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1 Introduction

Various AI solutions are more and more parts of our lives – intelligent assis-
tants, the Internet of Things, autonomous cars, traffic control, mechaniza-
tion of production and distribution, improving the use of data, or helping
with research. All these AI solutions need to work together and also co-
exist (and better cooperate) with humans in one diverse ecosystem. In this
survey, we explore two main abilities which we consider interconnected
and important to acquire for agents in such human/AI environment we
are converging to. These two abilities are awareness of others, and adapt-
ability. We will also discuss related abilities and multi-agent system (MAS)
tasks, especially focusing on cooperation. We are exploring these topics in
the context of multi-agent reinforcement rearning (MARL) as it is currently
a very promising approach, which will hopefully bring better scalability
to problems originally solved by planning, and has the potential to pro-
duce adaptive and continuously learning agents. With growing computing
power we want to delegate as much problem-solving time as possible to
computers. The world is demanding more and more automation, requir-
ing AI to solve more complicated, real-world problems. There is, naturally,
no desire in human resources for hand-crafted rules or manually anno-
tated datasets, and the history of deep learning, image recognition, or nat-
ural language processing constantly shows that less human expert knowl-
edge incorporated in the learning process, better the results are (Campbell,
Hoane Jr, and Hsu, 2002; Devlin et al., 2019; Sutton, Bowling, and Pilarski,
2022). Reinforcement learning, as learning from the experienced interac-
tion, seems to be a perfect fit for this need, which causes RL to be a thriving
research domain.

This text does not aim to be an exhaustive overview of all related papers
and methods in the broad areas of MAS and MARL. We would rather show
the variability of tasks and their solutions, the richness and problems of
existing evaluation methods, and offer a different point of view from the
awareness and adaptability perspective, which we would like to conduct
future research on.

Text structure

The first part of the survey is dedicated to the review of basic concepts of
multi-agents systems, reinforcement learning, and game theory. Feel free
to skip these sections, if you are familiar with the field. We than continue
in Section 3 with discussion on different benchmarks and cooperation met-
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rics, and finally sections 4 - 6 describes awareness, adaptability, existing
approaches and relationships in more details. Critical evaluation and sum-
mary together with the future work proposals can be found in conclusion.

2 Background

We will briefly present a background of multi-agent system (MAS) and re-
inforcement learning (RL) needed to understand other parts of the survey.
Advanced readers can skip to a Section 4 and refer to this section only if
needed. We will frequently refer to Hanabi, Overcooked, and Flatland MAS
benchmarks through this section. If you are not familiar with these prob-
lems, they are, together with any other benchmarks, described in section
3.2.

2.1 Multi-Agent Systems

Multi-agent system (MAS) consists of two or more autonomous agents.
Each agent has some form of sensors and actuators to interact with the en-
vironment and with other agents (Wooldridge, 2009). Such agents can be
embodied AI programs, e.g. robots, pure software agents or even animals,
or humans. Interaction between agents can be direct (e.g., communication,
multi-peer actions like building alliances, interchanging, or attacking) or
indirect via the influence on the environment. We can divide MAS accord-
ing to several criteria (described in the following text): environment type,
setting, and agent population.

Environment Properties According to (Russell et al., 1995), we can de-
scribe environments using the following properties:

• Partial or full observability:
Fully observable environment provides all information for planning
the optimal solution. Nevertheless, computing optimal solution is of-
ten infeasible due to the dimensionality which makes many problems
intractable.

• Determinism/stochasticity:
Learning in a deterministic environment is certainly easier than in
the stochastic one. In addition to the environment, other agents can
also be a source of stochasticity in MAS. They can simply perform
exploration action once in a while or they can choose between actions
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with some probability whether to achieve better performance or for
being unreadable to opponents.

• Episodic/Sequential:
Episodic environments, for example, many board games, are divided
into episodes with a fresh start, reset of all environments properties,
obtained rewards, etc. Meanwhile, sequential problems never come
back to the starting position, and changes made earlier in the envi-
ronment will influence the environment forever. Sequential environ-
ments can be finite or infinite. In the finite case, we could model the
as a very long episodic task. The episodic task can also be repeti-
tive, thus it consists of episodes with a fresh environment start, but
agents can remember previous plays. For example in Iterated Pris-
oner’s Dilemma (Press and Dyson, 2012), the environment (available
actions, rewards, etc.) are independent of previous episodes, but the
agent remembers if their opponent betrayed them previously or not,
which could certainly affect their future decisions.

• Static/Dynamic:
Static environment, either deterministic or stochastic, does not change
its way of working (rewards, transition probabilities) and the state
except after the agent’s action. Other agents in the environment how-
ever also cause the dynamism of the environment, if we look at this
from the single agent point of view.

• Discrete/Continuous
We can discuss the discreteness of the formal model of environment
states, inputs, and actions. Easier and much more common in the lit-
erature is an environment with discrete states and actions, although
the research is shifting towards more complex problems, e.g., com-
puter games with visual information, where the environment state
space (screen frames) is continuous. Usually considered action space
is discrete, which can be achieved by dividing continuous action space
into discrete actions.

Settings The most important source of variance between multi-agent sys-
tems is a setting. The setting of such a system can be cooperative, compet-
itive, or mixed depending on the goal each agent have (Robinson and Go-
forth, 2005). The goal in the cooperative setting is the same for all agents:
to maximize the common gain. A frequent example of competitive setting
is two-player zero-sum game (e.g. chess or go), which served well for the
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development of single-agent RL algorithms in the last decade. A pure com-
petitive setting with three and more players is, however, hard to imagine.
Even competitive games with one winner require typically cooperation in
some game stages. The most natural type of setting is a mixed case when
agents have reasons both to cooperate and compete (Dafoe et al., 2020). Hu-
man society is, after all, an example of such a system, where every agent
has its own goals and preferences, but agents cannot be completely selfish,
because they also benefit from the common welfare. We can further divide
mixed settings into those where common interest is greater than conflict in-
terest and vice versa (Leibo et al., 2021). Examples of existing benchmarks
of respective types can be found in Figure 1 and in Section 3.

Figure 1: Examples of all three MAS settings: cooperative, competitive and
mixed setting - Chess, Overcooked and Diplomacy (see section 3.2 for more
info).
sources: chess.com, (Wang et al., 2020) and http: // www. amzi2. com/
AINewsletter/ newsletters/ aix_ 0409. htm

Diversity of Agents Agents can differ in many ways which, together with
the environment properties and setting, brings diversity and potential dif-
ficulties in MAS problems. We can categorize them using three properties:
character, abilities, and motivation. As a character of agent, we have in
mind different agent architectures, different training processes, and differ-
ent policies. Through different policies, we can also express the altruism or
hostility of agents. Some agents also could be optimal and some could be
not. Motivation of agents can differ because of different obtained rewards,
therefore due to different goals and preferences, or can be influenced by an
exploration effort or another introduced stochasticity. Agents can also vary
in their abilities – they can obtain different information for example due to
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their field of view size, different positions, or different use of a communi-
cation channel. They can also have a diverse set of possible actions.

2.2 Cooperation abilities

The majority of problems require some kind of cooperation, therefore is a
need for the following key abilities (Dafoe et al., 2020):

• Understanding of other agents, their goals, beliefs, and future behav-
ior.

• Communication among agents for sharing information and coordi-
nating actions.

• The ability of commitments, so an agent can step back from its goals
in favor of the common good.

• Centralized or decentralized institutions, e.g., legal systems or norms
which introduce more predictability of the system, prevent undesired
situations, and help to solve repeatedly occurring problems, or coor-
dinate ties breaking.

This survey focuses mainly on understanding other agents and agents adapt-
ability, although all four abilities are interconnected and also adaptability
and awareness of others it essential for all four cooperation skills.

In our opinion, understanding someone’s actions (=modelling other
agents) or their words (=communication) seems to be closely related and we
would like to encourage more research on the matter of transfer learning
between these two tasks. Communication is, of course, a much more com-
plicated problem, because action space is way larger, especially in the case
of arbitrary long strings from the relatively large alphabet, e.g. natural lan-
guages. Additionally, communication problem lies not only in understand-
ing someone’s message. There is a need to decide what information should
be shared, how to encode it (e.g., in natural languages there are many ways
how to say the same thing), and to whom it should be sent (broadcasting all
information to others would explode the decision problem space for each
agent) and, of course, how to use an obtained information.

The ability of commitment can also be related to understanding. For
example, in the Flatland benchmark which represents a train network, your
team-mate may need to pass through the train junction first to reach their
goal, although it can mean a delay for you. Another example from the
Overcooked, simulation of a restaurant kitchen, your co-working cook may
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need to get some tomatoes and you must step away. For all that, you need
to understand your teammate intentions to help him.

Emergent norms can be very helpful in the organization of a group of AI
agents or humans, but they can also be undesirable. For example in Han-
abi game, norms like indicating red or yellow color if the player’s newest
card is playable can be very helpful if team members are not changing (Fo-
erster et al., 2019). Both emergent and predefined types of conventions are
useful for coordination – breaking ties in the same way, or convergence to
the same equilibria. One extreme approach is a completely deterministic
learning process, which will lead to the coordination of the same equilib-
ria. It is, however, a question of whether this is still a type of cooperation
we want to achieve. It definitely does not solve the problem of adaptation.
An inability to adapt to new agents (e.g. new team-mates in a cooperative
game) is the big problem of (not only) self-play training scheme and ar-
bitrary norms can make it worse (Hu et al., 2020). In the Hanabi example,
even the agents trained with the same algorithm only in the different exper-
iment can have different norms, e.g., indicating blue and green in the same
situation. Most algorithms and agent policies are unfortunately not able
to deal with game symmetries, although some successful attempts were
already made (Fickinger et al., 2021; Moravčík et al., 2017).

Multi-agent systems face lot of problems on the way to previously men-
tioned abilities. Many multi-agent problems are at least NP-hard. After
all, even the problem of a single agent in the environment lies in PSPACE
(“The Computational Complexity of Agent Design Problems” 2000) and
more agents bring additional complexity. Many single-agent algorithms
run into a problem with the curse of dimensionality while being applied
straightforwardly to multi-agent problems (details in Section 2.4). One way
of solving dimensionality problems is a decentralization – let every agent be
an independent entity that is able to cooperate and convert the problem
back to the single-agent space, although while being aware of the more
complex environment. One promising approach to training such agents
is the reinforcement learning (RL). When we train an agent with RL, we
want him either to cooperate or to compete. As for the competitive part
in MAS, basic strategies besides learning the problem solution (e.g., play
the game well) is to exploit the opponent’s weaknesses and not having a
transparent and deterministic strategy, thus the opponent cannot do the
same thing. Good performance towards the competitive surroundings is,
to some extent, presented naturally in RL algorithms, meanwhile, the co-
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operation and the more sophisticated interaction in more-than-two-agents
systems is still an open problem (Nalepka et al., 2021).

Another area of problems comes from group heterogeneity as described
more in Section 4, as first MARL algorithms usually used self-play to train
a group of architecturally identical agents. We will take a deeper look at
possible MAS challenges in the Section 4.5. This section will continue with
presenting the most important general single- and multi-agent reinforce-
ment learning techniques, before we explore specifics of the agent mod-
elling, adaptability, and cooperation in the rest of the survey.

2.3 Singe-Agent Reinforcement Learning (SARL)

It is obligatory to mention great success of reinforcement learning (RL) in
the last twenty years in games like Chess (Campbell, Hoane Jr, and Hsu,
2002), Go (Schrittwieser et al., 2020; Silver et al., 2016), Shogi (Schrittwieser
et al., 2020), Checkers (Schaeffer et al., 1992), Poker (Moravčík et al., 2017),
DOTA2 (OpenAI Five), Starcraft (Vinyals et al., 2019), or Atari (Mnih et
al., 2013). RL has some advantages over other machine learning methods,
namely no need for gold data and potential for innovative/non-human so-
lutions.

Generally, RL is good for environments where generating and running
the simulation is easy and cheap as an agent is learning an optimal policy
for action selection by a trial-and-error interaction with the environment.

The reinforcement learning problem is formally defined as a Markov
Decision Process (described in Figure 2). We will present a definition of a
partially observable variant, Partially Observable Markov Decision Process
(POMDP) (Pineau, Gordon, and Thrun, 2006).

POMDP is an 8-tuple (S ,A, Ω, R, P, O, ρ0, γ), where:

• S is a set of environment states,

• A is a set of actions available for the agent

• Ω is a set of all possible observations,

• R : S × A → R is a reward function defining reward in the step t as
rt = R(st, at, st+1),

• P(st+1 = s′|st, at) is a transition probability from one state to another,

• O : A×A → P(Ω) is a observation model where O(ωt+1|at, st+1) defines
the probability of observing ωt+1 after action at led to the state st+1,
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Figure 2: Reinforcement learning diagram. In every time step t, agent ob-
serves an environment state st, performs an action At, which leads to the
change of the environment state from state St to St+1 and agent also obtains
a reward Rt+1. source: Figure 2 of (Sutton and Barto, 2018)

• ρ0 is an initial state distribution,

• γ ∈ [0, 1] is a discount factor used for indefinite episodes.

Markov property of the process means, that the current state of the en-
vironment depends only on the previous one, not on the whole history:

Markov Property Process has a Markov property if for the process, where st is
the state in the step t, if fulfils for every step:

P(st|st−1, st−2, ..., st0) = P(st|st−1).

The RL goal is to learn an optimal policy π : S → A, therefore learn
what to do in every time step to maximize the expected sum of rewards:

Expected sum of rewards

Eπ(
∞

∑
k=0

γkRk+1|ak = π(sk))

.

We can evaluate policy using state-value or action-value functions.
State-value function express what value assigns policy π to state s, thus

how good this state is and what is the expected reward if the agent encoun-
ters this state:
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State-value function

vπ(s) = Eπ[
∞

∑
k=0

γkRt+k+1|St = s].

Action-value function captures what your policy thinks about the suit-
ability of action a in the state s again with respect to the discounted sum of
rewards:

Action-value function

qπ(s, a) = Eπ[
∞

∑
k=0

γkRt+k+1|St = s, At = a].

Optimal policy is then a policy, which has an optimal value function,
therefore value function returns the maximum possible value for all states.
The agent updates its policy according to the obtained reward following
the update rules for the corresponding algorithm.

We can divide RL techniques according to (Buşoniu, Babuška, and De
Schutter, 2008) into model-based, model-free, and model-learning. The distinc-
tion between these methods and also between RL and planning is not al-
ways clear (Moerland et al., 2022), but we can informally describe these
types as follows.

Model-free Model-free methods do not need a model to learn how to re-
act in different situations, therefore estimate policy or value function di-
rectly (Sutton and Barto, 2018). The most important methods are those
based on temporal difference (TD)1. As foundation TD algorithms we can
name Q-learning (Kröse, 1995), or SARSA (Rummery and Niranjan, 1994),
being an inspiration for all more complicated approaches. Q-learning up-
date changes the action-value function for the given state and action by the
difference between the current value and approximated new value based
on the newly obtained reward:

q(St, At)← q(St, At)︸ ︷︷ ︸
old value

+α[Rt+1 + γ max
a

q(St+1, a)︸ ︷︷ ︸
aproxim. of the new value

−q(St, At)].

Sarsa uses almost the same update, except that approximation of the new
value for an update in the time t is done using the q-value of action and

1The spectrum of TD methods is wide and can also include model-based techniques (see
https://bair.berkeley.edu/blog/2018/04/26/tdm/.
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state from the next state rather than assuming the next action to be maxi-
mizing the reward:

q(St, At)← q(St, At)︸ ︷︷ ︸
old value

+α[Rt+1 + γq(St+1, At+1)︸ ︷︷ ︸
aproxim. of the new value

−q(St, At)].

The main difference between these two algorithms is that q-learning is off-
policy update meaning that its estimator does not use the current behavior
policy for the estimation, it uses the greedy policy instead.

Currently most successful algorithms use deep neural networks with
an actor-critic architecture (Witten, 1977), namely DQN (Mnih et al., 2015),
Rainbow (Hessel et al., 2017), DDPG (Lillicrap et al., 2019), TD3 (Fujimoto,
Hoof, and Meger, 2018), and A3C (Mnih et al., 2016).

Model-based Model-based RL (Sutton and Barto, 2018) needs an access
to the full dynamics of the environment. This is possible in e.g. board
games, but it is very rare for real-world problems because environment dy-
namics are either unknown or too complicated to simulate. These tech-
niques, however, often guarantee convergence and are quicker, because
knowing the model expectedly helps with learning (Kaiser et al., 2020).
Model-based methods use dynamic programming and includes methods
like policy iteration (Puterman and Shin, 1978), value iteration (Bellman,
1966), or Monte Carlo Tree Search (Coulom, 2006).

Model-learning Model-learning methods are sometimes described as part
of model-based methods and aim to explicitly learn the model of the en-
vironment, e.g., reconstruct the full observation, or the state of the envi-
ronment, and then use classical model-based methods as if the model was
known (Schrittwieser et al., 2020). While learning the model, we can learn
three different things: full observations (if the environment is only partially
observable) (Beck et al., 2019; Gemici et al., 2017), value function (Farquhar
et al., 2018; Silver et al., 2017; Tamar et al., 2016), or the next environment
state and reward (Ljung, 2017). Also (Buşoniu, Babuška, and De Schutter,
2008) defines model-based learning as applying planning or model-based
methods to a learned model, but you we also combine model-based and
model-free methods in a more complicated system as in AlphaZero (Silver
et al., 2018). A more detailed survey on model-based methods can be found
in (Moerland et al., 2022).
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2.4 Multi-Agent Reinforcement Learning (MARL)

This section describes extensions of single-agent RL to multi-agent system
(MAS). We can describe the multi-agent problem formally as a Multi-Agent
Partially Observable Markov Decision Process (MPOMDP) (Boutilier, 1996). In
MPOMDP all agents have the same reward, thus a major disadvantage is
its limitation to a pure cooperative setting only. This straightforward ex-
tension to MAS creates a new action space by taking every possible combi-
nation of individual actions as one of the new actions, thus another prob-
lem is the exponential growth of action space which causes the algorithm
to struggle to converge in a meaningful time. A more general concept is
called Stochastic Game (SG), which can also capture the pure cooperative or
competitive settings by placing some restrictions upon rewards.

Partially Observable Stochastic Game (POSG) (Hansen, Bernstein, and
Zilberstein, 2004) is a 9-tuple of (S , N, {Ai}, {Ωi}, {Ri}, {Oi},P, ρ0, γ) for
i ∈ 1, .., N, where:

• S is a set of environment states,

• N is a number of agents,

• Ai is a set of actions for agent i,

• Ωi is a set of possible observations for agent i,

• Ri : S × Aπ × S → R is a reward function for agent i determining the
reward after action at, which changed the environment state from st to st+1.
By Aπ we denote the Cartesian product Πi∈NAi

• Oi : S×Ai → P(Ωi) is the observation model expressing the probability of
observation ωi

t+1 ∈ Ωi after action ai
t led to the new state st+1,

• P is a transition model,

• ρ0 is a distribution of the initial state, and

• γ is a discount factor.

Note: (PO)SG and MPOMDP both assume sequential action execution.
Parallel execution is modelled by Agent-Environment Cycle Game (Terry
et al., 2020b).

Besides dimensionality, another problem arising in MAS is a non-stationarity.
We can pretend that other agents are just a part of an environment and ap-
ply SARL techniques, but other agents are learning too and this violates the
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Markov property, on which many convergence proofs rely. A deep survey
on this topic can be found in (Hernandez-Leal et al., 2019).

Agents are mostly trained using a typical machine learning process:
agent’s interactions are divided into training and execution(=testing) time.
The agent is always learning during training time, and then in the execu-
tion time should be able to work without further learning, although such
learning would be beneficial for adaptation (see 5) and maybe will be more
encouraged in the future. Agents are typically trained using self-play: the
whole group of agents is trained together and all agents are of the same
type, therefore playing with clones of themselves. This can lead to good
cooperation within the trained group but causes problems when unknown
agents encounter the system.

If we want to apply RL in MAS, we have basically three possibilities (Gupta,
Egorov, and Kochenderfer, 2017): centralized, concurrent or parameters
sharing scheme (see Fig. 3).

Figure 3: Training time of three main training schemes used in MARL:
centralized, concurrent, and parameter sharing scheme. In the concurrent
scheme, every agent has its own action to select and obtains individual re-
ward, other agents are viewed as a part of the environment. Centralized
training works with one joint action in each step and all agents obtain the
same reward. In the parameter sharing scheme, agents have access to some
extra information during training, for example, other agents’ observations
and actions. Execution time is identical to the concurrent approach.
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Centralized approach Centralized approach uses joint action and trains
the policy together for all present agents (Wong et al., 2021). The central-
ized approach has a big problem with dimensionality and therefore does
not scale well, is not prepared for the incoming of new agents to the team,
and requires the full observability or learning of a model of the whole en-
vironment with others. Some working attempts were however made based
on the Q-learning, namely minimax-Q (Littman, 1994), hyper-Q (Tesauro,
2003), Nash-Q (Hu and Wellman, 2003), or Q-RTS (Matta et al., 2019). Al-
though they theoretically converge only under restricted conditions, exper-
iments showed that they can perform well even if constraints are violated
from time to time.

Concurrent learning Concurrent learning means that every agent is train-
ing independently from others. This faces the problem of non-stationarity
and also takes a long time because the agent cannot learn from the expe-
rience of other agents. The typical representatives of concurrent learning
are variants of Winf-or-Learn-Fast (WoLF) (Bowling and Veloso, 2001) and
Regret Minimization (Blum and Mansour, 2007) algorithms.

Parameter sharing scheme Parameter sharing scheme is currently the most
used approach, specifically centralized training – decentralized execution paradigm (Krae-
mer and Banerjee, 2016). Agents share experience and policy parameters
during training, which leads to quicker learning. Each agent has, however,
different observations, and the execution is decentralized which rules out
the curse of dimensionality. This approach is, unfortunately, not suitable
for heterogeneous groups of agents, as all agents share the same policy.
The most promising algorithms are COMA (Foerster et al., 2017), or Multi-
Agent Deep Deterministic Policy Gradient (MADDPG) (Lowe et al., 2017).

2.5 Game Theory

The last research area to be presented is Game Theory, which connects AI
and economy and provides a background for studying the theoretical prop-
erties of algorithms and games themselves. We will offer informal defini-
tions of the most important concepts of game theory here.

2.5.1 Classical Game Theory

The most basic problem formulation in game theory is a normal-form game (Mas-
Colell, Whinston, and Green, 1995) (see Table 1 ):
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Player 1
Player 2

Defect Cooperate

Defect 1,1 3,0
Cooperate 0,3 2,2

Table 1: This table describes rewards for both players and all possible com-
binations in the Prisoners’ Dilemma game. When both players betray each
other, they will serve 2 years in prison, but betraying if the other player
remains silent pays off.

Normal-form Game can be described using a n × m matrix, where n and m
is number of possible actions for player 1 or 2 respectively. The game has only
one round where both players perform their actions simultaneously and the matrix
contains payoff (=reward) for each player and a combination of actions.

Problem solved in MARL are closer to another game formalization: ex-
tensive form (Mas-Colell, Whinston, and Green, 1995), used for description
of games with alternating moves (see Fig. 4), is, on the contrary, often used
in MARL, namely in solving two-player zero-sum competitive games (e.g.,
chess, go, checkers).

Zero-sum game is a game where the sum of both players’ payoff is zero at the end
of the game, for example, one player wins with a payoff of 1 and another loose with
a payoff of -1.

First problem of this model, which is presented also as in the majority
of RL algorithms, is an assumption of rational players.

A rational player (Russell et al., 1995) can be described as aiming to always
perform an optimal action.

An assumption of rational players is, however, not always true and
useful in MAS, mainly for two interconnected reasons. The first reason
is that real-world problems involve a very diverse set of agents including
humans, and most of them are not optimal. Secondary, we usually demand
some level of cooperation, where ignoring team-mate’s sub-optimality can
be very harmful (Carroll et al., 2019) (see 5). s

If we decide anyway to use this formalism, we can describe the desired
solution in terms of a Nash equilibrium, or a best response.

Nash equilibrium (Osborne and Rubinstein, 1994) Players are playing Nash
Equilibrium joint strategy if no player can gain greater reward by changing its
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Figure 4: A general example of an extensive form game. source:
https://policonomics.com/lp-game-theory1-extensive-form

Figure 5: An illustration of suboptimal agent problem in MAS. In the com-
petitive game (left), a suboptimal opponent will improve the reward, while
in the cooperative setting (right) will cause a worse reward than expected.
source: Figure 1 of (Carroll et al., 2019)

strategy. Beware that games can have multiple Nash equilibria with different over-
all payoffs.
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Best response Best response (Fudenberg and Tirole, 1991) is the policy returning
the best results (reward) if other agent policies are given.

Best response policy can act poorly against other policies than it is re-
sponding to.

2.5.2 Evolutionary Game Theory

There is very little work on the theoretical study of MARL algorithms as
the classic game theory does not provide sufficient power. Recently, such
theoretical properties were studied in the context of evolutionary game the-
ory (Bloembergen et al., 2015; Tuyls, Hoen, and Vanschoenwinkel, 2006;
Tuyls and Parsons, 2007), first (Börgers and Sarin, 1997), but a big unex-
plored space still remains. evolutionary game theory (EGT) allowed to
prove convergence of q-learning in MAS in some specific occasions (e.g.,
two players, zero-sum game) (Kianercy and Galstyan, 2012; Tuyls, Hoen,
and Vanschoenwinkel, 2006), and can be useful in the analysis of strategies
to which the different algorithms converge, prediction of their behavior
and therefore for tuning hyper-parameters (Bloembergen et al., 2015).

Figure 6: A visualisation of many different RL algorithms solving Matching
Pennies , Prisonners’ Dilema (Poundstone, 1992) and Stag Hunt (Rousseau,
1984) games. Axes represent the chosen action for player x or y respec-
tively and arrows show the direction of convergence for both players. Pre-
cisely, we can see replicator dynamics represented with arrows, and policy
traces shown by lines. These can be easily plotted for two-player two-action
games, because we can fully describe the policy by the probability of action
1 of each player, denoted as x1 and y1, and then calculate a direction and
velocity of change in each point of the matrix (=for each combination of x1
and y1 ). source: Figure 5 of (Bloembergen et al., 2015)
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Evolutionary game theory (EGT) (Tuyls, Hoen, and Vanschoenwinkel,
2006) share the same mechanism with evolutionary algorithms. There are
mutation and crossover operations applied to the population of individ-
uals according to the replicator dynamics(= crossover and mutation types
and probabilities, rules for crossover selection and choice of new genera-
tion, etc.). Qualities of each individual with respect to the desired result are
measured by a fitness function and the whole system evolves in a way that
favors individuals with greater fitness who will form a majority in the pop-
ulation. For this theory to be connected to playing games, we can imagine
each individual as a representation of possible action. The percentage of
individuals for the same action in the population represents a probability
of selecting this action and the whole system evolves as the agent plays and
learns. For more details, see the great survey in (Bloembergen et al., 2015).

As we have hopefully mentioned all the important concepts, we can go
through the evaluation of the performance of solutions, motivation, and
specific algorithms related to adaptability and awareness in the next sec-
tions.
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3 Evaluation

We have an abstract goal of the adaptive cooperative agent in mind. We
need, however, specific tasks for training and evaluation. This chapter will
present an overview of available metrics, benchmarks, and their properties.

3.1 How to measure

The first question is how to exactly measure the performance of agents and
training algorithms. In the single-agent problems, the most natural met-
ric is averaged achieved score at the end of the game for episodic games
or a score for a certain time if otherwise. Another performance measure
is optimality checking – whether the agent (training algorithm) can find an
optimal solution or at least potentially converge to it. This is also applicable
in MAS, in pure competitive two-player zero-sum games. The situation in
general multi-agent systems is far more complicated. As for optimality, the
first problem is the existence of multiple optima, e.g., multiple Nash equi-
libria. For success, every agent needs to converge to the same optimum.
The second problem is the presence of non-optimal agents. Such a thing
is not unrealistic, humans are for example typically sub-optimal agents. In
this case, optimal agents will probably achieve worse results paired with
non-optimal ones (Carroll et al., 2019) and the goal is good compatibility
between all agents within the system rather than optimality of the agents,
because, in the realistic scenario, we will probably not train, own, or control
every agent in the system. That is why this survey places such an emphasis
on the adaptability of agents. If the environment will be real, thus diverse
and complicated, it is more useful to have agents which are able to cooper-
ate with humans or other non-optimal agents, even if the result will not be
as good as with the team of optimal agents.

Many benchmarks want to encourage cooperation. The achieved score
is not always the best description of how agents cooperate. If the envi-
ronment is not forcing cooperation as the only way of success, which can
be difficult to see in advance, some agents may converge to degenerated
strategies. We can also want agents to specifically work great with humans,
so our metric should reflect this requirement.

Some qualitative measure attempts can be found in (Nalepka et al.,
2021), (Fontaine et al., 2021) and (Carroll et al., 2019),or (Baker et al., 2019)
using three main approaches:

• use environment, which forces cooperation,
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• introduce some cooperation metrics,

• creating transfer intelligence tests.

The problem of evaluating human-friendly agents is tackled in (Carroll
et al., 2019) by setting the environment which is not doable without co-
operation. Results are then evaluated against the human model and also
against humans. While the first approach is limited by the quality of such a
human model, experiments with humans can be long, expensive, and typ-
ically do not use a diversified group of people. Cooperation can be mea-
sured using metrics originally applied in sociology or physics (Nalepka et
al., 2021), namely using recurrence quantification analysis (RQA), joint re-
currence plot (JRPs) and %Determinism (%DET).

Recurrence plot Creation of recurrence plot is a part of recurrence quantification
analysis (Marwan et al., 2007). The recurrence plot represents the state’s re-
occurrences of a dynamical system. All positive values out of the main diagonal
mean re-occurrence of state.

JRP Joint recurrence plot visualize the interaction between such systems, e.g.,
between team members. The plot visualizes the combination of repeated states for
two agents (= recurrent points).

%DET (Brandt, 2020) measures cooperation flexibility (lower the %DET, greater
the flexibility). %DET is the percentage of recurrent points from the JRPs.

Experiments showed that more flexible agents cooperate better and such
teams achieve better results.

Such techniques were first applied to AI agents in (Kim and Nam,
2020) and used in a re-evalution (Nalepka et al., 2021) of original Caroll’s
study (Carroll et al., 2019) with new human involving experiments. They
measure not only interaction but also feedback from human users.

Simple technique of cooperation measurement is concurrent motion (Fontaine
et al., 2021), which equals to overall time spend when both agents are doing
something (no one is waiting). Concurrent motion detects effective coop-
erative work division when no agent is blocked and both can use their po-
tential. This metric is appropriate only for a specific type of environment.
There is also a need to not allow padding actions2 or filter them out dur-
ing calculation. Another strategy we want to reveal during testing is a lazy

2Padding action to have no direct impact on the result, e.g., random walking, oscillating
between two tiles, etc.
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agent (Sunehag et al., 2018), a situation where one agent does not do any-
thing useful at all, which still leads to good performance, as other agents
are able to achieve the goal without him.

Different approach to testing is taken in (Baker et al., 2019). They cre-
ated a set of five intelligence tests as they called them – five tasks in a sim-
ilar environment, with similar actions, etc but different from the original
Hide and Seek game used for training. This approach does not primar-
ily test cooperation, it tries to qualify which specific abilities agents gained
during training. Specific tested abilities included manipulation with ob-
jects or object’s position memory, but this method has the potential to be
used for a better understanding of what agents actually learn. Also as we
want some generality in agents’ abilities, testing transfer possibilities of al-
gorithms could be important.

Any evaluation technique raises questions:

• did agents really cooperate? (=does the environment force coopera-
tion or at least is the metric robust against it?)

• will this metric detect degenerated strategies, e.g., lazy agents?

• is it the way of cooperation we need? Will this work with humans?
Is it the most effective way how to solve the problem? Wouldn’t it be
better to have a different work division? etc.,

These questions should be always carefully answered before the selection
of a metric. The majority of papers focus only on measuring the overall
or mean per-capita score (Leibo et al., 2021)), which shifts the problem
to the right choice of environment, which will not allow undesirable and
degenerated strategies to be successful. More about the influence on the
environment, their automatic generation, problems, and specifics will be
described in the next section.

3.2 Environments and Benchmarks

First, we will discuss the automatic generation of new benchmarks and
some general environments for manual benchmark creation. After that, we
will provide a comparison of existing benchmarks for multi-agent systems.

Creating Benchmarks

Generating new environments is difficult and it requires a lot of human
work. Prediction or analysis of such environment properties which will
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affect the training process in the desired way or creating environment de-
sign that would lead to new ways of behavior is very hard (Fontaine et al.,
2021). We will use slightly modified terminology from MeltingPot bench-
mark (Leibo et al., 2021):

• game Game is here in the meaning of board or computer game, bench-
mark idea with rules, goals and a story, e.g., chess, Mario, soccer,
grabbing bricks, trains on the railway network.

• substrate We will define substrate in a different way than (Leibo et
al., 2021). Here substrate represents the specific instance of the game
environment, e.g., a specific game variant with a set of rules, environ-
ment dynamics, specific map with walls, items, and other non-agent
entities. Formally substrate is a partially observable Markov game.

• scenario Scenario is a a substrate + possible background population
of agents. Background population, as defined in (Leibo et al., 2021)
are pre-trained agents serving for benchmarking. Their score does
not count into the result score and their presence helps diversity and
adjustability of environments.

• play One play is one trial for specific agents in a specific scenario,
whose result is measurable (typically win, loss, or some sort of nu-
meric score). It is the same as an episode in the episodic game, or a
time-bounded part of the game otherwise.

Generating new environments is difficult and it requires a lot of human
work. The problem of generating scenarios automatically is dated back to
1998 (Hofer, Ramirez, and Smith, 1998) and it is an important area of re-
search for game development. It would be nice to explore all possibilities of
scenarios, each with a significant number of plays, but this is beyond com-
putational possibilities, so we need to parametrize the environment and
try only a few most promising variants. Two direct ways of environment
parametrization are map generation and background population selection.
We will now describe these two existing attempts at manual and automatic
scenario generation.

Latest work show (Fontaine et al., 2021) that environment can substan-
tially influence the training process. A diverse set of environments with dif-
ferent challenging features is essential for good evaluation, comparison of
algorithms, revealing of their flaws, and understanding of how they work,
which can lead to better AI algorithms in the future (Leibo et al., 2021).
There is still little work on the topic of automatic environment generation,
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mainly focused on generating interesting maps. We may have following
requirements on environment generation (Fontaine et al., 2021):

• easy to generate,

• similar to human-created environments,

• diverse, and

• with a solvability guarantee.

Proposed solutions (Fontaine and Nikolaidis, 2021; Fontaine et al., 2021),
are focusing on map generation and are based on a quality diversity al-
gorithm. They use overcooked game and by using a quality diversity al-
gorithm they are able to generate diverse environments which minimize
the team score, so they are perfect for algorithm flaws detection. Another
approach, for once benefiting from the non-stationarity arising from other
agent’s actions, is using a fixed set of maps (human-created) and encod-
ing diversity using other agents in the environment (= background popu-
lation) (MeltingPot) (Leibo et al., 2021). MeltingPot contains a set of pre-
programmed substrates and background populations, which can be ex-
tended and combined, including the creation of new maps. It is also ag-
nostic to used training algorithms, so its use is very wide. MeltingPot pre-
defined substrates measure well the robustness of the population and en-
courage the universality and generality of agents. Sometimes specialized
agents and work divisions could be desirable, but this is discouraged in
this benchmark. A direct way to improve testing environments diversity
is by merging these two approaches, i.e. generating maps and using back-
ground populations. MeltingPot does not provide tools for automatic map
generation but allows integration of maps generated externally.

We would like the creation of more general learning methods and more
universal and robust agents. For this to be done, there is a need to better
evaluation, which will reveal algorithm weaknesses. Quite a frequent ap-
proach to MARL algorithms evaluation is experimenting with only very
few (one or two) not very general benchmarks on a limited set of scenarios.
According to (Resnick et al., 2018), a successful and widely used environ-
ment should also be intuitive and fun for humans, easy to integrate, and not
be too difficult for the current state of knowledge. We believe, that many
benchmarks mentioned later in this section meet these requirements, and
the main need is deeper research, and more extensive testing of existing
and newly published algorithms on available benchmarks. Easy genera-
tion of new scenarios and especially good widely used set of diverse tasks
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Table 2: An overview of MAS benchmarks

Game Setting # Players Observability Input

Hanabi C 2-5 P I

Overcooked C 2−∞ P I

Diplomacy M/P many P I

Hide and Seek P/T 2− 6 P V

Starcraft P/T 1x1 - 4x4 P V/ I

Poker P 2−∞ P I

Flatland C/M 1−∞ F/P I

Watch and Help C 2 A F

Capture the flag P/M ∞ PF V

ViZDoom P 1-16 PF V

Pomerman P/M/T 4 P I
Setting options: C= cooperative, P=competitive, M=mixed, T=teams. Ob-
servability can be P(=partial), F(=full),or PF(=partial first-person). Represen-
tation of inputs can be I(=internal, e.g., feature layers, signals with explicit
game description etc..) or V(=visual, thus pixels). It is hard to categorize
games because they present different types of challenges and tension points
between selfish and common interests, please refer to the description of
benchmarks or their source papers for better understanding. MeltingPot
benchmark is in a separate table.

(like Gym (Brockman et al., 2016) and DeepMind Suite (Tassa et al., 2018)
for single agent RL or MNIST (Deng, 2012) for Image Recognition) would
significantly help to easily compare and select the best algorithms, which
will hopefully lead to progress in Human-AI interactive and cooperative
agents. Some benchmarks with this attempt already exist, namely Melting-
Pot (Leibo et al., 2021), Cogment (Redefined et al., 2021), or Arena (Song
et al., 2020), which will be described now.
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Table 3: Games included in MeltingPot benchmark

Game Setting # Players Observab. Input

Batch or Stravinsky C/M ∞ P I

Stag Hunt C/M ∞ P I

Allelopathic Hunt C/M ∞ P I
Collaborative Cooking:
Impassable

C 2 F I

Collaborative Cooking:
Passable

C 2 F I

Chemistry: Branched C ∞ I
Chemistry: Cycles ∞ I

Pure Coordination in Matrix C ∞ F I
Rationalizable Coordination
in Matrix C ∞ F I

Cleanup M ∞ P I

Prisoners’ Dilemma in Matrix P/M 2 P I

Chickens in Matrix M 8 P I

Running with Scissors P/M 2 P I

Arena RSM P 8 P I

Commons Harvest: Open P/M ∞ P I

Commons Harvest: Closed P/M ∞ F I

Capture the Flag P/T ∞ P I

King of the Hill P/T ∞ P I

Territory:Open P ∞ P I
Commons Harvest:
Partnership

C/M ∞ F I

Territory: Rooms C/M ∞ P I

Setting options: C= cooperative, P=competitive, M=mixed, T=teams. Ob-
servability can be P(=partial), F(=full),or PF(=partial first-person). Represen-
tation of inputs can be I(=internal, e.g., feature layers, signals with explicit
game description etc..) or V(=visual, thus pixels). This does not aim to be
a full categorization of games, for better insight see (Leibo et al., 2021)
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Exisiting Benchmarks

History Before Arena, the first benchmark designed especially for multi-
agent RL, some single-agent benchmarks were naturally extended to multi-
agent problems: MuJoCo (Todorov, Erez, and Tassa, 2012), ViZDoom (Wyd-
much, Kempka, and Jaśkowski, 2019) and Starcraft II (Vinyals et al., 2017).
MuJoCo is not a benchmark, it is rather a framework for physical mod-
elling, which was used to create physics-based benchmarks like soccer.
ViZDoom is interesting for being a visual game, therefore the source of
information is an array of pixels, not some internal representation of the
game state and Starcraft II is a team game.

The description of the following benchmarks is accompanied by tables
2 and 3 with a comparison of their most important properties.

General and Extensible Frameworks Cogment (Redefined et al., 2021) is
a framework for MARL training, with special emphasis on AI-human in-
teraction in sequential decision-making tasks. Arena (Song et al., 2020) and
MeltingPot (Leibo et al., 2021) both contains pre-defined substrates or sce-
narios and are extensible. Arena and MeltingPot are very similar, but Melt-
ingPot has, in our opinion, several advantages – it is newer, with a modern
interface (which is quite subjective, though) and additional parametriza-
tion via background population, which leads to focus on more general
agents, because allows easy training with different groups and therefore
does not rely on self-play conventions. Arena, in the contrast, offers a
human-AI interface and is prepared also for explicit communication, but
does not allow some types of reinforcement learning, e.g., model-based
RL (Chen et al., 2021). Both Arena and MeltingPot integrate many pop-
ular existing benchmarks (overcooked in MeltingPot or Capture the Flag
in Arena) as part of their predefined set. We will now describe in more
detail the most popular and promising benchmarks, including MeltingPot
predefined substrates.

Hanabi Hanabi (Bard et al., 2020) is a card game for 2-5 players who
should cooperate to win the game. The game contains cards in 5 colors
and with numbers 1 to 5. Every card has one color and one number. The
goal is to complete sorted sequences (starting with 1) for each color. The
most interesting feature of the game is that agent does not see its own cards
(just cards of other team-mates), so agents must use one of a very restricted
set of allowed communication actions to indicate unknown cards to each
other (see Figure 7). In each turn, the player can play one of his cards or
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help another player by indicating either all his cards of the same color or
of the same number. If the played card can’t be attached to the stack of its
color, i.e., the top card of that stack is not a preceding number, one storm
token of three is discarded3, so a team can make only three mistakes in play-
ing a card. Exhaustion of storm tokens leads to the end of the game. Some
types of cards are presented multiple times and the number of possible help
depends on the correctly played cards. At the beginning, team has 8 note
tokens to spend on hints, and it is possible to regain spent tokens by play-
ing a playable card. The game is NP-complete even with all cards known
to everybody (Baffier et al., 2017). The game typically leads to the emer-
gence of norms (for both humans and AI), which makes this environment
interesting primarily for the exploration of ad-hoc games, i.e., games with
unknown teammates, which require the creation of new norms. Another
problem is the existence of many quite bad local minima (Bard et al., 2020),
which complicates a convergence of self-play learning. However, some al-
gorithms achieved a very good score in different settings: If conventions
are used, a perfect score in the majority of plays can be achieved (Bouzy,
2017), and self-play SOTA results of more than 24 points out of 25 pursued
in (Foerster et al., 2019), and very good HRI result can be found in (Hu
et al., 2020).

Figure 7: Hanabi game example from the player 1 point of view. No one
played playable blue or red card yet. Player 0 does not know his cards
and two chances to indicate someone’s colors or numbers are spent. source:
Figure 1 of (Bard et al., 2020)

3For full rules, see: https://www.ultraboardgames.com/hanabi/game-rules.php
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Overcooked Overcooked (Carroll et al., 2019) is a pure cooperative game.
The goal for two cooks is to serve as many dishes as possible for a fixed time
or just finish one dish (it varies in different papers). In the most complicated
forms, overcooked contains hierarchical tasks of cooking recipes, which are
decomposable to many steps down to the simple physical-like actions like
one-step move, grabbing something from an adjacent tile, etc. Different
kitchen maps can force different types of behavior, e.g., force cooperation,
or cause more frequent collisions to be avoided (see Fig. 8). To solve this
task, agents should have three types of abilities (Wu et al., 2021).:

• working in parallel if possible,

• working together if necessary e.g., one agent can’t reach some ingre-
dients,

• collision avoidance and non-blocking movement in the space.

Many studies of Overcooked focus on the good collaboration with hu-
mans (Fontaine et al., 2021; Strouse et al., 2021; Wang et al., 2020), achiev-
ing better Human-Robot results using human-like models or by producing
more adaptive agents.

Figure 8: This figure presents some possible maps in the Overcooked game.
Some of them induce a higher probability of collisions, and anothers are not
doable without cooperation. source: Figure 3 of (Carroll et al., 2019)

Poker Poker is a card game, where players have asymmetrical imperfect
information. Poker has many variants differing on the number of players,
bet restrictions, number of rounds, cards, whether the cards are dealt pub-
licly, etc. AI solutions are typically offered for easier mainly two players
poker variants like heads-up limit Texas hold’em (Bowling et al., 2015) or
Heads-up no-limit Texas hold’em (Moravčík et al., 2017). These variants are
games for two players. Each player has two secret cards, hidden from each
other. There are three rounds of dealing publicly with other cards and after
each revealing of cards, each player can bet some amount of money. The
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tricky part is that every player has different partial information about the
state of the game, and no one knows, what will be next in the deck. Even in
this simplified version of Poker, there is about 10160 decision points (Johan-
son, 2013) (see Fig. 9). Games like this are very hard to solve because of the
recursive nature of reasoning. One player’s action can be without knowl-
edge of his cards interpreted in many ways: Was he bluffing? What cards can
he have, that bring him too much confidence for a big bet? Why this public card
changed his behavior? The opponent is doing the same type of reasoning and
some of his actions can be affected by what he believes about our action,
which is influenced by what we believe about him, etc.

Figure 9: The part of the Poker game tree. source: Figure 1 of (Moravčík et al.,
2017)

Diplomacy Diplomacy (Bakhtin et al., 2021) is a board game for 7 players,
although restricted version for two players – France vs Austria (Bakhtin et
al., 2021) – also exists. The game represents the war over 34 provinces on
the map of Europe (see Fig. 10. The goal of the game is to conquer most of
the territories. One player can’t achieve this alone, so at least in some game
stages, there is a need for cooperation and alliance forming. Another diffi-
culty of the game comes from simultaneous actions in every step. The game
tree is significantly larger than for example Chess or Go: 1021 to 1064 legal
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joint actions in every step, so searching the game tree for optimal action is
impossible. In the real board game, players are allowed to communicate,
so they can form alliances or negotiate with their enemies. Mostly used AI
variant is no-press diplomacy, so the agents can’t use communication at all.
It is a simplification in the terms of action selection, but it is harder to find
out what other players plan to do. Currently best results are in (Bakhtin
et al., 2021). Diplomacy, being a competitive game without teams, arises a
question of evaluation – should we measure the performance of all agents
being trained by our algorithm or one out agent against different strategies?
And if so, what should be the other strategies?

Figure 10: The illustration of the game of Diplomacy. source: (Paquette et al.,
2019)

Flatland Flatland (Mohanty et al., 2020) is a multi-agent benchmark in-
spired by trains. There can be from one to many agents(=trains). The com-
mon goal is to get all trains from start to finish as quickly as possible. The
environment has also a competitive part: every train wants to achieve its
goal as quickly as possible, which can cause blocks or collisions for other
trains. The optimal solution is not the greedy strategy for all trains. The en-
vironment can be used for classical planning algorithms as well as for rein-
forcement learning. It is possible to define custom vision area and informa-
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tion which will an agent obtain. Figure 11 illustrates the environment. In-

8

Figure 11: The example of the flatland map with trains. source:
https://flatland.aicrowd.com/intro.html

teresting solutions were presented in the 2021 Flatland Challenge (Laurent
et al., 2021) and we can also mention works on Multi-Agent Path Finding
problems (Damani et al., 2021; Sartoretti et al., 2019) which will be hope-
fully applicable in the future.

Starcraft II Starcraft II is an environment based on a multi-player com-
puter game with a partially observable map. Information is full visual RGB
pixels or is represented by feature layers (pictures representing the most
important parts of the original frame). There are about 300 possible actions
and an agent needs to follow the sequence of meaningful progress: gaining
resources, using them to build production buildings, producing weapons
and building an army, and finally destroying all opponent’s buildings, which
is the ultimate goal of the game.

Watch and Help Watch and Help (Puig et al., 2021) is an environment for
one AI agent, but the goal is to help the second player achieve the task, so
it can be considered a multi-agent system. This benchmark has two stages.
In the first stage, the agent observes the teammate’s behavior and tries to
figure out their goal. In the second stage, the agent tries to help with the
task (see example in Figure 12).

Hide and Seek Hide and Seek (Baker et al., 2019) is a visual, physics-
based game for two teams. One team’s goal is to hide from the oppo-
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Figure 12: Watch and Help environment. source: Figure 1 of (Puig et al.,
2021)

site team which needs to seek them. Besides the overall score, the au-
thors present a metric using transfer into another task. They constructed
five intelligence tests in the same domain (same action space, same objects,
etc.), which test what the agents remembers and what particular abilities
they gained. An environment encourages the interesting evolution of team
strategies (Figure 13).

MeltingPot MeltingPot (Leibo et al., 2021) is a suit of many games which
has customizable map and background population. They have cooperative
and mixed settings, further divided into those where prevails cooperation
or competition. The main games are CleanUp, Common Harvest, Prison-
ers’ Dilemma, Territory, Overcooked, Stag Hunt, and Chemistry(see Fig-
ure 14). Many games have both cooperative and competitive variants. We
will offer a very short presentation of all included games, but we refer the
reader to the original paper for a more detailed analysis.

CleanUp and CommonHarvest variants explore the economical prob-
lem known as a tragedy of the commons (Hardin, 1968). The agent is moti-
vated to gather fruit because it causes an immediate reward. If exploited
selfishly, agents will exhaust the environment and no other fruit will be
available, so there is a need to e.g., clean the river once in a while or not
to eat the last fruit in some area. Two variants of Prisoner’s Dilemma rep-
resent agent’s decision to defect or cooperate by picking respective tokens
in the map and they use them if another agent is encountered. The same
mechanism is used in Running with Scissors games. Territory game goal
is to gain own territory, but there is also a possibility to destroy it for ev-
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Figure 13: Hide and Seek environment. This figure illustrates 6 different
strategy stages which developed during training. Authors argue that this
environment uses the same natural dynamics of rivalry that forces evolu-
tion. source: Figure 1 of (Baker et al., 2019)

eryone. Team variants of territory claiming are Capture the Flag and King
of the Hill. For more cooperative settings, MeltingPot implements Over-
cooked, Pure Coordination (game of agreeing on the same color), cooperat-
ing on producing the right chemical reactions in Chemistry, and a complex
variant of Rousseauss’s Stag Hunt game (Rousseau, 1984) known from the
game theory.
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PettingZoo PettingZoo (Terry et al., 2020a) is an multi-agent equivalent
of popular single-agent RL environment Gym (Brockman et al., 2016). Pet-
tingZoo contains 61 games divided into 6 categories (number of games
included): Ata ri(24), Classic(15), Butterfly(4), MAgent(6), MPE(9), and
SISL(3) (see Figure 15).

Pommermman Pommeman (Resnick et al., 2018) is an environment based
on the game Bomberman. The main game action is to place a bomb in such
a way, it will hurt only the agent’s enemies. Pommerman contains both
cooperative team variants and competitive scenarios for at least 4 players
and is also suitable for exploration of ad-hoc settings.

Others Most of the environments provide either a visual or internal rep-
resentation of the world. (Park, Oh, and Lee, 2021), on the contrary, wants
to provide a very realistic human experience of sensing for training human-
like agents, so this environment provides audio, visual, tactile, and propri-
oceptional perceptions. Another bunch of environments represents very
specific abilities like vision understanding, surviving, or in-door scenes (Song
et al., 2020). Other environments includes Apprentice Fireman Game (Palmer,
Savani, and Tuyls, 2019), variants of Cooperative Multi-agent Object Trans-
portation Problem, NeuralMMO (Suarez et al., 2019), MARLO (Perez-Liebana
et al., 2019), and others.

33



AWARENESS AND ADAPTABILITY IN MARL

Figure 14: An overview of all 20 substrates of MeltingPot. source: Figure 1
of (Leibo et al., 2021)
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Figure 15: Examples of PettingZoo games. A) Multi Particle Environment
(MPE) contains good (green) and bad (red) individuals and allows com-
munication, moving, pushing, etc. B) SISL are three cooperative tasks
taken from (Gupta, Egorov, and Kochenderfer, 2017). C) Classical board
and card games. D) MAgent is configurable and contains a big amount of
particle agents. Originally here: https://github.com/geek-ai/MAgent E)
Butterfly are visual games that strongly require cooperation. F) Set of Atari
games.
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4 (Why) We Need Adaptive and Social Agents

In this section, we will try to describe why adaptivity and awareness of
others are important for MAS, we will revise commonly researched MARL
goals from this perspective and present an overview of the current work.
These two abilities are necessary not only for cooperation in general but
are also useful for many other MAS problems studied separately from each
other. Here is the list of some areas, where adaptability and awareness are
the keys, but surely more examples exist, and that is why we see these two
abilities to be so important:

• Human-AI interaction (also denoted human-robot interaction (HRI),

• New games with old team-mates (denoted NG-goal)

• Old games with new (co)-players (denoted NP-goal),

• Heterogeneous groups of agents,

• The ability to take on different roles,

• Game-theoretic properties.

More general and complex MARL goals taxonomy can be found in (Wong
et al., 2021), where authors distinguish between modelling, communica-
tion, efficient cooperation, reward shaping, and quicker training as direc-
tions of possible improvement for future research.

We will now describe how awareness and adaptability are useful for
many of mentioned tasks, and after that, we will explain more about aware-
ness and adaptability on their own.

4.1 Cooperation & Game-Theoretical Properties

One of the basic goals of MARL is ’just’ to solve the task successfully, e.g.,
train a team of agents to cooperate on solving it. This problem consists of
two sub-problems: How to create agents who want to cooperate and how
to improve cooperation if agents want to cooperate. We have described ba-
sic MARL algorithms in the section 2.4. For our survey, we would like
to emphasize methods beyond self-play and focus on more specific goals,
which are currently out of self-play algorithms’ power. For deeper survey
of MARL algorithms, we refer readers to general MARL surveys (Buşoniu,
Babuška, and De Schutter, 2008; Du and Ding, 2020; Gronauer and Diepold,
2022; Hernandez-Leal et al., 2019; Padakandla, 2021). Some papers focus on
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convergence to Nash equilibria (Bakhtin et al., 2021; Bansal et al., 2020; Hu
and Wellman, 2003) or finding best response, stability (Buşoniu, Babuška,
and De Schutter, 2008) etc. While solving these things, problems along
the way are how to break ties equally for all players, how to choose the
same equilibrium, and so on, which can be solved via human-defined con-
ventions, emergent norms, or using communication. One approach which
takes others into account is LOLA (Foerster et al., 2018), described more in
6.2, which managed to achieve cooperation where other MARL algorithms4

failed.
It is also possible to focus mainly on convergence and place the respon-

sibility for quality cooperation upon the benchmark/training environment
selection (Fontaine et al., 2021).

4.2 Human-Robot Interaction (HRI)

The important question when it comes to the application of other agent
modelling is Who will the other agents in the environment be?. It can be other
AI agents or humans. Humans differ from other intelligent agents, at least
with the current state of knowledge, but it may change with more human-
like agents and by moving more towards the general AI. Humans commu-
nicate in natural languages and have a lot of knowledge about the world.
Although they are able to use more compressed communication proto-
cols, they are definitely less capable when it comes to obtaining and send-
ing information in computer-friendly representation. Human agents are
also typically suboptimal and tend to make different decisions, especially
choosing differently from equally good equilibria. Humans can also start
feeling scared or uncomfortable, but their big advantage is their adaptabil-
ity. As (Carroll et al., 2019) showed, in the Human-AI interaction, hu-
mans typically adapt their behavior according to their team-mates, while
AI agents are unable to do so and they need to be the leaders in such in-
teractions. An ability to adapt is therefore very important for better co-
operation with humans. Of course, if we had truly adaptive agents, we
wouldn’t care if they cooperate with humans or robots. While (Carroll et
al., 2019) achieved better human cooperation by training them specifically
with a human model, (Strouse et al., 2021) trained agents with a diverse
group of agents to achieve better adaptability, which they showed to be
later useful for Human-AI interaction. To summarise human-AI problem
solutions, one direction is to train more adaptive agents (typically using

4namely WoLF, policy hill-climbing and JAL-Q

37



AWARENESS AND ADAPTABILITY IN MARL

heterogeneous groups and diverse environments) and the other is to train
agents specifically for human interaction by training with humans/human
models. As for the second option, (McIlroy-Young et al., 2021) aims to
achieve a slightly different thing in AI-Human (A-H) interaction: train-
ing individual models for each person to recognize and predict her next
actions. They achieved very good performance in distinguishing and pre-
dicting players in chess, starting with the superhuman chess model Alp-
haZero (Silver et al., 2018) and prediction Maia model (McIlroy-Young et
al., 2020) and achieving very good performance in the personalized mod-
elling of 400 players.

An understanding of others’ actions is important not only for coopera-
tion or competition with them but also while simply sharing the environ-
ment with others, which indirectly affects them. In (Bansal et al., 2020),
they define this as a parallel play, giving examples of a shared kitchen in the
workplace, or driving on the road with others. They were able to improve
HRI using the Bayesian approach to estimating which Nash equilibria will
the human converge to. Their approach, however, does not use RL and
is poorly scalable. Specifically, understanding people is used for example
in the area of the autonomous vehicle, where understanding other drivers
and pedestrians (Sadigh et al., 2016; Ziebart et al., 2009) is the key for the
save co-existence, usually using inverse RL, which is in (Nikolaidis et al.,
2015) joined with the categorization of humans. This can help find the most
suitable model personally for each human and leads to a smoother HRI (as
was subjectively evaluated by people).

4.3 Understand to Adapt

The important part of being adaptive is understanding others. For exam-
ple, in one type of kitchen in Overcooked environment there is a need
for one-direction circulation movement in the kitchen. It does not matter
whether it will be clockwise or counter-clockwise, but all agents should do
the same thing. Our ideal adaptive agent should understand, that his team-
mate is trying to reach something and that a good solution would be to
move in the same direction even if the shortest path to its goal is different.
In a more complicated Overcooked setting, it is important to understand
what your team-mate is doing. For example, he is preparing tomatoes, so
there is no need for chopping tomatoes and better use of time would be
to prepare another part of the recipe, e.g., onions. As mentioned earlier,
in many situations it is impossible to plan everything in advance either
because of the stochastic or partially observable environment, size of the
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problem, or other agents which we do not know in advance, or we do not
control. Understanding others and modifying behavior according to new
situations are key skills in such an environment.

4.4 Generality

As we want to utilize all the skills agents may have pursued during training
for one task, we would like to transfer them in two situations – taking the
whole team of agents to the new environment (NG-goal), and adapting to
new team-mates and opponents in the known task (NP-goal).

New games with old pals (NG-goal) The NG-goall describes taking
the well-functioning team to solve new problems (potentially in the same
domain) and take advantage of a good inter-team cooperation (Shih et al.,
2021). We know this use case from the real world, where good teams of
professionals perform many new tasks, e.g., army groups, construction, or
software companies, fire brigades, etc.

Old games with new co-players or enemies (NP-goal) This task in-
clude so-called ad-hoc play and zero-shot play. These two terms are some-
times used in the same context, although (Hu et al., 2020) defines the first
one as trying to adjust policy and convention to the new team (or its part)
using agent modelling, adaptability, and so on. In comparison, zero-shot
agents do not learn and adapt during the execution and do not bring as-
sumptions about other agents from training time. In other words, they do
not change the policy during execution, their policy works with many vari-
ous agents, and in the case of (Hu et al., 2020) also demands other agents
to be trained for zero-shot. Zero-shot, ad-hoc and adaptive agents are inter-
connected problems and also many ad-hoc papers do not define adaptive
agents in the sense of learning a policy during execution.

One important approach to achieving adaptability to others, and good
performance in the heterogeneous group including human players is train-
ing agents in a very rich environment: in-domain tasks differing only in the
reward, different maps, and a diverse pool of other players (Canaan et al.,
2019; Leibo et al., 2021; Strouse et al., 2021)

4.4.1 Models separation

According to (Shih et al., 2021), a good approach for both tasks would be to
separate the model for other agents from the model of the environment and
of game rules, which can be an important step in allowing more effective
learning of both task and agents related skills. Authors do not assume such
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separation to be a part of input and agents are trained to distinguish which
achievement relates to the game specifics and what is a good behavior only
in the context of the current group of agents. Model separation is presented
also in the sophisticated mind models, e.g. (Rabinowitz et al., 2018) (see
section 6.2).

4.5 Heterogeneous groups

The usual technique in MARL is training a group of architecturally identi-
cal agents via self-play. What we sometimes want to do is a heterogeneous
team. As described in section 2.1 agents can differ in many ways and we
may want such different agents to cooperate. Some sources even argue that
social diversity leads to mode powerful teams (Kurek and Jaśkowski, 2016),
and introducing diversity during training time can also help to improved
results in NP-goals or human-AI coordination as described in the previ-
ous section. One type of heterogeneous group involves humans, which is
explored in more detail before. Other possibilities of heterogeneity in the
system are: agents taking different roles, having different architecture, pos-
sible actions, etc. Groups can also become more diverse by introducing
new players after training (NP-goal).

Adaptive agents would be amazing for all these reasons, yet they intro-
duce additional unpredictability to the system, which would further com-
plicate the problem solving (Hernandez-Leal, Kartal, and Taylor, 2019). It
seems to be an inevitable next step in research moving focus to always-
changing and adaptive systems, complicated as nature itself. In addition to
previously described solutions, we will discuss some attempts which ad-
dress adaptability and awareness directly in the next section. In (McKee et
al., 2020), authors introduces different loss functions to incorporate desired
social preferences of the agents by composing the loss function of not only
the environment reward (extrinsic) but also with intrinsic motivation term
(see picture 16).This study (McKee et al., 2020) also concluded, that hetero-
geneous groups are both productive and they help to avoid the lazy agent
problem. The open question is how to sample the population which will
lead to the best performance. We can conclude there are two approaches
to deal with the unexpected environment around agents – train them with
very diverse surroundings (agents, rewards, environments, etc.) so they
are not surprised by the same stochastic nature in the execution time, and
learn them to explicitly model thing around them, which will be described
in Section 6.2.
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Figure 16: Social Value Orientation proposed in (McKee et al., 2020). Re-
ward angles represent the relationship between personal and others’ re-
ward.

4.6 Different Roles

As has been particularly studied in the field of emergent communication,
agents are often capable to take only one social role. Examples of such roles
are sender and receiver in communication but also leader for convention
settings5 (Carroll et al., 2019; Lewis, 1969).

The same problem of agents being unable to learn different roles, or at
least using the same protocol for both roles is present in emergent commu-
nication (Lazaridou and Baroni, 2020)

5conventions can be defined as ’an arbitrary solution to a recurring coordination problem
(Shih et al., 2021)
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5 Adaptability

As described in fig. 17, environment and other agents can change in dif-
ferent ways, we can even consider new players as a change in old players
policy. What we call adaptability in this text can be actually divided into two

Figure 17: Possible types of overtime changing as described in (Gama et
al., 2014).

different abilities. What the majority of papers come up with are agents
who are not explicitly adaptive in the sense of continual learning and up-
dating policy during the execution time. They rather learned during train-
ing how to react to a diverse set of situations or agent types, so they are not
surprised when they encounter the same variety of agents during the exe-
cution time (McKee et al., 2020). Another possible approach is an explicitly
incorporated adaptability as a part of the agent’s architecture and letting
the agent learn during execution. This can include explicit modelling of
other agents and environment, allowing policy updates during execution,
or including the memory of others’ behavior. It is also worth noticing, that
adaptation and modelling form two steps in the interaction process: first,
recognize what the agent wants to do, and second, choose the apropriate
policy. The first step can be done using inverse planning or inverse RL,
while in the second step we have options of choosing from a fixed set of
prepared policies, compute the best response if possible or continuing to
learn from new experience.

As mentioned many times in this survey, adaptability is a key ability
for problems of both playing familiar games with new players and trans-
ferring team capabilities to new tasks (Shih et al., 2021) (NP and NG goals
mentioned before).

5.1 Continuous Learning

What we mean by adaptability is a change of behavior according to the
situation, namely as a reaction to new players or different environment
dynamics. The straightforward idea is just not to quit learning after the
training phase and continue updating policy during execution. As it is not
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a widely used approach, it surely has disadvantages: model guarantees,
forgetting, and slow convergence.

Guarantees First problem is that after training we have a model with
measured performance, maybe with explainable behavior and other guar-
antees about its future behavior, which we would simply destroy by ad-
ditional learning, or the learning process would demand to be also well
grounded in theory to preserve the model properties.

Forgetting What we definitely do not want is to forget what our model
learned in the training phase. What we want our models to be like for the
execution fine tunning is that they would not forget what they learned, just
slightly change behavior according to new observations (remember that
we typically want to preserve the task or at least stay in the same domain).
Meta-learning is dealing with solving this problem by selecting models with
exactly such properties (Finn, Abbeel, and Levine, 2017). While applying
neural networks, there are infinitely many ways how to set the weights in
the neural network model which results in the same test data performance.
Some of these weights are however on the edge between e.g. classification
into a different class and thus further learning can lead to quick change and
forgetting. (Finn, Abbeel, and Levine, 2017) tries to learn models which are
not so prone to quick radical change.

Slow convergence While it is important to have a model that does not
forget too much, we also need a model to learn relatively quickly, so we do
not lose the game or bankrupt the company before the model starts to be
good again.

5.2 Prepared during Training

Switching policies We need adaptation if the current policy produces
much worse results than expected from the training time. For this, we
need to detect the change, and also learn an appropriate response (new
policy) (Wong et al., 2021). If the change is caused by the non-stationary
environments, ideally recurring and slow (Hernandez-Leal et al., 2019), we
can use context detection algorithms (Da Silva et al., 2006). In this approach,
the agent maintains the library of partial models of the environment. After
every step, the best suitable model is chosen as the currently used model.
If no model is satisfying (the error is above the given threshold), the new
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model is built. For more detailed survey, see (Padakandla, 2021). We can
do the same while detecting explicitly the change in the behaviour of other
agents rather than taking them as part of the environment. Some examples
of detecting algorithms are MDP-CL (Hernandez-Leal, Cote, and Sucar,
2014; Hernandez-Leal et al., 2016), or DriftEr (Hernandez-Leal et al., 2017).
Other important switching algorithms are WOLF-ifa, WOLF-hill climbing,
AWESOME (Conitzer and Sandholm, 2007), DRON (He et al., 2016), SAM
(Everett and Roberts, 2018), (Padakandla, K. J., and Bhatnagar, 2020) and
Deep BPR+ (Zheng et al., 2018). This policy switching idea is used also in the
game theory, for example in the iterated prisoners dilemma study (Press
and Dyson, 2012), where the combination of opponent’s actions memory,
and policy switching produces interesting strategies (Jurišić, Kermek, and
Konecki, 2012). We will discuss the dual method – switching models of
other in the next section.

Conventions Conventions are mentioned primarily as a tool for breaking
ties in a coordinated manner. Relying upon conventions learned during
training can harm the adaptation to new agents, as they can follow different
conventions. We can want to avoid conventions at all, which shift us to zero-
shot setting, or we can encourage them to cooperate in games like Hanabi,
or Overcooked (Shih et al., 2021).

Explicit separation of convention from the rest of the model is proposed
in (Shih et al., 2021). The model is trained simultaneously on several in-
domain tasks (same dynamics, different rewards) and with many differ-
ent agents to encourage learning of distinction between task-related and
agents-related events. Authors also conducted a human study to verify
the hypothesis about carrying over conventions developed previously in a
similar task, e.g. if actions a, b in state s is optimal in both old and new task,
humans continue using the same convention for choosing the action in the
new task and this behavior was also achieved by the proposed model.

6 Awareness

The main taxonomy according to awareness is distinction between agent-
aware, agent-tracking, or agent-independent (Buşoniu, Babuška, and De Schut-
ter, 2008) agents. In term of other agents’ modelling and adaptation, this
taxonomy divides algorithms based on whether they explicitly model other
agents (agent-tracking) or just learns how to react to different types of inter-
action, e.g. change of team-mates (agents-aware). As mentioned before, we
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can pretend that other agents are a part of the environment and use simple
single-agent RL methods, which is possible but very difficult (Bard et al.,
2020) and other approaches are usually preferred. More detailed descrip-
tions with example algorithms of each category can be found in (Buşoniu,
Babuška, and De Schutter, 2008) and we also supply a brief overview.

6.1 Agent-Independent

Agent-independent methods use the game theory (possibly together with
RL) to find the best policy and value function in each state. These solutions
suffer mainly from the suboptimal solution because of missing coordina-
tion. As every agent can theoretically learn its part of a good equilibrium
strategy, there is no mechanism to assure all agents will choose the same
equilibrium. One possible solution could be to learn norms or define them
in advance.

6.2 Agent-Tracking

If we decide to incorporate some explicit model of other agents, we could
learn their q-value, goal, or more complicated models of mind.

Q-value This approach basically simulates other agents’ decision process
from the technical side, thus learning what are their action probabilities in
each state.

Goal This approach can be related to the inverse planning (Ng and Rus-
sell, 2000), as we want to find out what is other agents’ goals. This is easier
in an environment with strict task definition and hierarchy, where the goal
is to match subtasks and tasks to observed behavior, e.g. recipes in Over-
cooked (Wang et al., 2020).

In (Wang et al., 2020), agents use inverse planning to estimate task allo-
cations (= who is doing what). If they agree upon the same task allocation,
there is no problem in high-level cooperation and they only need to solve
low-level collision avoidance. As they cannot communicate, they are only
estimating others’ chosen task allocations and trying to reach conformity.
Reinforcement learning is used for the best action selection after deciding
the most probable task allocation, while (Foerster et al., 2018) presents the
possibility of reasoning about others on different levels.

Besides RL, we could also use classical planning together with plan
recognition.
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Limited Modelling What we call here a limited modelling are simple mod-
els, which, in contrast to models in the next paragraph, do not explicitly
learn some complicated architecture of other agents, but rather categorize
others. As discussed earlier, the second part of the solution must be choos-
ing the right response policy. The most basic approach is to assume others
to be either friends or enemies (Littman, 2001), or better be prepared that
other agents can be drawn from a predefined set of characters (Nikolaidis
et al., 2015, 2016). This approach has obvious limitations depending on the
advanced knowledge of all possibilities. An interesting generalization of
this modelling can be found in (Foerster et al., 2018) Learning Opponent-
Learning Awareness (LOLA). LOLA method adds one additional term to
the update rule and it is applicable to gradient methods. The additional
term express how the policy change will affect the other agent’s learning.
Although the basic version (first-order LOLA) assumes other agents to be
what they call naive learners (= others do not use LOLA and do not take us
using LOLA into account), it is way more general than the previously de-
scribed categorization. This algorithm was primarily developed to achieve
cooperation, which works great in comparison to many other MARL al-
gorithms benchmarking on Iterated Prisoners Dilemma, Iterated Matching
Pennies, and Coin Game. The paper also mentions higher-order LOLA,
when we assume our opponent to use LOLA also, or that he assumes that
we assume that he uses LOLA, etc. This is the concept known also from
the economy as a bounded rationality (Mehta, Starmer, and Sugden, 1994).
In some situations, there is a need to make a choice, but there is no rational
reason for any particular option. In such a situation, people are making
decisions based on many psychological processes, but these processes can
not be described mathematically, therefore we call them nonrational. If we
are however making our choices in these situations by reasoning about oth-
ers in higher orders, we are taking some reasons into account to prioritize
some actions over others, thus the term bounded rationality.

We can extend this categorization approach in two directions: using a
memory of others’ past actions, or modeling others more sophisticatedly.
We will first describe the memory usage here, a mind models description
will follow.

If we are speaking about memory, we can have unbounded or memory-
bounded agents. Unbounded agents take into account the whole interaction
history, e.g. (Foerster et al., 2018), while memory-bounded agents use just
a fixed-size window of history (Chakraborty and Stone, 2014) – the extreme
example are decisions based only on the last player’s action.
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Mind Models Unlike the previous approach, here the goal is to create
models inspired by how we imagine the human mind is working. This
includes the most complicated approximations of other agents, using con-
cepts such as motivation, reliability, beliefs, selfishness, etc. In psychology,
this reasoning about others’ behavior is called theory of mind. It is also possi-
ble to model just some of these properties, one important way, in particular,
is to model what other beliefs about the environment, as they can be (mis)
led by (potentially false) beliefs about the world, they would have differ-
ent pieces of information than our agent has, or possibly they are unable to
know something we observed.

One of the first applications of the theory of mind to AI is ToMNet (Ra-
binowitz et al., 2018), a deep neural model which has explicit separate net-
works for modelling an agent’s character, current mental state, and the pre-
diction of future agent’s behavior.

Tracking public beliefs is not a very general approach, because it de-
mands knowing the game mechanics, and methods usually do not scale
well, but in small games of two players, they can present an interesting
point of view to MAS problems. As examples, we would like to mention
BAD (Foerster et al., 2019) and (Chalkiadakis and Boutilier, 2003) which
both use the Bayesian approach.

6.3 Agent-Aware

Agent-aware models focus on the convergence to equilibria while adapt-
ing to other agents, whom it does not ignore but also does not model ex-
plicitly. We want to somehow differ from the classical single-agent algo-
rithms as we know, that there are other learning and acting agents, but
rather without an explicit model of them. One simple possibility is just as
ordinary learning the best action. In this section, we can again mention
policy-switching methods (see 5.2), mainly AWESOME and Win-or-Learn-
Fast modifications.

7 Conclusion

We reviewed existing problems, benchmarks, and interesting approaches
in multi-agent systems with an emphasis on cooperation, adaptability, and
awareness of other agents. As we showed, there is an important connection
between adaptability, awareness, and other partial MAS tasks. Research in
MAS with the use of reinforcement learning is conducted in many areas
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and possible benchmarks reflect this variance. There is a quickly rising im-
portance of studying problems in a multi-agent context and reinforcement
learning has even greater potential there, because of a size, complexity, un-
predictability, and a need for quick adaptation in the continuously unex-
pectedly changing world. As MARL is currently a fast-growing research
field, it is somewhat fragmented. There is definitely a need for better com-
parability between algorithms. We see a big opportunity for future work
in

• thorough analysis of flaws, specifics, and advantages of existing ap-
proach not only for one task but across different areas,

• research focused on more general goals of adaptive agents, who can
model others, although special task definitions, e.g. ad-hoc or zero-
shot play, communication, heterogeneity, or Human-AI interaction
can serve well for developing such general agents,

• extension of the existing approach to more complicated situations (as
the majority of methods were tested on two-player scenarios only).

Another possible direction is incorporating communication, which can be
useful for:

• accelerating adaptation to new agents (Zhu, Neubig, and Bisk, 2021),

• sharing information, if agents have different knowledge,

• communicating goals explicitly,

• agreeing on next steps

• exploring the possibility of methods transfer between communica-
tion and others’ modelling.
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Glossary

%DET %Determinism. 19

EGT evolutionary game theory. 16, 17

JRPs joint recurrence plot. 19

MARL multi-agent reinforcement rearning. 1, 11

MAS multi-agent system. 1, 2, 11

RL reinforcement learning. 1, 2, 4, 6, 7, 9–12

RQA recurrence quantification analysis. 19

SARL Singe-Agent Reinforcement Learning. 7, 11

TD temporal difference. 9

WoLF Winf-or-Learn-Fast. 13
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