Constraint Programming

Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

Constraint Satisfaction Problem (CSP) consists of:
- a finite set of variables
- domains – finite sets of possible values for variables
- a finite set of constraints
 - constraint arity = the number of constrained variables

A feasible solution of a constraint satisfaction problem is a complete consistent assignment of values to variables.
- complete = each variable has assigned a value
- consistent = all constraints are satisfied

Looking for a solution

The goal: find a complete and consistent instantiation of variables

Two core solving approaches:
- exploring complete but possibly inconsistent assignments
 until a consistent assignment is found
 - generate and test, local search
- extending a partial consistent
 until a complete assignment is reached
 - backtracking and its extensions

We can explore assignments in two ways:
- systematically (explore all possible assignments systematically)
 - a complete method, but could be too slow
- non-systematically (some assignments can be skipped)
 - an incomplete method, but can found solution much faster

Note:
We will use constraints in a passive way, just to verify whether the given assignment (even partial) satisfies the constraint.

Search techniques

Work plan:
- start simple (with a trivial algorithm)
- find weaknesses of the algorithm
- repair the problems to get better algorithms

In particular:
- start with generate and test method
- improve the generator
 - local search methods (HC, RW, TS, GSAT, GENET, SA)
- merge the generator with the tester
 - backtracking methods
 - improvements of chronological backtracking
 - backjumping, dynamic backtracking, backmarking
Generate and test (GT)

Probably the most general problem solving method

1) generate a candidate for solution
2) test if the candidate is really a solution

How to apply GT to CSP?

1) assign values to all variables
2) test whether all the constraints are satisfied

GT explores complete but inconsistent assignments until a (complete) consistent assignment is found.

Procedure

```plaintext
procedure GT(X: variables, C: constraints)
V ← construct a first complete assignment of X
while V does not satisfy all the constraints C do
    V ← construct systematically a complete assignment next to V
end while
return V
```

Weaknesses and improvements of GT

The greatest weakness of GT is exploring too many “visibly” wrong assignments.

Example:

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

How to improve GT?

- **Smart generator**
 - the next assignment improves over the current assignment
 - the core idea of local search techniques

- **Merged generate and test stage** (earlier detection of clash)
 - constraints are tested as soon as the involved variables are instantiated
 - backtracking

Local search

- **Generate and test** explores complete but inconsistent assignments until a complete consistent assignment is found.

- Weakness of GT – the generator does not exploit fully the result of testing

- The next assignment can be constructed in such a way that constraint violation is smaller.
 - only "small" (local) changes of the assignment are allowed
 - the next assignment should be “better” than the current one
 - better = more constraints are satisfied
 - assignments are not necessarily generated systematically
 - we lost completeness, but
 - we (hopefully) get better efficiency

Local search - Terminology

- **State** - a complete assignment of values to variables
- **Evaluation** - a value of the objective function (# violated constraints)
- **Neighbourhood** - a set of states locally different from the current state (the states differ from the current state in the value of one variable)
- **Local optimum** - a state that is not optimal and there is no state with better evaluation in its neighbourhood
- **Strict local optimum** - a state that is not optimal and there are only states with worse evaluation in its neighbourhood
- **Non-strict local optimum** - local optimum that is not strict
- **Plateau** - a set of neighbouring states with the same evaluation
- **Global optimum** - the state with the best evaluation
Hill Climbing

- Hill climbing is perhaps the most known technique of local search.
 - start at randomly generated state
 - look for the best state in the neighbourhood of the current state
 - neighbourhood = differs in the value of any variable
 - neighbourhood size = $\sum_{i=1,...,n} (D_i-1) (= n*(d-1))$
 - “escape” from the local optimum via restart

Algorithm Hill Climbing

```
procedure hill-climbing(Max_Steps)
    restart: s ← random assignment of variables;
    for j=1 to Max_Steps do
        % restricted number of steps
        if eval(s) = 0 then
            return s
        if s is a strict local minimum then go to restart
        else
            s ← neighbourhood with the smallest evaluation value
        end if
    end for
    go to restart
end hill-climbing
```

Min-Conflicts

Observation:
- the hill climbing neighbourhood is pretty large ($n*(d-1)$)
- only change of a conflicting variable may improve the valuation

Min-conflicts method
- select randomly a variable in conflict and try to improve it
 - neighbourhood = different values for the selected variable i
 - neighbourhood size = $(D_i-1) (= (d-1))$

Algorithm Min-Conflicts

```
procedure MC(Max_Moves)
    s ← random assignment of variables
    nb_moves ← 0
    while eval(s) > 0 and nb_moves < Max_Moves do
        choose randomly a variable V in conflict
        if V' = current value of V then
            assign V' to V
            nb_moves ← nb_moves + 1
        else
            choose randomly a variable V in conflict
            choose a value V' that minimises the number of conflicts for V
            assign V' to V
            nb_moves ← nb_moves + 1
        end if
    end while
    return s
end MC
```

Random Walk

How to leave the local optimum without a restart (i.e. via a local step)?
- By adding some “noise” to the algorithm!

Random walk
- a state from the neighbourhood is selected randomly
 (e.g., the value is chosen randomly)
- such technique can hardly find a solution
- so it needs some guide
 - Random walk can be combined with the heuristic guiding the search
 via probability distribution:
 - p - probability of using a random step
 - $(1-p)$ - probability of using the heuristic guide

Algorithm Min-Conflicts Random Walk

```
procedure MCRW(Max_Moves,p)
    s ← random assignment of variables
    nb_moves ← 0
    while eval(s) > 0 and nb_moves < Max_Moves do
        if probability p verified then
            choose randomly a variable V in conflict
            choose a value V' for V
            else
                choose randomly a variable V in conflict
                choose a value V' that minimises the number of conflicts for V
            end if
            if V' = current value of V then
                assign V' to V
                nb_moves ← nb_moves + 1
            end if
        end while
    return s
end MCRW
```

0.02 ≤ p ≤ 0.1
Steepest Descent Random Walk

- Random walk can be combined with the hill climbing heuristic too.
- Then, no restart is necessary.

Algorithm Steepest-Descent-Random-Walk

```plaintext
procedure SDRW(Max_Moves,p)
    s ← random assignment of variables
    nb_moves ← 0
    while eval(s)>0 and nb_moves<Max_Moves do
        if probability p verified then
            choose randomly a variable V in conflict
            choose randomly a value v' for V
        else
            choose a move <V,v'> with the best performance
        end if
        if v' ≠ current value of V then
            assign v' to V
            nb_moves ← nb_moves+1
        end if
    end while
    return s
end SDRW
```

Tabu search

- The tabu list prevents short cycles.
- It allows only the moves out of the tabu list or the moves satisfying the aspiration criterion.

Algorithm Tabu Search

```plaintext
procedure tabu-search(Max_iter)
    s ← random assignment of variables
    nb_iter ← 0
    initialise randomly the tabu list
    while eval(s)>0 and nb_iter<Max_iter do
        choose a move <V,v'> with the best performance among the non-tabu moves and the moves satisfying the aspiration criteria
        introduce <V,v'> in the tabu list, where v is the current value of V
        remove the oldest move from the tabu list
        assign v' to V
        nb_iter ← nb_iter+1
    end while
    return s
end tabu-search
```

Local Search at Glance

- LS methods explore complete but possible inconsistent assignments until a consistent assigned is found
 - opposite to GT, they generate a new assignment based on the current assignment with the goal to increase the number of satisfied constraints

Local search algorithm is defined by:
- **neighbourhood** of the current assignment (state) and a method to select the next assignment from the neighbourhood (intensification)
 - HC heuristic – select the best assignment different at one variable from the current assignment
 - sometimes, the first better assignment from the neighbourhood is taken
 - MC heuristic – select the best assignment different at one selected conflict variable from the current assignment

- a method for escaping from a local optimum (diversification)
 - restart – start in a completely new assignment
 - RW – select the next assignment randomly
 - Tabu – forbid some assignments

Galinier, Hao (1997)

Observation:
Being trapped in a local optimum is a special case of cycling.

How to avoid cycles in general?
- remember already visited states and do not visit them again
 - memory consuming (too many states)
 - it is possible to remember just few last states
 - prevents „short” cycles
- **Tabu list** = a list of forbidden states
 - a state can be represented by a selected attribute
 - (variable, value) - describes the change of a state (a previous value)
 - the tabu list has a fix length k (tabu tenure)
 - „old” states are removed from the list when a new state is added
 - a state included in the tabu list is forbidden (it is tabu)
- **Aspiration criterion** = re-enabling states that are tabu
 - i.e., it is possible to visit a state even if the state is tabu
 - example: the state is better than any state visited so far
Many problems can be formulated as problems of Boolean SATisfiability = satisfying a logical formula in conjunctive normal form (CNF)
- **CNF** = conjunction of clauses
- **clause** = disjunction of literals (constraint)
- **literal** = atomic variable or its negation

Example:
\[(A \lor B) \land (\neg B \lor C) \land (\neg C \lor \neg A)\]

- Similarly to a CSP, SAT is also an NP-complete problem so no fast (polynomial) solving algorithm can be expected.
- Local search can find a solution to pretty large formulas.

Notes:
- satisfaction formula in a disjunctive normal form can be decided fast
- SAT is a special case of a CSP and vice-versa, any CSP can be translated to SAT

Algorithm GSAT

- The GSAT method solves SAT problems by flipping the values of variables.
- The goal is to maximize the (weighted) number of satisfied clauses.

```plaintext
procedure GSAT(A, Max_Tries, Max_Moves)
A: is a CNF formula
for i:=1 to Max_Tries do
    S ← random assignment of variables
    for j:=1 to Max_Moves do
        if A satisfiable by S then return S
        V ← the variable whose flip yield the most important raise
            in the number of satisfied clauses
        S ← S with V flipped
    end for
end for
return the best assignment found
end GSAT
```

GSAT and heuristics

- GSAT can be combined with various heuristics improving its practical performance (especially for so-called structured problems):
 - **Random-Walk**
 - can be used exactly as in MCRW
 - **Clause weights**
 - Some clauses remain unsatisfied even after several iterations of the inner loop of GSAT – different clauses have different importance in formula satisfaction
 - satisfaction of “hard” clauses can be preferred by increasing their weights in the clause selection process
 - The algorithm can learn the weight itself
 - all clauses have identical weight at the beginning
 - After each iteration, the weights of unsatisfied clauses are increased
 - **Solution averages**
 - in the GSAT algorithm each iteration starts from a random assignment of variables – hence the last reached assignment is “forgotten”
 - we can reuse the common parts of found assignments
 - the new assignment after restart is taken from the last assignments of previous two iterations by keeping the same parts and setting the remaining variables randomly

Connectionistic approach

- Based on idea of representing the problem as a network of connected simple processors.
 - processors have several states (usually only two – on/off).
 - The next state of the processor is derived from the states of connected processors (the connection strengths may be different).
- The goal is to find a stable state of the network, i.e., the processors are no more changing their states.
- This stable state represents a solution to the problem.

Features:
- massive parallelism (problems can be solved faster)
- Blackbox (not clear what is happening inside)
- Probably the most known representative is an artificial neural network (NN)
- A similar principle is used in cellular automata.
Each variable is modelled as a cluster of "neurons" (each value models a single neuron) and two neurons are connected by the inhibition link with negative weight if the corresponding values are incompatible.

Example:

<table>
<thead>
<tr>
<th>Variables</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>{1,2,3}</td>
</tr>
<tr>
<td>B</td>
<td>{1,2,3}</td>
</tr>
<tr>
<td>C</td>
<td>{1,2,3}</td>
</tr>
<tr>
<td>D</td>
<td>{1,2,3}</td>
</tr>
<tr>
<td>E</td>
<td>{1,2,3}</td>
</tr>
</tbody>
</table>

At the beginning one active neuron is selected in each cluster. Neurons change state in a synchronous way (all together)
- based on the inputs ($\sum w^is$ - weighed sum of states of connected neurons)
- For each cluster, the neuron with the largest input is activated
The computation stops in a stable state.

What if we reach a stable state that is not a solution?
- So far we used either restart or "noise".
- We can try to modify the space of state evaluations.
 - How? By modifying the evaluation function!
 - dynamic local search

This can be done by modifying the weight of connections in GENET!
- If there is a connection between two active neurons (= constraint violation), increase the weight of the connection.
 - new_weight$^s = old_weight^s + s^i s_y$
- This also changes the evaluation function (Guided Local Search).
Example of changing connection weights

In local optimum we **strengthen weights** of violated connections (which makes the state instable).

```
Input: 0 0 0 0
Output: -1 -1 -1 -1
```

```
Input: 0 0 0 0
Output: 1 1 1 1
```

```
Input: 0 0 0 0
Output: -2 -2 -2 -2
```

Algorithm GENET

```
procedure GENET(connectionist network)
    one arbitrary node per cluster is switched on;
    repeat
        repeat
            % network convergence
            modified ← false;
            for each cluster C do in parallel
                on_node ← currently switched on node in cluster C;
                label_set ← the set of nodes in C which input are maximum;
                if on_node is not in label_set then
                    switch off on_node;
                    modified ← true;
                switch on arbitrary node in label_set;
            end if
        end for
        until not modified
        if sum of input to all switched-on nodes < 0 then
            for each connection c connecting nodes x & y do in parallel
                if both x and y are switched on then
                    decrease the weight of c by 1;
                end for
            end for
        end if
    until input to all switched-on nodes are 0
end GENET
```

Algorithm SA

```
procedure SA(InitT, MinT, MaxMoves)
    s ← random assignment of variables
    best ← s
    T ← InitT
    while MinT<T do
        num_errors ← 0
        while num_error<MaxMoves do
            next_s ← a random local change of s
            if eval(next_s) < eval(s) then
                s ← next_s
                if eval(s) < eval(best_s) then best ← s
            else
                p ← random number in [0,1)
                if p < e^(eval(s)-eval(next_s))/T then
                    s ← next_s
                else
                    num_errors ← num_errors+1
            end if
        end while
        T ← 0.8 x T
    end while
    return best
end SA
```

Simulated annealing

- **Base on the idea of simulating the process of metal cooling.**
 - Higher temperature means faster movement of atoms so the probability of changing position is higher.
 - By cooling down, the atoms “try” to find the “best” position – the position with the smallest energy.
- A very similar process can be modelled in optimisation algorithms:
 - so called **simulated annealing**:
 - start with a random state
 - a local change is accepted if:
 - improves the current state
 - makes the state worse, but such a state is accepted only with some probability dependent on “temperature”
 - “temperature” is continuously decreased so the probability of accepting a worsening step is also decreasing – a **cooling scheme** is used to define how the temperature decreases

Metropolis heuristic
The local search algorithms have a similar structure that can be encoded in the common skeleton. This skeleton is filled by procedures implementing a particular technique.

Local Search Skeleton

```
procedure local-search(Max_Tries,Max_Moves)
    s ← random assignment of variables
    for i:=1 to Max_Tries while Gcondition do
        for j:=1 to Max_Moves while Lcondition do
            if eval(s)=0 then
                return s
            end if
            select n in neighbourhood(s)
            if acceptable(n) then
                s ← n
            end if
        end for
        s ← restartState(s)
    end for
    return best s
end local-search
```

Local Search - Summary

- Local search techniques start from some state and by moving to neighbouring states they try to reach a goal state.
- Each algorithm is specified by:
 - state neighbourhood and allowed states in the neighborhood
 - heuristic to select the next state from the neighbourhood (intensification)
 - meta-heuristic to escape local optima (diversification)

Lokalizer was the base of the Comet system (MaxOS X, Linux, Win), that allows description of local search algorithms in a declarative way.