
1

Visopt ShopFloor:
On the edge of planning and scheduling

Roman Barták*

Charles University in Prague, Faculty of Mathematics and Physics
Malostranské námestí 2/25

118 00 Praha 1, Czech Republic
bartak@kti.mff.cuni.cz

Abstract. Visopt ShopFloor is a complete system for solving real-life
scheduling problems in complex industries. In particular, the system is intended
to problem areas where traditional scheduling methods failed. In the paper we
describe the heart of the Visopt system, a generic scheduling engine. This
engine goes beyond traditional scheduling by offering some planning
capabilities. We achieved this integrated behaviour by applying Constraint
Logic Programming in a less standard way - the definition of a constraint model
is dynamic and introduction of constraints interleaves with search.

1 Introduction

Scheduling is one of the strongest application areas of constraint programming [16].
The reason of such success can be found in a similar static character of both
scheduling problems and constraint satisfaction problems. First, the problem structure
is fully described in advance: in case of scheduling it means that all the activities and
relations among them are known in advance, in case of standard constraint
satisfaction problem (CSP): all the variables, their domains, and constraints are
known in advance. The problem solving then consists merely of searching the space
of alternative combinations of activity locations or variables' values respectively.
Search is also a core technology in the close area of planning. However, the main
difference from scheduling is the dynamic character of planning [13]. The structure of
the plan is so variable that it can be hardly encoded in variables, domains, and
constraints defined before the problem solving starts. Thus, planning typically uses
ad-hoc algorithms even if there exist approaches based on general concepts like CSP.
These approaches either try to fit a planning problem into a static concept of CSP
[6,14] or they are based on generalisations of the CSP framework like Dynamic CSP
[11] or Structured CSP [12].

To solve problems on the edge of planning and scheduling we propose to use an
existing technology of Constraint Logic Programming (CLP) in the way this
framework was originally defined [8]. Note that since CSP has been formalised, the

* The research is supported by the Grant Agency of the Czech Republic under the contract no.

201/01/0942.

2

same static approach is applied to solve problems in CLP as well, i.e., define the
variables, domains, and constraints first and then do search [15]. In our opinion this is
not a natural way of solving problems in (constraint) logic programming framework.
Moreover, it leads to such strange formulations like calling ILOG Solver "a C++
implementation of constraint logic programming" (C++ is no more logic
programming). Our basic idea is to return to the roots, i.e., to use constraints in CLP
in the same way as unification is used [8]. It means that constraints are introduced
during search and thus different sets of constraints are active in different branches of
the search tree. The usual argument against this approach is weak constraint
propagation. However, this is not a fully fair argument because different branches in
the search tree typically represent disjunction and it is a known wisdom that
propagation through disjunction is not good as well. Moreover, we can post the
constraints in advance in CLP too, if we know them. Our proposal is to use CLP
capabilities to reduce exponential grow of the number of constraints in the planning-
like problems.

We believe that CLP approach is sufficient to model and solve mixed planning and
scheduling problems. To demonstrate this attitude we have implemented a generic
scheduling engine for the Visopt ShopFloor system. The main difference of our solver
from other scheduling systems is a full integration of the planning component, i.e., the
solver does both planning and scheduling tasks. In fact, there is no strict border
between planning and scheduling in the Visopt system

The paper summarises our work on the scheduling engine for Visopt ShopFloor
system. We first introduce the problem area and discuss its description (Section 2).
Then we present some details of the internal architecture of the scheduler, in
particular we describe a dynamic constraint model and a basic scheduling strategy
(Section 3). We conclude with some results and lessons learned (Section 4).

2 Problem area and its description

Visopt ShopFloor is not another academic planner/scheduler but its design has been
driven completely by a commercial area, i.e. by existing problems in real-live
factories. The emphasis has been put to complex areas where the traditional
scheduling techniques failed because they were not able to cover whole complexity of
the problem. In particular, we concentrate on scheduling problems in food, chemical,
and pharmaceutical industries. Nevertheless, the original goal was to design a generic
scheduling engine applicable to other areas as well. So, from the beginning we
accommodate the engine by rich modelling interface for problem description.

2.1 Order-driven production

Basically, the goal is to generate a plan/schedule of production for a given time
period. It means that notions like makespan are not used there directly because the
scheduled period is fixed.

The production is driven by orders, i.e., the user specifies a set of orders to be
scheduled. Each order is described by a set of ordered items together with requested

3

quantities. It is also possible to describe alternative items that can be delivered if the
ordered item is not available (provided that the total ordered quantity is fulfilled).
Moreover, the ordered quantity can be relaxed as well so we can deliver more or less
than the user requested (if the customer allows it). Thus the ordered quantity is not
necessarily a constant number, it could be an interval with one number inside the
interval indicating the ordered quantity.

Finally, for each order the user describes the delivery time and the latest delivery
time. Both times can be equal, then the ordered items must be delivered at given time.
The other extreme is that there is no restriction about the latest delivery time. Then we
can postpone production for such order if there is not enough capacity to produce for
this order. The latest delivery time is typically used to distinguished between the real
orders from the customers (the latest delivery time is restricted) and the forecast
orders (no restriction about the latest delivery time).

Using intervals instead of constant numbers for item quantities and delivery times
is a way of introducing soft constraints into the model. Naturally, the users prefer that
given quantities are delivered at given times. We use a penalty mechanism to describe
how the user requirements are satisfied in the schedule. The penalty can be put to
quantity, to alternative items, and to delivery time. Basically, the penalty is increasing
(linearly) if we deliver quantity different from the ordered quantity. For the alternative
items, the ordered quantity is zero so if we deliver alternative items instead of the
ordered items then we pay the penalty. Thus no special mechanism to distinguish
between the ordered items and the alternative items is necessary. For the delivery
time, we pay the penalty if we exceed the acceptable delivery time. Then the penalty
is increasing linearly (Figure 1). We spoke about optimisation issues later in the
paper.

Fig. 1. Penalty mechanism for orders

Note that we do not allow delivering before the delivery time. We use a different
mechanism to describe earliness of the deliveries. In reality, if the item is ready
(produced) before the delivery time then it must be stored somewhere. So instead of
the penalty for earliness we use the storing cost which makes the model closer to
reality.

co
st

time

co
st

quantity

ordered quantity

Penalty for late delivery Penalty for alternatives

delivery time acceptable
delivery time

4

2.2 Complex resources

A typical feature of our problem area is using resources (machines) with complex
behaviour. This behaviour is described using states and transitions between the states.
At each time, the resource can be at one state only or the resource is in transition
between two states (we allow transition time to be assigned to each transition). The
transition scheme is typically described by a directed graph (Figure 2) or by a
transition table. Note that using this general concept we can model set-ups,
changeovers etc. either using transition times or using states. The set-up states are
useful, if they are connected to other resources. For example, if some by-product is
produced during the set-up or if a worker (another resources) is required to do the set-
up. Still, at the modelling level set-up states are handled like all other states. The
number of states is not limited in resources, some resources have just one state, in
other resources the number of states can be rather large (tens to hundreds).

Fig. 2. A simple transition scheme for the resource.

Currently, we concentrate on batch production primarily so the schedule of the
resource is described by a sequence of non-overlapping batches1. Each batch belongs
to one of the resource states. The user may also restrict the length of the batch
sequence in given state. For example a minimal number of five batches and maximal
number of ten batches of some state S can be in sequence. It means that we cannot
change the state S of the resource until at least five batches of this state are processed
and we have to change the state S to another state (following the transition scheme) if
ten batches of the state S have been processed. In addition to this min batch/max
batch constraint and the transition scheme, the user may specify other sequencing
constraint that we call a counter. The counter says that after a given number of
batches there must a batch of given state, e.g. after ten processing batches there must
a cleaning batch. The counter can be also state specific, i.e., only batches of given
states are counted and batches of other states are ignored (Figure 3).

Fig. 3. Batch counters. After two "heating" batches a "cleaning" batch must be inserted (we use
a transition scheme from Figure 2; "loading", "unloading", and "cooling" are not counted).

1 Continuous process can be decomposed into a sequence of batches.

loading

heating unloading

cleaning

cooling

heatingloading unloading heatingloading unloading cooling cleaningcleaning

time

5

For each state the user specifies (process) duration of batches of this state. Duration
can be either constant or variable. If the duration is variable then the solver may
choose appropriate duration for each batch from a specified domain. The location of
batch in time can be further restricted by using time windows, i.e., the batch must start
and complete in specified time intervals. Again, the time windows are common for all
the batches of given state, i.e., the user specifies the time windows for states rather
than for particular batches. Batches of some states are not interruptible, i.e., they must
run completely within some time window. We also allow interruptible batches, i.e.,
the batch may start in one time window and complete in another time window. Then
we distinguish between processing duration, i.e., time spent in time windows, and idle
duration, i.e., time spent out of time windows. The total duration of the batch equals
to the sum of process duration and idle duration. Note also that the batch stays in the
resource from the beginning to the end of processing so even if the batch is in idle
time no other batch can be processed by the same resource (Figure 4).

Fig. 4. Interruptible batch occupies the resource out of time windows too.

To make the concept of interruptible/non-interruptible batches more general, we allow
the user to express the maximal ratio between the idle duration and the process
duration. If this maximal ratio is zero, then the batch is non-interruptible. If maximal
ratio is one than the batch is interruptible but the idle duration cannot be longer than
the process duration etc. Thus, the user may describe a full scale of interruptibility.

Note finally, that the concept of interruptibility is different from pre-emptiness
used in traditional scheduling. A pre-emptive activity may be stopped in the middle,
another activity (activities) is processed and then the original activity is re-started
(perhaps on different resource). In our concept, the pre-emptive activities can simply
be modelled by a set of batches (see Figure 7 for example).

As we already mentioned, batches of the same state may have variable duration.
We also allow having variable capacity of the batch: for example a single heating
batch may be used to heat two to five tons of the item. Typically, the user describes
some minimal capacity processed by the batch (e.g., two tons), maximal capacity
processed by the batch (e.g., five tons), and the increment in capacity (e.g., one ton so
two, three, four, or five tons of the item can be processed in the batch). By using
batches with variable capacity we can model parallel processing as well (Figure 5),
e.g., stores, but this way of modelling is not very efficient (concerning solving) as it is
very similar to a timetabling approach [2].

time windows

idle time

process time

batch

6

Fig. 5. Modelling parallel processing (left) using batches with variable capacity (right).

2.3 Resource dependencies

Typically, there are more resources involved in the problem and these resources
interact in a predefined way. We describe this interaction by supplier-consumer
dependencies. It means that each batch has some input items that are consumed and
some output items that are produced (in some batches, there are only the input items
or only the output items). There must be a supplier for the input items, i.e., there must
exist some batches that produce the item, and there must be a consumer for the output
items. For each item that appears in the model, the user describes a connection
between the supplying resource and the consuming resource. Because this connection
describes moving of the item between two resources, it is possible to specify the
moved quantum as well as the delay between the end of the supplying batch and the
start of the consuming batch (Figure 6).

Fig. 6. Batches are connected via dependencies.

We allow the supplier-consumer dependency to be very flexible. It is possible to
specify several supplying resources per item and per consumer and vice versa. Also,
the dependency delay might be variable so one consuming batch can be connected to
several supplying batches of a single resource (Figure 7). The number of connections
is driven by the quantity of the item. For example, if the batch consumes ten tons of
some item then we have to find enough supplying batches for this quantity. This
concept of dependencies is very general and the users may describe an arbitrary
structure of the factory including many-to-many relations between the resources or
even (re-)cycling. This is usually very hard or even impossible in the existing
scheduling systems where typically only the precedence relations can be defined.

Supplier-consumer dependencies may also mimic behaviour of some resources like
movers and stores. If there are no other constraints on the mover (like limited
capacity) then the mover can be fully modelled using the dependencies. Otherwise a

time

ca
p

a
ci

ty

time

ca
p

a
ci

ty

supplier

consumer

dependency delay

moved quantity

7

mover should be described as a resource. Also, it is possible to model some stores like
buffers using dependencies with variable dependency delay. The variability of the
delay describes the minimal and maximal storing time for the item.

Fig. 7. One consuming batch can be connected to several supplying batches spread over more
resources (and vice versa). The only restriction is that the requested quantity must be supplied
and the time distance between the supplying batches and the consuming batch satisfies the
dependency delay.

We can use orders in the definition of supplier-consumer dependencies as the
consuming resource. Using this technique, the user describes which items can be
ordered and what resources supply these items. In a similar way, the user can define
purchase as the supplier for some items. It means that some items may be purchased
from external suppliers. Thanks to generality of the dependency mechanism there is
no problem to define items which can be both produced on site or which can be
purchased. It is up to the solver to decide how the item is acquired.

2.4 Objectives

As we already mentioned, the basic task is to generate a feasible schedule for the
fixed period of time. Some users prefer to minimise the number of set-ups, others like
to minimise storing time or to maximise satisfaction of customers (to minimise the
sum of penalties in orders). Quite often multi-criteria optimisation is required.

Our opinion about optimisation in scheduling is that all the optimisation criteria
substitute what the user really needs - to maximise the profit. If the set-ups are
expensive then the user asks to minimise the number of set-ups. But what he or she
really wants is to minimise the cost of production. The same holds about minimisation
of makespan. If the production is faster then the user can satisfy more customers and
thus to earn more money. So it seems to us that most (all?) optimisation criteria used
in traditional scheduling are in fact instances of minimisation of cost that is equivalent
to maximisation of profit. These criteria differ in the way where the cost/penalty is
put. Consequently, we believe that a unified cost model can cover most real-life
optimisation criteria. Moreover, because there is a single optimisation parameter - the
cost - there are no problems with multi-criteria optimisation. It means that the
optimisation criterion is shifted from the solving level to the modelling level (to the
definition of costs/penalties).

time

re
so

ur
ce

s

Supplying batches does
not need to be in
sequence. This allows us
to model pre-emptiness.

8

In addition to penalties discussed in previous sections, the user may put cost to
batches (dependent on duration and processed quantity), to transitions, and to
dependencies. The optimisation task is then to minimise the total sum of costs and
penalties in the schedule.

Note finally, that a typical user does not require finding an optimal solution - a
good enough solution is accepted as well. Cost optimisation is used to get good
schedules but it is the user who decides if the solution is "good enough". Typically,
the quality of the schedule is measured by savings achieved when the schedule is
applied. In many cases, a small improvement of the schedule over the existing
schedule is assumed to be a "good enough" solution. To summarise discussion about
the optimisation: the main point is that we are not required to prove optimality or the
distance from the optimal solution - we should simply produce a good schedule.

3 Realisation of the solver

Resources, dependencies, and orders are described formally in a Prolog-like
modelling language. In fact, we use a set of Prolog facts to describe fully the problem
and we call this set a factory model. The factory model makes an interface between
the Visopt user interface and the solver. Using the factory model is the first major
difference of our solver from existing schedulers. Note that the factory model
describes declaratively the plant and the demands. Basically, it is a list of attributes of
resources, dependencies, and orders. There are no constraints defined in the factory
model and there are no activities to be scheduled. The constraints are hidden in the
semantics of the factory model and we build automatically a constraint model from
the factory model. Concerning activities, in our terminology we speak about batches,
they are introduced dynamically during problem solving according to demands. Thus
we solve a planning problem (introduction of activities) mixed with a scheduling
problem (allocation of activities). Still, we can solve problems in the size close to
pure scheduling and order of magnitude larger than pure planning problems (see the
last section). And we have the flexibility of integrating both concepts so the user just
describes the problem using a factory model and a generic solver finds a schedule. At
least, so far we were able to solve all the problems coming from our pilot projects
using a single generic engine tuned by few parameters.

3.1 Constraint Representation

As we mentioned above, the factory model describes just the attributes and the
constraints are hidden in the semantics of the model. In this section we describe how
the model is realised in terms of constraint satisfaction, i.e. using domain variables
and constraints.

There exist approaches trying to represent dynamic problems in a static way using
dummy variables [6,14]. The difficulty of our problem area is that the ratio between
the total number of variables (including dummies) and the number of variables
participating in the solution is very large. Thus a fully static representation is
inefficient. In fact, the static realisation cannot be realised for large-scale problems

9

due to huge memory consumption. Thus we decided to use a representation where
some variables and constraints are introduced dynamically during search [3]. We still
use some dummy variables to help the decision process via constraint propagation,
but the number of dummy variables is limited. Basically, if there is a planning
branching, i.e., a decision about which activities should be introduced, then we
introduce all of them and via constraint propagation we can eliminate some of such
activities. In some sense, this is a realisation of the idea of active decision
postponement [9]. If we have to decide which activity is used, we introduce all the
candidate activities and we postpone the decision until we get more information about
the candidate activities.

Slots. Basically, the Visopt solver uses a resource-centric model [2,7], i.e., the
activities are grouped per resources rather than per tasks. The reason for choosing this
model is large complexity of the resource constraints in comparison with the
dependency constraints. The resource centric model is realised via slots. Slot is a shell
filled by a batch during scheduling. For each resource we have a chain of slots and
during scheduling these slots are being filled by batches. The difference from slots in
timetabling is time location of slots. In timetabling, the slots represent fixed time
intervals. In the Visopt solver, the slots may slide in time. Still, the order of slots is
fixed but the slots may be shifted in time, e.g., if the slot is moved to later time then
all the successive slots must be moved as well (Figure 8).

Fig. 8. Slots can move in time provided that the ordering of slots is preserved

Because slots are not fixed in time, there are two finite domain (FD) variables in each
slot representing the start time and the end time of the slot. As described in section
2.2, we distinguish between the process and idle duration so there are two more FD
variables representing these durations. Remind that decomposition of duration into
process and idle parts depends on the time windows (Figure 4), i.e., on the state of the
resource. So the next FD variable describes what is the state of the resource in the
slot. Together, the semantic of the constraint that connects all these variables can be
described in the following way:

start_time in TimeWindows(state)
end_time in TimeWindows(state)
process_duration = ProcessDuration(state,start_time,end_time)
idle_duration = IdleDuration(state,start_time,end_time)
start_time + process_duration + idle_duration = end_time

The first two constraints above are realised using tabular constraints [4] and the last
three constraints are realised using a dedicated global constraint with a special
filtering algorithm working with time windows.

time shift

10

Transitions. Note that the ordering of slots is fixed so the next slot must start after the
end of the previous slot. The exact distance between the slots can be derived from the
transition scheme defined for the resource. Basically, this distance depends on the
states filled in these two slots so the following formula describes the transition time
constraint:

end_timei + TransitionTime(statei,statei+1) = start_timei+1

where the index indicates the ordering number of the slot.
To complete the description of the transition scheme, we need to specify the relation
between the states in two consecutive slots. Remind that for each state the user
describes a minimal and maximal number of batches. Thus, for each slot we should
know how many slots right before have the same state. Thus we introduce a new FD
variable called a serial number that indicates a relative position of the slot in the
longest continuous sequence of the slots with the same state (Figure 9).

Fig. 9. Serial numbers in slots indicate the position of the batch (slot) in the sequence of slots of
the same state.

The semantics of the transition constraint can then be described using the following
formulas:

∀i serial_numberi in 1..MaxBatches(statei)
statei+1 in {statei} ∪ NextStates(statei)
statei=statei+1 ⇒ serial_numberi+1 = serial_numberi+1
statei≠statei+1 ⇒ serial_numberi+1 = 1

serial_numberi<MinBatches(statei) ⇒ statei=statei+1

It is possible to implement the transition constraints exactly as specified above but to
get better pruning we use a special global constraint describing the transition. Note
also, that the transition constraint can be seen as a special version of the counters
(section 2.2) so counters are implemented in a very similar way.

Introducing the slots. There are two ways how to introduce slots to the system. First,
it is possible to estimate a maximal number of slots using the transition scheme,
duration of batches etc. and to generate all necessary slots in advance. The
disadvantage of this approach is that it may introduce a huge number of dummy slots
that will not be used in the final schedule. The only advantage could be better
propagation because the slot variables are known and the constraints among them are

state = 1
serial = 1

state = 1
serial = 2

state = 1
serial = 3

state = 2
serial =1

state = 2
serial =2

state = 1
serial =1

State MinBatch MaxBatch NextStates

1 3 5 2

2 1 2 1

Required state
change

Possible but
non-required
state change

11

posted before we start labelling. However, we do not need propagation in far future
slots that will not be used in the final schedule (moreover, the propagation is weak
there and it slows down the system). Therefore we generate the slots dynamically on
demand. It means that if we find that some batch could be allocated to the resource
then we generate a slot for it. So slots are added due to a transition scheme (restricted
transition time) or due to a demand from other resources (asking for
supplier/consumer). Note also that even if we introduce the slot it does not mean that
it will be filled by the batch that caused this introduction. Perhaps some other batch
overhauls it or the slot stays empty. Still, the ordering of slots is fixed so it is not
possible to introduce a new slot in-between two existing slots (because the transition
constraints has already been posted). Thus, deciding to which slot the batch is
allocated corresponds to the decision about absolute ordering of batches in the
resource.

Filling the slots. There is another difference between slots and batches. The batch
describes also input and output quantities of processed items so for each item there is
a FD variable describing its quantity. If the number of items is large, it is not efficient
to include such variables into the slot until the batch (state) in the slot is known. Thus,
these variables (and corresponding constraints, e.g., the capacity limit) will be
introduced dynamically when the state in the slot is known, i.e., when the domain of
the state variable becomes singleton. In our constraint model, such introduction is
done automatically using event-driven programming.

Dependencies. Dependencies form the most dynamic part of the model. Remind that
the dependency describes a supplier-consumer relation between two batches so the
dependency will connect two slots filled by respective batches. Because the
dependency is closely related to the item we cannot introduce the dependency until
we know the item and its quantity. As described in the previous paragraph, the
variable specifying the item quantity is introduced as soon as we know the batch - the
state - in the slot. At the same time we can start dependencies from the given slot.

Assume that we have an input item defined for the batch in the slot. Dependencies
should connect this batch with all the supplying batches. It is possible to post
dependency to every slot that can be filled by a supplying batch. However, this eager
method has huge memory consumption when applied to large-scale problems with
hundreds or thousands of slots. Thus, we use a more lazy method that posts a minimal
number of dependencies covering the required quantity. Typically, these
dependencies go to the first possible slot of the supplying resources. If we find later
that these slots cannot be filled by a supplying batch then we move the dependency to
the next slot and so on. If there is no slot found in the resource, the dependency is
made empty. Other dependencies can be introduced as soon as we find that the
dependencies generated so far are not enough (e.g. because some of them have been
made empty). For each slot, the system maintains links to all non-empty dependencies
going to this slot. These links are then used during scheduling when deciding what
batch will be filled in the slot (see section 3.2).

12

Dependency constraints. Dependency connects the supplying batch with the
consuming batch and it posts a constraint between the end time of the supplying batch
and the start time of the consuming batch (Figure 6). Moreover, there is some quantity
of the item going though the dependency so the sum of all such quantities per item
must be equal to the processed quantity in the batch. These constraints define
soundness of the dependency but we can post more constraints that simplify
scheduling.

First, it should be said that the dependency could be started both from the
supplying batch and from the consuming batch. To remove this symmetry we can use
a first-come-first-serve constraint so only a single dependency will connect two
batches (the dependency in the reverse direction will be made empty).

Note also that dependencies make demands for batches in the resource. Thus, if we
decide about ordering of dependencies going to a particular resource then, in fact, we
determine the ordering of batches in the resource. There exist filtering algorithms
doing such decisions using information about time, like edge-finding [1]. However,
the global constraints representing these constraints are usually static in the sense that
they can be defined only over a known set of demands. Because dependencies are
introduced dynamically we need a dynamic version of such global constraints [5]. In
the Visopt solver we use a simple dynamic version of the edge-finding algorithm.
Unfortunately, the edge-finding like methods are less effective there because domains
of time variables are not very restricted. Methods based on ordering of batches, e.g.
[10], are more appropriate there. We use a global constraint that orders the
dependencies going to the resource using information about the ordering of batches in
the resource where from the dependencies have been started. A detail description of
this constraint is out of scope of this paper; Figure 10 shows the basic idea.

Fig. 10. A global constraint for ordering the dependencies may forbid the order of
dependencies on the left and may force the ordering on the right depending on the dependency
delay and the distance of consuming batches (the arrow shows a direction from the batch that
posted the constraint).

3.2 Labelling strategy

The constraint model is dynamic but autonomous. It means that variables and
constraints are introduced automatically when the system finds out that they are
necessary. Thus, if the labelling procedure follows some rules about the ordering of
variables, then it knows nothing about the dynamic character of the constraint model
because the variables are already present there for labelling. For example, the state
variable in the slot should be labelled before we can label the variables describing

timere
so

ur
ce

s

timere
so

ur
ce

s

13

item quantities in the batch (because as soon as the state variable becomes ground, the
variables for item quantities are introduced automatically to the model).

We use standard backtracking-based search driven by heuristic. At the beginning,
there are just orders in the system, dependencies going from the orders to some
resources, and some (usually empty) slots in the resources. The scheduling strategy
works in steps going from left to right (past to future), the size of the step is defined
by the user. The step is represented by a border line called frontier that is moved from
left to right. At each step, only the batches (slots) that must start before the frontier
are scheduled. The consequence of this strategy is that only required production is
scheduled.

The labelling within the step goes in the order-to-purchase direction, i.e., the slots
in the resources that supply directly to the orders are being closed first, then the slots
in the resources supplying these suppliers of orders and so on. In the resource the slots
are being filled from left to right. For each slot, we first explore the dependencies
going to the slot. Some of these dependencies are selected and thus connected to this
slot (earlier dependencies are tried first). This decision further constraints the state in
the slot so usually, the state variable becomes singleton. Otherwise, this variable is
labelled. As soon as the state is known, the labelling proceeds to the variables
describing the item quantities in the batch (these variables have been introduced when
the state variable becomes singleton). At the end of each scheduling step, the time
variables are labelled in the closed slots (earlier time is preferred).

Fig. 11. Ordering used in the labelling strategy.

The key decision in the above labelling procedure is about which dependencies will
go to a given slot. In fact this decision is about ordering of batches in the resources. In
the standard labelling procedure, the earliest dependencies are preferred. For
optimisation, we use a special variant of the labelling procedure where the decisions
are done according to the cost. It means that the values are tentatively assigned and
the value leading to the smallest cost is selected.

4 Results and conclusions

Visopt ShopFloor system has been tested in several pilot projects in one of the biggest
chemical enterprises in Europe, one of the biggest and famous candy producers in The
Netherlands, and one of the biggest dairies in Israel among others. The feedback from
the companies is very positive - Visopt ShopFloor is the only system, among the

purchases

time

re
so

ur
ce

s

orders

14

systems that they tested, that can fully cover the complexity of production in these
enterprises via offering rich modelling capabilities supported by a new solving
technology.

In the following tables we summarise some numerical results of one of the pilot
projects where the goal is to generate a detail schedule for a week production.

Number of resources 34
Total number of resource states 991
Size of scheduled period 1 week (10 080 minutes)
Time resolution 1 minute
Number of items 294
Number of orders 45
Total quantity in orders 88.5 tons (88 485 kg)
Quantity resolution 1 kilogram

Table 1. Problem size

The size of the factory model describing fully the problem is almost 1.4 MB. The
structure of the problem consists of several groups of alternative resources including
secondary resources (workers) and it contains both production and packing of the
final items. The resources in the groups of alternative resources are not fully identical
so the number of alternative production lines is very large. The item dependent set-up
times are included in most production resources and time windows are defined for all
the resources. The resolution of scheduling is another interesting point there: we are
scheduling a week production with a one minute resolution, i.e., duration of the
schedule is over ten thousand time units. Also there are over 88 tons of ordered items
and we are scheduling with one kilogram resolution.

Number of batches 5938
Number of dependencies 9496
Runtime 65 minutes (Pentium 4/1700 MHz)

Table 2. Solution size

The complexity of this problem is hidden in the huge number of alternative
production routes. So basically, we are solving a planning problem under time and
resource constraints. Remind that the input to the engine consists of the plant model
and the set of orders. All the activities/batches are introduced (planned) during the
problem solving and allocated to resources (scheduling).

Design of the scheduling engine for Visopt brings some novelty problems and
shows some solutions both to constraint programming and to scheduling. Despite the
original disbelief of the constraint community we showed that the dynamic models
are applicable to solving large-scale real-life problems. Our concept of dynamic
global constraints [5] could be applied to other areas as well, especially when
constraint logic programming is used and when introduction of constraints interleaves
with search. For the scheduling area, we showed that resource-centric representation
is superior when the number of alternative production routes is huge and when the
resource description is complex including transition scheme etc. On the other hand,
the memory consumption and weak constraint propagation through production routes
are basic weaknesses of this approach so our next steps include integration of

15

resource-centric and task-centric representations. Finally, our experiments show that
the traditional scheduling global constraints like edge finder are less effective when
planning is involved so new global constraints are required there.

References

1. Baptiste, P. and Le Pape, C.: Edge-finding constraint propagation algorithms for
disjunctive and cumulative scheduling, in Proceedings of the Fifteenth Workshop of the
U.K. Planning Special Interest Group (1996).

2. Barták, R.: Conceptual Models for Combined Planning and Scheduling. Electronic Notes
in Discrete Mathematics, Volume 4, Elsevier (1999).

3. Barták, R.: Dynamic Constraint Models for Planning and Scheduling Problems.
Proceedings of the ERCIM/CompulogNet Workshop on Constraint Programming, LNAI
Series, Springer Verlag (2000).

4. Barták, R.: Filtering Algorithms for Tabular Constraints, in Proceedings of CP2001
Workshop CICLOPS, Paphos, Cyprus (2001), 168-182.

5. Barták, R.: Dynamic Global Constraints in Backtring Based Environments, in Annals of
Operations Research, Kluwer (2002), to appear.

6. Beck, J.Ch. and Fox, M.S.: Scheduling Alternative Activities. Proceedings of AAAI-99,
USA (1999), 680-687.

7. Brusoni, V., Console, L., Lamma. E., Mello, P., Milano, M., Terenziani, P.: Resource-
based vs. Task-based Approaches for Scheduling Problems. Proceedings of the 9th

ISMIS96, LNCS Series, Springer Verlag (1996).
8. Gallaire, H.: Logic Programming: Further Developments, in: IEEE Symposium on Logic

Programming, Boston, IEEE (1985).
9. Joslin, D. and Pollack M.E.: Passive and Active Decision Postponement in Plan

Generation. Proceedings of the Third European Conference on Planning (1995).
10. Laborie P.: Algorithms for Propagating Resource Constraints in AI Planning and

Scheduling: Existing Approaches and New Results. In Proceedings of 6th European
Conference on Planning, Toledo, Spain (2001), 205-216

11. Mittal, S. and Falkenhainer, B.: Dynamic Constraint Satisfaction Problems. Proceedings
of AAAI-90, USA (1990), 25-32.

12. Nareyek, A.: Structural Constraint Satisfaction. Proceedings of AAAI-99 Workshop on
Configuration (1999).

13. Nareyek, A.: AI Planning in a Constraint Programming Framework. Proceedings of the
Third International Workshop on Communication-Based Systems (2000).

14. Pegman, M.: Short Term Liquid Metal Scheduling. Proceedings of PAPPACT98
Conference, London (1998), 91-99.

15. van Hentenryck, P.: Constraint Satisfaction in Logic Programming, The MIT Press,
Cambridge, Mass. (1989).

16. Wallace, M.: Applying Constraints for Scheduling, in: Constraint Programming, Mayoh
B. and Penjaak J. (eds.), NATO ASI Series, Springer Verlag (1994)

