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Abstract

Global constraints provide strong filtering algorithms to reduce the search space when solving large

combinatorial problems. In this paper we propose to make the global constraints dynamic, i.e., to allow

extending the set of constrained variables on flow. We describe a generic dynamisation technique for an arbitrary

monotonic global constraint and we compare it with the semantic-based dynamisation for the alldifferent

constraint. At the end we sketch a dynamisation technique for non-monotonic global constraints. A comparison

with existing methods to model dynamic problems is given as well.

Keywords: global constraints, filtering algorithm, dynamic models
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Constraint programming (CP) is successfully applied to real-life combinatorial (optimisation) problems thanks to

its declarative character, which supports natural modelling of real-life problems, and thanks to the general

solving technology, which can encapsulate various solving techniques. One of the main features of CP is locality

of the problem description i.e. we model the problem using a set of constraints binding small sets of variables

which are much smaller than the set of all variables in the problem. This is different from the traditional

operation research (OR) approach where the “constraints” bind all the variables and thus, OR solving methods

can exploit global reasoning about the problem. On the other hand, global reasoning can be very expensive and a

simple method of constraint propagation based on domain filtering can reduce the search space more efficiently.

The goal of constraint propagation is to achieve some level of consistency in the network of constraints

and variables by removing inconsistent values from variables' domains (an inconsistent value cannot take part in

any solution). Achieving higher level of consistency leads to removing more inconsistent values but it is more

expensive in terms of time and space. Consequently, a simple arc consistency or its generalised version for n-ary

constraints is usually used. Application of CP to many real-life problems shows that a good trade-off between

efficiency and level of consistency can be achieved by using global constraints instead of sets of binary

constraints, e.g. Simonis (1999).

A global constraint encapsulates several simple constraints and by exploiting semantic information about

this set of constraints it can achieve stronger pruning of domains. Filtering algorithms for global constraints are

based on methods of graph theory, discrete mathematics, or operation research so they make the bridge between

these mathematical areas and search-based constraint programming with origins in artificial intelligence.

However, the traditional global constraints require all the constrained variables to be known before the constraint

is posted to the system. This complicates usage of global constraints in areas where new variables are generated

during the course of solving. This difficulty can be solved using dummy variables that represent slots for

variables to come. Unfortunately, this approach cannot be used if large number of dummy variables is required

because it decreases efficiency of the filtering algorithm and it increases memory consumption.

In Barták (2001) we proposed a dynamic view of global constraints that is worked out in more details

here. Such a dynamic global constraint allows adding a new variable(s) during the course of problem solving and

removing this variable(s) upon backtracking. Thus, a dynamic global constraint can be posted before all the

constrained variables are known which brings the advantage of earlier domain pruning. As far as we know this is

the first attempt to formalise such a dynamic behaviour of global constraints. We designed a straightforward

generic technique for making monotonic global constraints dynamic. This technique is easy to implement in the

current constraint systems, as it does not require a change of paradigm from CSP to Dynamic CSP and it can

exploit directly the existing filtering algorithms for global constraints. However, the generic dynamisation

suffers from time and space inefficiencies so we propose to include dynamic behaviour directly within the

filtering algorithm.

Our dynamisation techniques are appropriate for monotonic global constraints in backtracking based

environment. It means that adding new variables to the constraint does not enlarge the solution set of this

constraint (monotony) and the variables can be removed only upon backtracking. This simplifies the

implementation while still providing the advantage of earlier domain pruning. Our approach is thus useful for

constraint logic programming (CLP) systems where search naturally interleaves with problem formulation (i.e.,



4

with defining the variables and posting the constraints). Nevertheless, it can be applied to arbitrary constraint

solving system provided that this system follows the ideas behind CLP.

The paper is organised as follows. In Section 1 we give a motivation for our research and we compare our

approach with existing techniques to solve dynamic problems. In Section 2 we formally introduce the basic

notions and terminology used within the paper. Section 3 is dedicated to the description of a generic technique

for making the global constraints dynamic. We prove the soundness and completeness theorem there that can

serve as a theoretical foundation for semantic-based dynamisation as well. In Section 4, we present an example

of semantic-based dynamisation, in particular we extend the well-know filtering algorithm for the

alldifferent constraint to behave dynamically. We theoretically compare time and space complexity of

generic and semantic-based dynamisations of the alldifferent constraint and we also present an empirical

comparison of our approach with the technique based on dummy variables. In Section 5 we describe a basic idea

how non-monotonic constraints can be made dynamic using an application of our approach to a monotonic

approximation of the constraint. We conclude with some references to existing implementations of constraint

satisfaction from the point of view of modelling dynamic problems.

1 Motivation and related works

A traditional formulation of a constraint satisfaction problem is static in sense that all the variables and the

constraints are known before we start to solve the problem. Global constraints follow this static definition so the

global constraint can be posted when all the constrained variables are known. Nevertheless, there exist problems

that do not fit this static model and that require a more dynamic formulation of the problem. We can roughly

classify these problems into two categories.

In the first category, the problem is dynamically modified from external environment, e.g., an existing

solution should be adapted to include new information (like broken machine during scheduling), or interaction

with the user is required during problem solving. Such problems are called reactive, on-line, or incremental

constraint satisfaction, for examples see Fages, Fowler, and Sola (1995) and Van Hentenryck (1990). On-line

constraint satisfaction is not the problem area that we deal with primarily in this paper, even if our ideas can be

applied to the on-line problems provided that the variables are added and removed in LIFO (last in first out)

manner.

The second category covers problems that evolve dynamically during the solving process. For example in

configuration or planning problems, the variables and constraints might change as the search progresses. We

have identified this type of dynamic problems in scheduling of complex process industries where so-called

process-dependent activities appear, see Barták (2000). Existence of the process-dependent activity depends on

allocation of other activities. In terminology of CSP, existence of some variables and constraints (that describe

the activity) depends on values of other variables (on allocation of other activities). Pegman (1998) described a

similar type of problems in steel-making industry. Figure 1 gives two examples of process-dependent activities.
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Figure 1. Gantt charts with set-up (left) and re-heating (right) activities. In both cases a special activity (striped
rectangle) is necessary because this activity consumes resource capacity or it is connected to activities in other
resources.

Solving such dynamic constraint satisfaction problems is a hot topic of research in CP, however, not a new one.

Mittal and Falkenhainer (1990) proposed a concept of Dynamic Constraint Satisfaction motivated by problems

in configuration. Since then the idea of using activity constraints and dummy variables is used in various

concepts. This approach is useful when the number of dummy variables is not very large, i.e., when the number

of alternatives is linear rather than exponential. Figure 2 shows a structure of such problem formulation in CLP.

Nodes represent the choice points, that cause adding new variables and/or constraints to the problem, while

edges describe introduction of these variables and constraints.

Figure 2. A typical problem formulation in CLP with disjunction represented using alternative clauses (the
problem is formulated from left to right with nodes describing the choice points).

During the problem formulation (left to right in Figure 2) one of the alternative paths is selected. Another

alternative is selected when labelling fails. Hentenryck and Deville (1991) identified that such interleaving of

problem formulation with labelling is not a good way of defining disjunctive problems in CLP due to weak

constraint propagation. Therefore they proposed a cardinality operator that can handle the disjunction more

actively. Similar idea can be find in Van Der Linden (2000), i.e., all the constraints and all the variables are

posted first and some of them (representing the alternatives that has not been not selected) are deactivated during

labelling. Nevertheless, this approach using dummy variables (and disjunctive constraints) can hardly be applied

to problems with highly dynamic structure like planning. In these problems the number of alternatives is very

large because it is impossible to predict which variables and which constraints will be used in which

combinations, see Nareyek (2000). Figure 3 shows a structure of such problem formulation in CLP using the

same notation as Figure 2. We call these problems highly dynamic.
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Figure 3. Formulation of highly dynamic problems forms a tree with many alternatives. Every branch of this tree
represents a constraint satisfaction problem with different set of variables and constraints.

Nareyek (1999) proposed a concept of Structural Constraint Satisfaction to solve the highly dynamic problems.

The difficulty of this concept is that the constraint satisfaction package must be programmed from scratch to

support it. Therefore it is almost impossible to modify an existing system to solve the problems using the

Structural Constraint Satisfaction framework.

Another possibility to solve the highly dynamic problems is to interleave the problem formulation with

labelling. This can be done easily in the widespread CLP framework. However, this technique suffers from

efficiency problems as we described above. One of these efficiency problems here is that usage of powerful

global constraints is limited to situations when the constrained variables are known. In particular, we have to

wait until all the constrained variables are known before we can post the global constraints. In this paper we

concentrate on solving this difficulty by allowing a dynamic formulation of the global constraint, i.e., it is

possible to add new variables to the constraint as the search progresses and to remove them upon backtracking.

Thus the global constraint can be posted and propagated earlier, which improves domain filtering. Note that this

concept of dynamic global constraints can be naturally implemented in existing CLP environments.

Dynamic Constraint Satisfaction by Mittal and Falkenhainer (1990) also deals with adding and removing

variables and constraints to/from the problem. Addition and retraction can be done in arbitrary order and, thus,

the concept must be implemented from scratch and it is hard (or impossible) to extend existing CSP packages to

support it. In our dynamic global constraints we do not need generality of Dynamic CSP (variables are

added/removed to/from the constraint in LIFO manner) that simplifies the implementation and integration to

existing systems.

2 Preliminaries

A Constraint Satisfaction Problem P=(X,D,C) is defined as a set of variables X={x1,…,xn}, a set of domains

D={D(x1),…,D(xn)}, where D(xi) is a finite set of possible values for variable xi, and a set of constraints

C={c1,…,cm}. A constraint ci on the ordered set of variables X(ci)= (xi1,…,xik) is a subset of the Cartesian

product D(xi1)×… ×D(xik), it specifies the allowed combinations of values for the variables xi1,…,xik. |X(ci)| is

called arity of the constraint ci.

Assume that (v1,…,vn)↓(xi1,…,xik) is a standard projection operator, i.e., a projection of the tuple

(v1,…,vn) to the variables (xi1,…,xik): (v1,…,vn)↓(xi1,…,xik) = (vi1,…,vik). We call a complete instantiation

(v1,…,vn) of the variables, such that ∀i=1,…,n vi∈D(xi) and ∀j=1,…,m (v1,…,vn)↓X(cj) ∈ cj, a valid tuple or

solution, i.e., the valid tuple is a complete instantiation of the variables satisfying all the constraints. Sol(P) is a

set of all valid tuples, we call it a solution set of the constraint satisfaction problem P.

Problem P'=(X',D',C') is called an extension of the problem P=(X,D,C), if X⊆X', C⊆C' and ∀x∈X

D(x)=D'(x). Briefly speaking, we extend the problem if we add new variables and constraints to it. It is known
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that constraint satisfaction is monotonic, i.e., every solution of the extended problem is also a solution of the

original problem. Formally, if P' is an extension of P, then Sol(P')↓X ⊆Sol(P), where X is a set of variables in P.

A global constraint scheme G is a function that maps arbitrary finite ordered set of variables to a

conjunction of constraints. We call such a conjunction of constraints a global constraint, i.e., the global

constraint forms a sub-problem in the constraint satisfaction problem. Note, that the constraints in G(x1,…,xk)

may contain variables other than x1,…,xk but these variables are local/hidden there, i.e., they do not appear in the

rest of the problem. If we have a global constraint G(X), we say that G(Y) is its extension if X⊆Y. Let

Sol(G(X),D(X)) be a solution set for the global constraint G(X) and a set of variables X with domains D(X). A

global constraint scheme is monotonic, if  Sol(G(X∪Y),D(X∪Y))↓X ⊆ Sol(G(X),D(X)) for arbitrary sets X and

Y of variables. Monotonicity means that extending a global constraint, i.e., adding new variables to the global

constraint, does not add new solutions1.

Example 1: The alldifferent global constraint scheme is defined in the following way
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There are no local variables in the alldifferent constraints and this global constraint scheme is

monotonic.

Example 2: The atleast global constraint scheme is defined in the following way
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In this scheme, there are n local variables bi with the domain {0,1}. This global constraint scheme is not

monotonic (e.g., atleast(2,1,{1,0,1}) is satisfied, but atleast(2,1,{1,0}) is not satisfied).

According to Rossi, Dahr, and Petrie (1990), an arbitrary n-ary constraint including the global constraints can be

decomposed into an equivalent set of binary constraints for which many consistency techniques were designed.

Nevertheless, these consistency techniques, like arc consistency, can usually be extended to n-ary constraints,

see Bessiere and Régin (1999). As noted by Bessiere (1999), this could be expensive in general but for global

constraints there exist efficient filtering algorithms exploiting semantic of the constraint, for examples see Régin

(1994), Régin (1996) and Simonis (1999). Therefore global constraints are very important for solving real-life

problems.

We say that the global constraint G(X) with domains D(X) is A-consistent iff domains D(X) together with

the constraint G(X) satisfy an A-consistency condition. For example, G(x1,…,xn) is arc consistent iff

∀i=1,…,n ∀vi∈D(xi) ∀j≠i ∃vj∈D(xj) s.t. (v1,…,vn)∈G(x1,…,xn). A-filtering algorithm for a global constraint G is

a mapping cons of the global constraint G(X) and domains D(xi) of its variables to the domains D'(xi)⊆D(xi)

such that G(X) with D'(X) is A-consistent,. Usually, we require the filtering algorithm to be sound, i.e.,

Sol(G(X),D(X))⊆cons(G(X),D(X)), and monotonic, ∀x∈X D'(x)⊆D(x) ⇒ cons(G(X),D'(X))⊆cons(G(X),D(X)).

                                                       
1 It seems that monotonicity feature of the global constraints is closely related to decomposable constraints
studied in Gent, Stergiu, and Walsh (2000).
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Soundness means that no solution is removed by filtering. Monotony means that if filtering starts with larger

domains then it does not achieve better pruning of the domains than when starting from smaller domains.

Our objective is to design a framework that allows extending the set of variables in the global constraint

scheme on fly while preserving consistency achieved by the filtering algorithm for the static global constraint. In

particular, we design a dynamic extension of the A-filtering algorithm which maps a global constraint G(X),

domains D(X) and a new set of variables Y to domains D'(X∪Y) such that

Sol(G(X∪Y),D(X∪Y))⊆D'(X∪Y)⊆cons(G(X∪Y),D(X∪Y)), where cons is a static A-filtering algorithm for G.

3 A generic dynamisation technique

Global constraints are used in constraint programming systems in the same way as other constraints are used, but

global constraints can be defined over arbitrary finite set of variables. It means that if we know the constrained

variables, we can post a global constraint among them. Nevertheless, in some problems we do not know all the

variables in advance and new variables are introduced as the search progresses. Consequently, we cannot post a

global constraint until we know all the variables. Nevertheless, if the global constraint is monotonic we can do

better by posting a global constraint over the known variables and when a new variable arrives we can post a

new global constraint extended by the new variable and deactivate the old constraint. This is the basic idea

behind a generic dynamisation technique that we will describe in details now.

Assume that there exists a filtering algorithm for the global constraint G that is wrapped in a trigger

procedure g. In particular, procedure g(x1,…,xn) calls the filtering algorithm for the constraint G every time a

domain of any variable xi is changed2. We will use this procedure as the basic interface to the filtering algorithm

for G. Note also that we propose an algorithm for extending the set of variables. Variables can be removed from

the constraint only upon backtracking, i.e. LIFO (last-in first-out) mechanism is applied for adding/removing

variables to/from the constraint. Moreover, if we add a set of variables, the whole set is removed together upon

backtracking. LIFO mechanism for adding/removing the variables may seem like a restriction but it fits perfectly

in the CLP framework and it simplifies significantly the implementation.

Our algorithm exploits the monotony property of the global constraint, in particular we can start with the

previous solution (domains) to get a solution (restricted domains) of the extended constraint. The algorithm first

deactivates the current propagation algorithm (step 1), note that it does not mean removing the constraint from

the constraint store, it is just stopping propagation through it (the internal data structures are kept). Then, it saves

domains of the variables to the stack (step 2) - typically, the underlying constraint engine saves such

information; we highlight it just to illustrate the track of the algorithm. Finally, it posts a new global constraint

with the extended set of variables (step 3).

                                                       
2 This is a standard way of connecting a new consistency algorithm to the constraint engine in CLP, see
Carlsson, Ottoson, and Carlsson (1997). It is up to the underlying constraint engine to plan calls of the filtering
procedures but such techniques are out of scope of this paper, so we do not go in detail there.
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Algorithm 1: ADDVARIABLE(G(X1,…, Xk), Xk+1)

1) deactivate g(X1,…, Xk),

i.e., push its internal data structures to the stack and stop

propagation through this constraint (if k≥1, otherwise do nothing)

2) push domains of X1,…, Xk, Xk+1 to the stack

3) post g(X1,…, Xk, Xk+1) to the constraint store

When removing a variable upon backtracking, we simply reverse Algorithm 1. It means: removing the extended

constraint from the constraint store (now, it is real removing, not just deactivation), restoring domains of the

variables (this is usually done automatically when the extended constraint is removed from the constraint store),

and activating the former constraint again. Note that in CLP no special algorithm is necessary to implement

variable removal, standard backtracking technique does this job.

The proposed dynamisation technique is very general and it is applicable to arbitrary monotonic global

constraints. In fact, we can use an off-shelf code and wrap it using meta-programming techniques to get a

dynamic version of the global constraint. The following theorem ensures that this technique is sound (no solution

is lost) and good enough in comparison with static filtering. The advantage over the static filtering is that the

user may post the global constraint earlier before the complete set of variables is known.

Theorem: If the static filtering algorithm cons is sound and monotonic and the global constraint G is monotonic

then the algorithm ADDVARIABLE is sound, i.e., it does not remove any valid tuple, and it achieves at least the

same pruning as static filtering. Formally:

Sol(G(X∪Y),D(X∪Y))⊆cons(G(X∪Y),D'(X)×D(Y))⊆cons(G(X∪Y),D(X∪Y)), where

D'(X)=cons(G(X),D(X)).

Proof:

1. D'(X)⊆D(X) a feature of cons

2. cons(G(X∪∪Y),D'(X)××D(Y)) ⊆⊆ cons(G(X∪∪Y),D(X∪∪Y))

 monotony of cons + D'(X)×D(Y) ⊆ D(X)×D(Y) = D(X∪Y)

3. Sol(G(X),D(X))⊆ D'(X) soundness of cons

4. let s ∈ Sol(G(X∪Y),D(X∪Y))

5. s↓X ∈ Sol(G(X),D(X)) monotony of G

6. s↓X ∈ D'(X) 3+5

7. s ∈ D'(X) ×D(Y)

8. s ∈ Sol(G(X∪Y), D'(X)×D(Y)) 4+7+feature of Sol

9. Sol(G(X∪Y),D(X∪Y)) ⊆ Sol(G(X∪Y), D'(X)×D(Y)) 4-8

10. Sol(G(X∪Y), D'(X)×D(Y))⊆ cons(G(X∪Y),D'(X)×D(Y)) soundness of cons

11. Sol(G(X∪∪Y),D(X∪∪Y)) ⊆⊆ cons(G(X∪∪Y),D'(X)××D(Y)) 9+10

o
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4 A semantic-based dynamisation

The dynamisation technique proposed in the previous section suffers from some inefficiency caused by posting a

new constraint after extending the set of variables:

1) the new constraint must build its internal data structures from scratch, which increases the time

complexity,

2) we keep the data structures of the old constraint before extension as well as the data structures of the new

constraint after extension, which increases the space complexity,

3) if the existing interface to the filtering algorithm does not support deactivation (and this is the common

case) then propagation is duplicated, i.e., a filtering algorithm is called for all instances of the global

constraint even if calling it for the instance with the largest set of variables is enough.

To eliminate the above mentioned difficulties we propose including dynamic extendibility into the global

constraint itself. We believe that this could be done at least for some global constraints as we show in the next

section for a well known alldifferent constraint.

4.1 A dynamic alldifferent constraint

Régin (1994) proposed an efficient filtering algorithm for the alldifferent constraint. His implementation

is based on matching theory, in particular on matching over bipartite graphs. The bipartite graph for the

alldifferent constraint is called a value graph and it is defined in the following way:

Definition 1: Given an alldifferent constraint C, the bipartite graph GV(C) = 〈XC, D(XC), E〉, where

XC is a set of variables in C, D(XC) is a union of domains Di for all variables in XC and (Xi,a)∈E iff a∈Di, is

called a value graph of C.

Figure 4. A value graph for the alldifferent constraint with three variables.

The filtering algorithm for the alldifferent constraint computes the maximal matching and removes edges

that are not part of any maximal matching. Note that removing an edge from the value graph is equivalent to

removing a value from the variable domain. Moreover, if the maximal matching does not cover all the variables

from the alldifferent constraint then the constraint fails (it is not possible to find a consistent labelling of

variables).
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Algorithm 2: ALLDIFF-INITIALISATION(C)

1) build G = 〈XC, D(XC), E〉,

2) M(G) ← COMPUTEMAXIMUMMATCHING(G)

3) if |M(G)|<| XC | then return false

4) REMOVEEDGESFROMG(G,M(G))

5) return true

The procedure REMOVEEDGESFROMG deletes every edge that does not belong to any matching which covers XC.

Such edges are found by exploring even alternating paths and cycles and by looking for strongly connected

components in the value graph. The description of the algorithm linear in the number of edges can be found in

Régin (1994).

Naturally, the constraint systems consist of more than a single alldifferent constraint and the other

constraints may reduce the domains of variables from XC as well. We can repeat the ALLDIFF-INITIALISATION

procedure each time the domain of any variable from XC is changed (a value is deleted) but we can do better by

using the fact that before the deletion, a matching which covers XC is known. The algorithm by Régin (1994)

uses a function MATCHINGCOVERINGX(G, M1, M2), which computes a matching M2 covering XC from a matching

M1, which is not maximal. If no such matching exists then the procedure returns false. We present here a slightly

simplified version of the algorithm from Régin (1994)  (we expect that when an edge (X,a) is removed from the

graph then the value a is not the only value for the variable X, otherwise the constraint that caused such reduction

has already failed). The algorithm gets the value graph G, the original maximum matching M(G), and the list of

edges ER to delete as input. It returns false if there is no maximum matching which covers XC, and it returns true

otherwise and deletes every edge that does not belong to any matching which covers XC.

Algorithm 3: ALLDIFF-PROPAGATION(G,M(G),ER)

1) computeMatching ← false

2) for each e∈ER do

3)  if e∈M(G) then

4) M(G) ← M(G) - {e}

5) computeMatching ← true

6) remove e from G

7) if computeMatching then

8)  if ¬MATCHINGCOVERINGX(G,M(G),M') then

9)  return false

10)  else

11)  M(G) ← M'

12) REMOVEEDGESFROMG(G,M(G))

13) return true
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Algorithms 2 and 3 can be used for initialisation and propagation of dynamic version of the alldifferent as

well, provided that we can extend the value graph after adding new variables. Remember that the

alldifferent constraint is monotonic so we can add a new variable (or a set of variables) to the constraint

without extending the solution set. Moreover, we can incrementally extend the value graph to get a value graph

for the constraint with more variables. In fact we are extending the set XC of variables, the set D(XC) of values

(perhaps), and the set E of edges. The new edges connect only the new variables with values (old or new); there

is no new edge connecting any old variable with any value (we are not extending the domains of the old

variables so we keep monotonicity).

Definition 2: Let 〈X, D(X), E〉 be a value graph of the alldifferent constraint C(X) for the set X of

variables. Then the bipartite graph 〈X∪Y, D(X∪Y), E'〉 where Y is set of added variables and

E' = E ∪ {(Xi,a) | Xi∈Y & a∈Di, } is called an extended value graph of C(X∪Y) for the extended set X∪Y

of variables.

An important thing is that the extension of the variable set does not influence the decisions taken before. In

particular, if any edge is deleted from the original value graph (because it does not belong to any matching which

covers X) then this edge does not belong to any matching which covers X∪Y (the constraint is monotonic). This

observation is used in the algorithm that updates the value graph after adding new variables. It means that we can

incrementally update the value graph after adding new variables instead of computing a new value graph from

scratch.

Figure 5. Edges deleted (dotted edges) from the original value graph (left) do not belong to the extended value

graph (right). Bold edges are the maximum matching edges.

After extending the original value graph by adding new edges, the former maximum matching does not cover the

extended set X∪Y of variables. We can use the function MATCHINGCOVERINGX to extend the known matching that

covers X to a matching that covers X∪Y. If there exists a maximum matching that covers X∪Y then the edges

that do not belong to any maximum matching are removed using REMOVEEDGESFROMG and the algorithm returns

true, otherwise it returns false.
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Algorithm 4: ALLDIFF-UPDATE(G,M(G),EA)

1) for each e∈EA do

2) add e to G

3) if ¬MATCHINGCOVERINGX(G,M(G),M') then

4) return false

5) else

6)  M(G) ← M'

7) REMOVEEDGESFROMG(G,M(G))

8) return true

Removing a variable from the alldifferent constraint is done upon backtracking only so we do not present

a special algorithm for this. The standard mechanism with a stack to recover data structures can be used there. To

prove soundness of the ALLDIFF-UPDATE algorithm we can use the results from Régin (1994) combined with the

monotonicity feature of the alldifferent constraint.

4.2 Complexity analysis

Besides the dynamic filtering for the alldifferent constraint (presented in Section 4.1) we can use a generic

dynamisation technique proposed in Section 3. Let us now compare the complexity of these two methods for

making the alldifferent constraint dynamic. We will use the basic complexity results from Régin (1994)

rather than describing all the details about the data structures etc. This is enough for our purpose that is to

compare two approaches sharing the same "low-level" procedures.

Assume that p is a number of variables in the constraint and d is a number of all different values in the

domains of these variables (a size of the union of the domains). Thus p+d is a number of vertices in the value

graph. Let m be a number of edges in the value graph, clearly m ≤ pd (the value graph is a bipartite graph) so we

approximate m by pd.

Space complexity. To represent the alldifferent constraint we need to keep its value graph and the

maximum matching. The graph can be represented by the set of its edges so the space complexity is )(mO  i.e.

in the worst case )(dpO . The maximum matching consumes )( pO  space, e.g., the matching can be represented

by the list of values in the matching. If a generic dynamisation technique is used then a new value graph is

introduced (and the previous value graph is kept in memory) after adding a new variable. Thus, the worst space

complexity of adding a new variable is )(dpO .

In case of a dynamic filtering algorithm, only new edges are added to the value graph when the new

variable arrives. These edges can only connect the new variable with the values, so the maximal number of the

new edges is d. Remember that we also need to keep the maximum matching. Thus, space complexity is

)( pdO +  that is much better than generic dynamisation.
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Time complexity. According to Régin (1994), time complexity of ALLDIFF-INITIALISATION is )( pdpO . Thus,

time complexity of adding a new variable using the generic dynamisation technique is )( pdpO  as well (in

fact, we are adding a completely new constraint while keeping the former constraint).

As shown in Régin (1994), time complexity of REMOVEEDGESFROMG is )( pdmO ++  and time

complexity of MATCHINGCOVERINGX is )( kmO  where k is a number of edges missing in the maximal

covering (these edges must be added to find a covering that covers all the variables). Note that if we are adding a

new variable to the constraint then exactly one edge is missing in the maximal covering (i.e., k=1) - the edge

connecting the new variable with some value. Consequently, time complexity of MATCHINGCOVERINGX called

in ALLDIFF-UPDATE is )(mO . Together, time complexity of adding a new variable using ALLDIFF-UPDATE is

)( pdmO ++ . In the worst case this complexity is )(dpO , still p -times better than generic dynamisation.

Note that if we know the variables in advance then it is more efficient to add them all together, time

complexity is )( pdpO , than adding them incrementally (one by one), time complexity is )( 2dpO . Algorithm

4 supports adding more variables together in an efficient way with time complexity )( kdpO , where k is a

number of added variables.

Time complexity of propagation of single deletion (a value is removed from the domain of a variable by

another constraint) through the constraint is )(dpO , Régin (1994), same for both methods of dynamisation.

Nevertheless, note that some systems do not support deactivating the constraint from the constraint store - the

constraint is removed upon backtracking only. Consequently, when generic dynamisation is used then all the

constraints posted so far are active and propagation is duplicated, which decreases overall efficiency.

SPACE TIME

ADDVARIABLE(ALLDIFF)

generic dynamisation
)(dpO )( pdpO

ALLDIFF-UPDATE

dynamic all-different
)( pdO + )(dpO

Table 1. Comparison of time and space complexity of adding a variable for the generic dynamisation and for the

dynamic implementation of the alldifferent constraint.

4.3 Experimental evaluation

We have implemented the dynamic alldifferent constraint in SICStus Prolog to compare our approach

with the traditional method of dummy variables. To shade off from the complexity of propagation in other

constraints, our test examples consist of a single alldifferent constraint and several conditional constraints

modelling dynamic character of the problem. There are seven basic variables x1, …, x7 with the domain {1,..,7}

and seven "dependent" variables y1, …, y7. Appearance of the variable yi in the problem depends on the value of

the variable xi; this relation is described using the rules in Table 2.
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Set A7 Set B7

x1≤4 ⇒ add variable y1∈{5,6,…,15}

x2≤5 ⇒ add variable y2∈{6,7,8}

x3≤5 ⇒ add variable y3∈{6,7,8}

x4≤5 ⇒ add variable y4∈{6,7,8}

x5≤2 ⇒ add variable y5∈{4,5,…,9}

x6≤2 ⇒ add variable y6∈{4,5,…,9}

x7≤2 ⇒ add variable y7∈{5,6,…,11}

x1≤1 ⇒ add variable y1∈{5,6,…,10}

x2≤1 ⇒ add variable y2∈{6,7,8}

x3≤1 ⇒ add variable y3∈{6,7,8}

x4≤1 ⇒ add variable y4∈{6,7,8}

x5≤2 ⇒ add variable y5∈{4,5,…,9}

x6≤2 ⇒ add variable y6∈{4,5,…,9}

x7≤2 ⇒ add variable y7∈{5,6,…,9}

Table 2. Description of the benchmark problems.

The alldifferent constraint is defined over all the variables xi and yi that appear in the problem. In the

dynamic formulation of the problem, the variable yi is introduced when the condition of the corresponding rule

holds. In the static formulation of the problem, all the variables yi are introduced at the start with the initial

domain {1,…,23} and the rules are modelled as a one way propagation from xi to yi. The main difference

between the set A and the set B is the ratio between the number of variables in the solution and the number of

dummy variables. In the test set B7, there will be maximally two variables yi in the solution but seven dummy

variables are necessary. In addition to the test sets A7 and B7 we use smaller sets A6, A5 and B6, B5, where

only the first six (five) variables xi are used (so corresponding rules and dependent variables are removed, while

the domains are kept).

Table 3 shows the number of solutions for each of above problems and times to find all the solutions. As

we can see there is a significant improvement of time efficiency when the problem is modelled dynamically over

the static model with dummy variables. Moreover, when the ratio between the number of necessary variables and

the number of dummy variables is decreasing (going from the set A to the set B) then the improvement becomes

even more evident.

# solutions dummy variables dynamic version improvement

A7 5280 6.23 s 4.31 s 44 %

A6 12216 13.06 s 9.20 s 42 %

A5 15612 15.72 s 11.69 s 34 %

B7 9000 13.97 s 8.89 s 57 %

B6 12600 16.85 s 9.14 s 84 %

B5 6390 6.94 s 3.78 s 83 %

Table 3. Comparison of modelling using dummy variables and modelling using the dynamic alldifferent

constraint. Tests run on Intel Celeron 333 MHz computer
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5 Notes on non-monotonic constraints

In the paper we concentrate on dynamisation of monotonic global constraints but there are also many non-

monotic global constraints, like the atleast constraint. These constraints cannot be dynamised neither using

the generic approach presented in Section 2 nor using the semantic-based dynamisation proposed in Section 3.

The main obstacle here is that adding new variables to a non-monotonic global constraint might add new

solutions to the constraint (see Example 3).

Example 3: Assume that there are variables a, b, c with the domain {1,2,3} and the "global" constraint

sum({a,b,c},#=,9), i.e., the sum of the variables equals 9. Visibly, the domain filtering can remove the

values 1 and 2 from the domains because these values cannot be part of any solution.  Nevertheless, if we

extend the set of variables in the sum constraint by adding a new variable d with the domain {1,2,3}, then

we get the constraint sum({a,b,c,d},#=,9). Now, domain filtering does not remove any value from the

domains, in particular values 1 and 2 can still be part of some solution (e.g. a=1, b=2, c=3, d=3 is a

solution satisfying the extended constraint).

There are several ways of using a non-monotonic global constraint in dynamic environment.

First, the constraint is posted only when the set of constrained variables is known. This is a standard way

of using global constraints and we already described its disadvantage, namely, domain filtering cannot be applied

until all the constrained variables are known.

Second, the non-monotonic global constraints can be made dynamic using incremental addition and

removal of values from the domains. When a new variable is added to the non-monotonic constraint, it may

violate deletion of values during the domain filtering over a smaller set of variables. Thus we need to restore the

original domains of variables and to start domain filtering from scratch which could be rather expensive.

Generally speaking, some form of Dynamic CSP is required to handle incremental propagation through non-

monotonic constraints. Unfortunately, a simple extension of an existing CSP system cannot do this; the system

must be re-programmed from scratch to support Dynamic CSP.

Third, it is possible to approximate the non-monotonic global constraint by a monotonic constraint (see

Example 4). This monotonic constraint is then dynamised using the techniques proposed in this paper. As soon

as the set of constrained variables is known, propagation through the monotonic approximation is suspended and

the non-monotonic global constraint is posted. The advantages of this approach are:

§ we can exploit some domain filtering earlier even if the set of constrained variables is not known yet,

§ this technique can be easily implemented in existing CSP packages.

Example 4: Assume that we have a non-monotonic constraint sum(Xs,#=,C), where Xs is a list of

variables with domains consisting of non-negative integers only and C is a constant. This constraint can

be approximated by a constraint sum(Xs,#=<,C), i.e., every solution of sum(Xs,#=<,C) is also a solution

of sum(Xs,#=,C). Visibly, because the constrained variables are non-negative integers, adding new

variables may only increase the sum of variables and thus decrease the upper bounds of domains in the

sum(Xs,#=<,C). The removed values cannot be part of any solution of any extended constraint and, thus,

the constraint sum(Xs,#=<,C) is monotonic.
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6 Conclusions

This paper presents a first attempt to formalise the notion of a dynamic global constraint. We restricted ourselves

to backtracking based environments where the variables are added and removed in the LIFO order only. This

may seem rather restrictive in comparison with say Dynamic CSP but it allows us to implement dynamic global

constraints within the existing systems, in particular in Constraint Logic Programming environments. We also

showed that this dynamisation pays off as it brings the efficiency advantage over the static approaches when

applied to dynamic problems.

The presented ideas may seem straightforward but as far as we know, there are no dynamic global

constraints implemented in leading CLP packages like SICStus Prolog, ECLiPSe, or CHIP3. Note that the

interface to such a dynamic constraint can be very simple: when the user posts the constraint, a variable

representing an open-end of the list of constrained variables is returned. Then, the user can easily add new

variables to this list when search progresses. This brings not only the advantage of earlier pruning but it also

simplifies modelling. In any case, our approach is not worse than waiting until all the variables are known and

then finally posting the constraint among them and propagating it. In the highly dynamic problems like planning,

our approach is even more beneficial.

                                                       
3 The "open" global constraints can be found in C++ based ILOG Solver, though. Our approach provides a more
formal view of such constraints.
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