Constraint Programming

Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

Logic-based puzzle, whose goal is to enter digits 1-9 in cells of 9×9 table in such a way, that no digit appears twice or more in every row, column, and 3×3 sub-grid.

A bit of history
1979: first published in New York under the name „Number Place“
1986: became popular in Japan
Sudoku – from Japanese “Sudji wa dokushin ni kagiru” “the numbers must be single” or “the numbers must occur once”
2005: became popular in the western world

Solving Sudoku

How to find out which digit to fill in?
- Use information that each digit appears exactly once in each row and column.

What if this is not enough?
- Look at columns
 or combine information from rows and columns

Sudoku – One More Step

- If neither rows and columns provide enough information, we can note allowed digits in each cell.

- The position of a digit can be inferred from positions of other digits and restrictions of Sudoku that each digit appears one in a column (row, sub-grid)
Sudoku in General

We can see every cell as a variable with possible values from domain \{1,\ldots,9\}.

There is a binary inequality constraint between all pairs of variables in every row, column, and sub-grid.

Such formulation of the problem is called a constraint satisfaction problem.

Constraint Satisfaction Algorithms

- Local search techniques
 - HC, MC, RW, Tabu, GSAT, Genet
- Search algorithms
 - GT, BT, BJ, BM, DB, LDS
- Consistency techniques
 - NC, AC, DAC, PC, DPC, RPC, SC
- Consistency techniques in search
 - FC, PLA, LA
- Constraint Optimisation
 - B&B
- Over-constrained problems
 - PCSP, ProbCSP, FuzzyCSP, VCSP, SCSP, constraint hierarchies

Modelling

- Tips and tricks, Constraint Logic Programming

Course Content

Resources

- **Books**
- **Journals**
 - *Constraints*, An International Journal. Springer Verlag
 - *Constraint Programming Letters*, free electronic journal
- **On-line resources**
 - Course Web (transparencies)
 http://ktiml.mff.cuni.cz/~bartak/podminky/
 - On-line Guide to Constraint Programming (tutorial)
 http://ktiml.mff.cuni.cz/~bartak/constraints/
 - Constraints Archive (archive and links)
 http://4c.ucc.ie/web/archive/index.jsp
 - Constraint Programming online (community web)
 http://www.cp-online.org/

A Bit of History

- **Artificial Intelligence**
 - Scene labelling (Waltz 1975)
 - How to help the search algorithm?
- **Interactive Graphics**
 - Sketchpad (Sutherland 1963)
 - ThingLab (Borning 1981)
- **Logic Programming**
 - unification \(\rightarrow\) constraint solving
 (Gallaire 1985, Jaffar, Lassez 1987)
- **Operations Research and Discrete Mathematics**
 - NP-hard combinatorial problems
Scene Labelling

inferring 3D meaning of lines in a 2D drawing
• convex (+), concave (-) and border (←) edges
• we are looking for a physically feasible interpretation

Interactive Graphics

manipulating graphical objects described via constraints

Graph Colouring

• Assign colours (red, blue, green) to states, such that neighbours have different colours.

 – CSP Model
 • variables: \{WA, NT, Q, NSW, V, SA, T\}
 • domains: \{r, b, g\}
 • constraints: WA ≠ NT, WA ≠ SA etc.
 – Can be described as a constraint network (nodes=variables, edges=constraints)

 • Solution
 WA = r, NT = g, Q = r, NSW = g,
 V = r, SA = b, T = g

A Letter Puzzle

Assign digits 0,...,9 to letters S,E,N,D,M,O,R,Y in such a way that:
 • SEND + MORE = MONEY
 • different letters are assigned to different digits
 • S and M are different from 0

Model 1:
\[
\begin{align*}
E, N, D, O, R, Y & \text{ in } 0..9, \quad S, M \text{ in } 1..9 \\
1000*E + 100*N + 10*D + E & = 10000*M + 1000*O + 100*N + 10*E + Y \\
\end{align*}
\]

Model 2:
using „carry“ 0-1 variables
\[
\begin{align*}
E, N, D, O, R, Y & \text{ in } 0..9, \quad S, M \text{ in } 1..9, \quad P1, P2, P3 \text{ in } 0..1 \\
P1 + N + R & = 10*P1 + Y \\
P1 + P2 & = 10*P2 + E \\
P2 + E + O & = 10*P3 + N \\
P3 + S + M & = 10*M + O \\
\end{align*}
\]
N Queens Problem

Allocate N queens to a chess board of size $N \times N$ in such a way that no two queens attack each other.

The core decision: Each queen is located in its own column.

Variables: N variables $r(i)$ with the domain $\{1, \ldots, N\}$

Constraints: No two queens attack each other

\[\forall i \neq j \quad r(i) \neq r(j) \quad \land \quad |i-j| \neq |r(i)-r(j)| \]

--

Some Real Applications

Bioinformatics
- DNA sequencing (Celera Genomics)
- Deciding the 3D structure of proteins from the sequence of amino acids

Planning and Scheduling
- Automated planning of spacecraft activities (Deep Space 1)
- Manufacturing scheduling

Constraint Satisfaction Problem

A **Constraint Satisfaction Problem** (CSP) consists of:

- A finite set of **variables**
 - Describe attributes of the solution for example a location of a queen in the chess board

- **Domains** — finite sets of possible values for variables
 - Describe options that we need to decide for example, rows for queens
 - Sometimes, there is a common super domain for all variables and individual variables’ domains are defined via unary constraints

- A finite set of **constraints**
 - Constraint is a relation over a subset of variables for example $locationA \neq locationB$
 - Constraint can be defined in extension (a set of compatible value tuples) or using a formula (see above)
A feasible solution of a constraint satisfaction problem is a complete consistent assignment of values to variables.
- **complete** = each variable has assigned a value
- **consistent** = all constraints are satisfied

Sometimes we may look for all the feasible solutions or for the number of feasible solutions.

An optimal solution of a constraint satisfaction problem is a feasible solution that minimizes/maximizes a value of some objective function.
- **objective function** = a function mapping feasible solutions to real numbers

The Core Topics

- **Problem Modelling**
 How to describe a problem as a constraint satisfaction problem?

- **Solving Techniques**
 How to find values for the variables satisfying all the constraints?

Properties of Constraints

- **express partial information**
 - X is greater than 3, but the exact value of X is not given
- **provide a local view** of the problem
 - connect only a few variables (not all of them)
- **can be heterogeneous**
 - domains can be different (numbers, strings etc.)
- **are non-directional** (functions)
 - X = Y+2 can be used to compute both X and Y
- **are declarative**
 - do not determine the procedure for satisfaction
- **are additive**
 - the order of constraints is not important, their conjunction is crucial
- **are rarely independent**
 - share variables

Advantages of CP

- **close to real-life problems**
 - we all use constraints when formulating problems
 - many real world features can be captured as constraints
- **declarative manner**
 - focus on problem description rather than on problem solving
- **co-operative problem solving**
 - a uniform framework for integration of various solving approaches
 - simple (search) and sophisticated (inference) techniques
- **semantic foundations**
 - clean and elegant modelling languages
 - roots in logic programming
- **applications**
 - not just academic exercise but already used to solve real-life problems
Limitations of CP

- **efficiency**
 - combinatorial explosion
 - many problems are in the NP-complete class
- **hard-to-predict behaviour**
 - the efficiency is not known until the model is tried on real data
- **model stability**
 - new data = new problem
- **too local**
 - through the individual constraints, the complete problem is not "visible" (can be solved via global constraints)
 - distributed computations
- **weak co-operation of solvers**
 - integrating various solving techniques is hard, usually done via shared variables only

Representation of a CSP

- **Representation of constraints:**
 - intentional (algebraic/logic formulae)
 - in extension (a set of compatible value tuples, 0-1 matrix)
- **Representation of a CSP as a (hyper)graph**
 - nodes = variables
 - (hyper)edges = constraints
- **Example:**
 - variables $x_1,...,x_6$ with domain $\{0,1\}$
 - c_1: $x_1 + x_2 + x_5 = 1$
 - c_2: $x_1 \cdot x_3 + x_4 = 1$
 - c_3: $x_4 + x_5 \cdot x_6 > 0$
 - c_4: $x_2 + x_5 - x_6 = 0$

Binary Constraints

The world is not binary ...
but it can be transformed to a binary one!

Binary CSP
CSP + all the constraints are binary
Note: unary constraints can be easily encoded in the domain of a variable

Equivalence of CSPs
Two constraint satisfaction problems are equivalent if they have the same sets of solutions.

Extended Equivalence of CSPs
Problem solutions can be syntactically transformed between the problems.

Can any CSP be transformed to an (extended) equivalent binary CSP?
Swapping variables and constraints.

- k-ary constraint \(c \) is converted to a **dual variable** \(v_c \) with the domain consisting of compatible tuples.

- for each pair of constraints \(c, c' \) sharing some variables there is a **binary constraint** between \(v_c, v_{c'} \) restricting the dual variables to tuples in which the original shared variables take the same value.

Example:
- variables \(x_1, \ldots, x_5 \) with domain \(\{0,1\} \)
- \(c_1: x_1 + x_2 + x_3 = 1 \)
- \(c_2: x_1 \cdot x_2 + x_3 = 1 \)
- \(c_3: x_1 + x_2 \geq 0 \)
- \(c_4: x_1 + x_2 + x_3 = 0 \)

Transformation Between Encodings

A hidden variable encoding can be transformed to a dual encoding:
- Paths of length 2 between any pair of dual variables are substituted by a binary constraint that combines both relations over the path (\(r_1 \) and \(r_1 \) form \(R_{11} \)); beware of edges shared between more paths!
- If the original variable becomes isolated (or is connected to a single constraint), then remove the variable.

Example:
- \(v_1 = (0,0,0), (1,0,0), (1,1,0) \)
- \(v_2 = (0,0,0), (0,1,0), (1,0,1) \)
- \(v_3 = (0,0,0), (0,1,0), (1,1,0) \)
- \(v_4 = (0,0,0), (0,1,0), (1,0,1) \)

In each transformation step we obtain an equivalent CSP.

\(\Rightarrow \) **“hybrid” encoding**

The transformation can also be done in the reverse direction.

New dual variables for (non-binary) constraints.

- k-ary constraint \(c \) is translated to a **dual variable** \(v_c \) with the domain consisting of compatible tuples.

- for each variable \(x \) in the constraint \(c \) there is a constraint between \(x \) and \(v_c \) restricting tuples of dual variable to be compatible with \(x \)

Example:
- variables \(x_1, \ldots, x_6 \) with domain \(\{0,1\} \)
- \(c_1: x_1 + x_2 + x_3 = 1 \)
- \(c_2: x_1 \cdot x_3 + x_4 = 1 \)
- \(c_3: x_1 + x_2 \geq 0 \)
- \(c_4: x_1 + x_2 + x_3 = 0 \)

Hidden variable encoding can be extended by the dual encoding.

Example:
- Variables \(x_1, \ldots, x_6 \) with domain \(\{0,1\} \)
- \(c_1: x_1 + x_2 + x_3 = 1 \)
- \(c_2: x_1 \cdot x_3 + x_4 = 1 \)
- \(c_3: x_1 + x_2 \geq 0 \)
- \(c_4: x_1 + x_2 + x_3 = 0 \)
• **Why do we do binarisation?**
 - a unified form of a CSP
 - many solving approaches are formulated for binary CSPs
 - tradition (historical reasons)

• **Which encoding is better?**
 - hard to say ;-)
 - dual encoding:
 - better propagation but constraints in extension
 - hidden variable encoding:
 - keeps original variables but weaker propagation

• **Binary vs non-binary constraints**
 - more complex propagation algorithms for non-binary constraints
 - exploiting semantics of constraints for more efficient and stronger domain filtering