Given an |Σ|-admissible graph G and an integer k ≥ 1, is there a coloring δ of G with a reset word of length < k?</p>
- 3 Given an $|\Sigma|$ -admissible graph G and a word $w \in \Sigma^*$, is there a coloring δ of G with reset word w?

Problem No. 2 (SRCP)

2 Given an |Σ|-admissible graph G and an integer k ≥ 1, is there a coloring δ of G with a reset word of length ≤ k?

	k = 2	k = 3	$k = 4, 5, \dots$
$ \Sigma = 2$	Р		
$ \Sigma = 3$	Р		NPC
$ \Sigma = 4, 5, \dots$	Р		NPC

Adam Roman, LATA 2012

Problem No. 2 (SRCP)

2 Given an |Σ|-admissible graph G and an integer k ≥ 1, is there a coloring δ of G with a reset word of length ≤ k?

	k = 2	k = 3	$k = 4, 5, \ldots$
$ \Sigma = 2$	Р		
$ \Sigma = 3$	Р		NPC
$ \Sigma = 4, 5, \dots$	Р		NPC

Adam Roman, LATA 2012

Problem No. 2 (SRCP)

2 Given an |Σ|-admissible graph G and an integer k ≥ 1, is there a coloring δ of G with a reset word of length ≤ k?

	k = 2	k = 3	$k = 4, 5, \dots$
$ \Sigma = 2$	Р		
$ \Sigma = 3$	Р	Р	NPC
$ \Sigma = 4, 5, \dots$	Р	Р	NPC

Roman and Drewienkowski, 2014

Problem No. 2 (SRCP)

2 Given an |Σ|-admissible graph G and an integer k ≥ 1, is there a coloring δ of G with a reset word of length ≤ k?

	k = 2	k = 3	$k = 4, 5, \dots$
$ \Sigma = 2$	Р	Р	NPC
$ \Sigma = 3$	Р	Р	NPC
$ \Sigma = 4, 5, \dots$	Р	Р	NPC

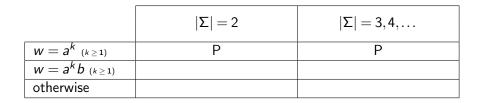
Vorel and Roman, 2014

Problem No. 3 (SRCW)

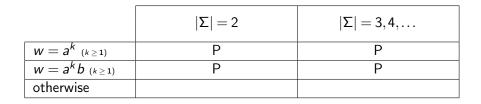
Problem No. 3 (SRCW)

$$\begin{split} |\Sigma| = 2 & |\Sigma| = 3, 4, \dots \\ \hline w = a^k _{(k \ge 1)} & \\ \hline w = a^k b _{(k \ge 1)} & \\ \hline \text{otherwise} & \\ \hline \end{split}$$

Problem No. 3 (SRCW)



Problem No. 3 (SRCW)



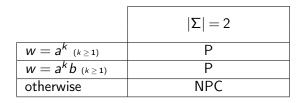
Problem No. 3 (SRCW)

	$ \Sigma = 2$	$ \Sigma =3,4,\ldots$
$W = a^k (k \ge 1)$	Р	Р
$w = a^k b_{(k \ge 1)}$	Р	Р
otherwise	NPC	

Problem No. 3 (SRCW)

	$ \Sigma = 2$	$ \Sigma =3,4,\dots$
$W = a^k (k \ge 1)$	Р	Р
$w = a^k b_{(k \ge 1)}$	Р	Р
otherwise	NPC	?

Problem No. 3 (SRCW)



Basic Definitions	Old and New Results	Methods
	000	

	$ \Sigma = 2$	
	general	S. C.
$w = a^k$ (k \ge 1)	Р	
$w = a^k b_{(k \ge 1)}$	Р	
otherwise	NPC	

Basic Definitions	Old and New Results	Methods
	000	

	$ \Sigma = 2$	
	general	S. C.
$w = a^k$ (k \ge 1)	Р	Р
$w = a^k b \ {}_{(k \ge 1)}$	Р	Р
otherwise	NPC	

Basic Definitions	Old and New Results	Methods
	000	

	$ \Sigma = 2$	
	general	S. C.
$w = a^k$ (k \ge 1)	Р	Р
$w = a^k b \ {}_{(k \ge 1)}$	Р	Р
otherwise	NPC	

Basic Definitions	Old and New Results	Methods
000000	000	00000

	$ \Sigma = 2$			
	general S. C.			
$w = a^k$ $(k \ge 1)$	P P			
$w = a^k b_{(k \ge 1)}$	P P			
w = abb	NPC	Р		
otherwise	NPC	?		

Basic Definitions	Old and New Results	Methods
000000	000	00000

	$ \Sigma = 2$			
	general S. C.			
$w = a^k (k \ge 1)$	Р	Р		
$w = a^k b \ {}_{(k \ge 1)}$	Р	Р		
w = abb	NPC	Р		
$W = aVa \ (v \notin \{a\}^{\star})$	NPC	NPC		
otherwise	NPC	?		

A Special Variant of SAT

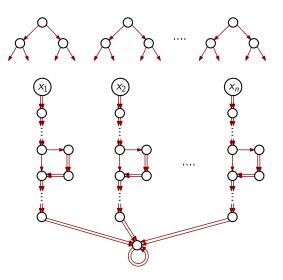
Input: A formula in CNF, clauses in triples of the form

$$(x_1 \lor x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_2) \land (\neg x_3 \lor \neg x_4).$$

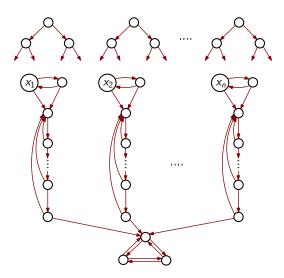
Output: Satisfiable?

Methods 0●000

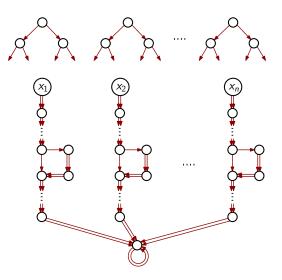
NP-Completeness of SRCW with $w \in a^{\geq 1}b^{\geq 1}a^{\geq 1}$



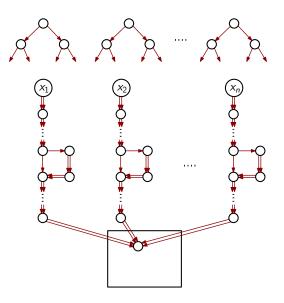
NP-Completeness of SRCW with $w \in a^{\geq 1}b^{\geq 2}$



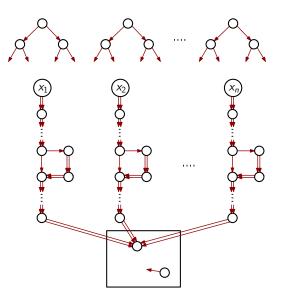
Basic Definitions	Old and New Results	Methods
000000	000	00000



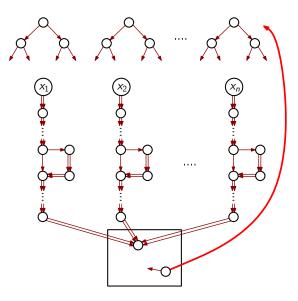
Basic Definitions	Old and New Results	Methods
000000	000	00000



Basic Definitions	Old and New Results	Methods
000000	000	00000



Basic Definitions	Old and New Results	Methods
000000	000	00000



Basic Definitions	Old and New Results

Conclusion

	$ \Sigma = 2$		$ \Sigma = 2$		$ \Sigma =3,4,\ldots$	
	general	S. C.	general	S.C.		
$w = a^k$ (k \ge 1)	Р	Р	Р	Р		
$w = a^k b_{(k \ge 1)}$	Р	Р	Р	Р		
w = abb	NPC	Р				
$W = aVa \ (v \notin \{a\}^{\star})$	NPC	NPC	2	2		
$w \neq a^k b^l$ with a S.C. incomplete sink device	NPC	NPC		·		
otherwise	NPC	?				

Which binary words have strongly connected incomplete sink devices?