Deep Learning, Echo State Networks
and the Edge of Chaos

Artificial Intelligence Seminar 1. 11. 2016
Filip Matzner, Frantisek Mraz

A FACULTY

= OF MATHEMATICS

AND PHYSICS
Charles University



Outline

shallow architectures

¥ backprop
™ supervised
ek

\ |
MEAT \ - s
———_ neuroevolution | \ pre-2010 .

HyperNEAT \ training A

reinforcernent
/

vanishing gradient _,-'I

GPU implementations
RelU

cross-entropy and softmax

convolution

max pooling |

dropout

augmentations

automated backprop supervised \

GOFAl technigues (e.g.. Q-learning)

£-2010 /

AlphaGo | training \ pos

-, reinforcement |
i EEUTIDLEENENE:

too large for neuroevelution
ILSWRC benchmark {
L JEDETT,

LeMet |
—_—

kernels A

|
classification AlexMet Iu
/S

sirnilarity |/

examples

GoogleNet )

Residual Net |

Image Captioning /

vanishing gradient

_,M{ exploding gradient

| \_ bifurcations of a dynamic system

avoid vanishing gradient

backprop through time

handwriting recognition

\ (" handwriting generation
| N Eamples i Jr—— e
h speech recognition

post-1997

\__robot contral

random nature
| | biological motivation
[——————
| i X chaos
dynamic system
~—_ Lyapunov exponent

. the edge of chaos

"\ Echo State Networks

neurocevolution

\_locally connected networks



Outline

) feed forward

i

*_neural networks m. recurrent



Neuron

biological

Cell body

Telodendria

Synaptic terminals

Endoplasmic /
reticulum

Dendrite

/ & Dendritic branches

\

Mitochondrion \\

artificial

N
y; = (p(ZwI.jxl. +b))
i=1

activation
weighted function

[ t
I = >| O |—> activation
3j Z/ A

transfer b
function



Network Architectures

biological neural networks are recurrent
artificial recurrent networks are hard to train

— feed-forward networks receive more attention

feed-forward recurrent
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Feed-Forward Networks (Pre-2010)

shallow = no more than a single hidden layer
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Feed-Forward Supervised Training

gradient descent
a method for function minimization

idea: put a ball on the cost function surface and let it roll down

cost | | N\

.y

weights
it is too simple, where is the hatch?

in calculating the derivatives for each weight vc:[ x_ & 50}

m° e @ el
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Backpropagation
a gradient descent method specialized on neural networks

efficiently propagates the error gradient from the output layer to the input layer

calculates all the derivatives vc:[ x X . ”J in a single pass
6W11 §W21 5ij

Summary: the equations of backpropagation
st =V,C o0 (2h) (BP1)
o = ((wtH)TsH) @ o' (2h) (BP2)
o = % (BP3)
dut, = W 0 (BP4)




Vanishing Gradient

why the networks cannot not be deeper?

imagine a simple network with three hidden layers

:))T(l = o'(z1) x W2 x o' (z) X W3 X o'(23) X Wa x 7' (24) ><:3}T(~1

/‘\\ wy '/\\ wy flf\\ g

now plot the derivative of the sigmoid function

Derivative of sigmoid function

..............
4 3 2 A4 0 1 2 3 4

usually Iw,-cr(z,»)|<% ,thus with each layer, the gradient exponentially decreases

problem first described by Bengio et al. [1994]
this simple description taken from Nielsen [2015]
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Feed-Forward Neuroevolution

in the simplest possible scenario
consider the network weights to be a vector of real numbers
evolve the weights by the basic genetic algorithm

this does not work particularly well, specialized evolutionary algorithms exist



NEAT

one of the many existing neuroevolutionary algorithms
good for smaller networks, not as much for large ones
can evolve both feed-forward networks and recurrent networks

even though it is quite old, it provides a suitable baseline

Stanley and Miikkulainen [2002]



HyperNEAT

extension of NEAT, can evolve larger networks

good when the network contains a lot of regularities

all pairs of neurons CPPN
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Feed-Forward Networks (Post-2010)

deep = more than two hidden layers

4 T
GPU implementations (100x speedup) A o - I/,,:
2.5 Ehies
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Cross-Entropy Cost Function

saturated neurons learn slowly with MSE even though their error might be the
largest one

why? because of the shape of the sigmoid function

%C= (a-7)5'(2)

ocC
6wj.,(

Dé‘rivation at this point is small

it can be partially avoided using cross-entropy cost function

1
C= —;Z[yj Ina; +(1-y,)In(l—a})]



Softmax Activation

another way to address the learning slowdown, especially when combined with the
cross-entropy cost function

emphasizes the neuron with the maximum activation, however, does not ignore

L

the other neurons ., 0%
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can be thought of as a probabilistic distribution, because

>

L __J —
Zaj_z 2t =1
J e

k




Convolutional Layers

apply the same convolutional kernel to all the pixels in the image
a way to share the weights between neurons = regularization

inspired by nature

(4x0)
) Center element of the kerel is placed over the :g : g;
111p11t e Urons source pixel. The source pixel is then replaced 0x0)

with a weighted sum of itself and nearby pixels.

New pixel value (destination pixel)



Max Pooling

similar to the convolution but only takes the maximum of the perception field
a good way to subsample the image (i.e., fewer parameters to train)

forces more succinct image representation (i.e., compression)

hidden neurons (output from feature map)

max-pooling units

o0,
oo 30



Dropout

randomly disable some of the neurons in each backprop step
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Data Augmentation

enlarge the dataset by transforming the data so that they still make sense
horizontal flip, rotation, scale, color inversion, ...

reduces overfitting
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Supervised Training

backprop variants, e.g.,
RMSProp (unpublished, see Hinton Neural Networks on Coursera [2012])

Adam (Kingma and Ba [2015])

the derivatives do not have to be calculated manually, your favourite deep learning
framework does it for you



Neuroevolution

the networks are usually too large to be evolved purely by neuroevolution
not even a combination of neuroevolution and supervised training is usual

a single training on the GPU usually takes hours or days
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ILSVRC

e benchmark of image classification models

ILSVRC top-5 classification

- ) 0.3 —oz8

e ~1.5 million images 5 0.26

e 1000 classes g 0
.g 0.16
_8 0.12
% ol 0.07

human level =g |°-°35|
0

2010 2011 2012 2013 2014 2015
ILSVRC year

Russakovsky et al. [2015]



AlexNet

the winner of ILSVRC image classification 2012

8 layers
15.3% top-5 error
60 million parameters, 2 GPUs

the beginning of the neural-network-computer-vision era
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Krizhevsky et al. [2012]



AlexNet

e One GPU evolved color filters, the other evolved black and white filters

Krizhevsky et al. [2012]



AlexNet - Classification Results

<ontainer ship motor scooter
container ship motor scooter
lifeboat
amphibian
fireboat
drilling platform

mushroom cherry

agaric “dalmatiap 5
mushream grape spider monkey
pickup jelly fungus elderberry titi
beach wagon gill fungus |ffordshire bullterrier iind;
fire engine | dead-man's-fingers currant howler monkey |

Figure 4: (Left) Eight ILSVRC-2010 test images and the five labels considered most probable by our model.
The correct label is written under each image, and the probability assigned to the correct label is also shown
with a red bar (if it happens to be in the top 5). (Right) Five ILSVRC-2010 test images in the first column. The
remaining columns show the six training images that produce feature vectors in the last hidden layer with the
smallest Euclidean distance from the feature vector for the test image.

Krizhevsky et al. [2012]



AlexNet - Image Similarity

Krizhevsky et al. [2012]

Previous best by Zezula et al. [2005]




GooglLeNet

the winner of ILSVRC image classification 2014
22 layers

6.67% top-5 error

Google

Figure 3: GoogLeNet network with all the bells and whistles

Szegedy et al. [2014]



Residual Networks

the winner of ILSVRC image classification 2015
152 layers

4.49% top-5 error

Microsoft research

example of a 34-layers residual network

Kaiming He et al. [2015]



Image Captioning

[ 4 Mman

- & chale bosd

NP

— 3 wooden ramp

= riding v F-"

% iz grinding
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({OO0000000D0D0000000000000)
I

Aman in a helment skateboarding before an audience.
Man riding on edge of &n oval ramp with a skate board.
Aman ricing & skateboard up the side of a woodan ramp.
A man on a skatsboard I8 doing & tnck.

Aman | grinding a ramp on & skateboard.

Lebret et al. [2015]



Image Captioning

A man riding skis on & snow covered ski slope. A man Is doing skateboand ricks on & ramp. The girl with blug hair stands under the umbrells.
NP i T, s, 16 S0, PAAS0, § WCHTIA, @ 500w O S0QA, NPt & shal bR, A man, & i, fis Skaboay, Ta a, & PP: & women, an Lmesills, & man, & poren, & gl umblis, AL
nmnm st man SKAIROCASTIEN, & M), & SLAL: DEAI, & (IS0, & WO itk el i call phone
VP wiiei, (e, Dok, SAnG o0, Sk dowi, WP cioing, i deing. perioaming, ling ez, P Pk, Wi, & heleing, helds, camying.
"M hn‘w‘\&l\. n-mm.nﬂ?m PP with, on, of, in, under.
A man riding & skateboard on & ramg. A woman i holding &n umbsella.

A slice of pizza siting an & white plate. ing & B A bunch of kites flying in the sky on the beach.
I’nmn-ﬁnmnmmhad&n food, & sandwich, . Dasaball playas, a i NP 11 B, & Dasch, & kile, ks, 1 oo, e water, T sy,
oo, A T gk, & Desetl s

ww-\.mn.u siing on, i o

PP of, on, with, in,

e n, aL
Atable with & plahe of pizza on & white plate. Peq:leilyl\g kites on the beach.

A person on a surf board In the ocean. A cat sitling In & chalr staring at a plate on a table.
WP R 00, W, & DerOn, e maie & Man, h acaen, 00, hal, P2 & 1k, 0, & desk, & CA, O, 3, 0 & lapiop, & lepng
ther o, & surthos. cnmgtes, e ki
7 g on. . A s g .

o6, with i, et 0.
Ac.m sitting on top of a desk with a laptop.

Adcgsmlngmmpnfawauem the ocean.

Lebret et al. [2015]



AlphaGo
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Recurrent Networks

can be unfolded through time and reduced to feed-forward networks
2:1+1—-—-"y,'+1
JL unfold through time JJ
2242::42:3:*X,{WE*M
= training by backpropagation (through time)
problem: implicitly infinitely deep

= the vanishing gradient is even more significant

partial solution - LSTM, GRU, Echo State Networks



Geometrical Representation of Exploding Gradient

consider the dynamical system
X, =wo(x~1) +b

0.35
0.30
0.25 .
o
0.205
0.15
0.10
0.05

Fig. 6 illustrates the error surface

E., = (0(xg,) = 0.7)

possible solution: limit the gradient norm

Figure 6. We plot the error surface of a single hidden unit
recurrent network, highlighting the existence of high cur-
vature walls. The solid lines depicts standard trajectories
that gradient descent might follow. Using dashed arrow
the diagram shows what would happen if the gradients is
rescaled to a fixed size when its norm is above a threshold.

Pascanu et al. [2013]
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Long-Short Term Memory (LSTM)

avoid vanishing gradient

use a special neuron with a “memory” o<
= able to capture long-term dependencies ¢ =
A
. C —>d=—IN
de-facto standard in recurrent neural networks
> — > 0uT

(a) Long Short-Term Memory

Hochreiter and Schmidhuber [1997]



Long-Short Term Memory (LSTM)

smianiengineer,

Hochreiter and Schmidhuber [1997]



Gated Recurrent Unit (GRU)

slightly “simplified” version of LSTM

performance is comparable with LSTM

IN

A
5

>=QOUuT

(b) Gated Recurrent Unit

Cho et al. [2014], comparison with LSTM by Chung et al. [2014]
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Handwriting Recognition

Fig. 1. lustration of the recording

The Qm:’ briaadﬁ has accived

Adenaver is 1n fugh spst. WaiHnJ.

b1y qopport ond combrt ke

(‘dﬂ pmya W?GU(L‘" ( aUuL\f-;-" S ‘[o
Graves et al. [2009]



Handwriting Generation
recmnrod” newsede nuho orle J}\amcbm%m; Ww onno

Type a message into the text box, and the networl: will Ty to write it out longhand (this paper explains how it worlks, source code is available here). Be patient, it can talze a while!

Text --- up to 100 characters, lower case letters work best

Style --- either let the network choose a writing style at random or prime it with a real sequence to male it mimic that writer's style.
P I ;o o

" i 4
.:mmj..- Wit Mes, gue

4
[

o}
® random style

Bias --- increasing the bias males the samples more legible but less diverse, Using a high bias and a priming sequence males the networl: write in a neater version of the original style.

http://www.cs.toronto.edu/~graves/handwriting.html, Graves [2014]



http://www.cs.toronto.edu/~graves/handwriting.html
http://www.cs.toronto.edu/~graves/handwriting.html

Speech Recognition

“Using a LSTM, we cut our
transcription errors by 49%.”

-- Google Voice Blogspot [2015]

G E.-"'i" ‘ i ¥ s
: £ sl # i | sil
0.8 § 1 & a':]-, =
] k
0.6 i ol =
o | d
0.4 [ i L I |
4 HE HE & B ! i z —
] Bl iR N
0.2 : THEBIEREE
| | F =0 R
0 . i |
hal k o I dl z Ital t s &l d sil

https://googleblog.blogspot.cz/2015/07/neon-prescription-or-rather-new.html
Graves et al. [2013]



https://googleblog.blogspot.cz/2015/07/neon-prescription-or-rather-new.html
http://www.youtube.com/watch?v=5_9Soz3D41g

Robot Control

-

.
gl \\\\
aripp &\\‘\\\\\

thread

o

D

E

Fig. 3. Minimally invasive knot-tying. (A) The knot-typing procedure starts with the needle and three grippers in this configuration. (B) Gripper 1 takes
the needle, and the thread is fed manually to gripper 3. (C) The thread is pulled through the puncture, and (D) wound around gripper 2. (E) Gripper 2 grabs
the thread between the puncture and gripper 3. (F) The knot is finished by pulling the end of the thread through the loop.

Mayer et al. [2008]



And more...

machine translation

image caption generation
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Echo State Networks

what about a totally random network?

input coefficients recurrent network linear coefficients

N~

Q|a|a|3|a|5|;| input sequence
| |'§ |'8, |E, |,'C_’.| predicted output

X2 QR
‘3|g|a|g|&|g|3|desiredoutput

Jaeger [2001]



Biological Motivation

ESN’s do not seem to be biologically plausible
improve them by a different topology?

= neuroevolution (HyperNEAT)




Neuroevolution
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Neuroevolution

the best network has only local connections t

what about a locally connected
random network?




Dynamic Systems

recurrent networks are dynamic systems

= we can measure the amount of chaos (Lyapunov exponent)

Sprott [2015]



Chaos
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Chaos

recurrent networks have multiple levels of chaos
S EE a8 i

time
time

L -
neuron neuron neuron

relation between dynamics and performance
o the edge of chaos

40

30
u
Y

10

o

=10
-1.5 =10 -05 0.0 05 Lo

Lyapunov exponent

Bertschinger and Natschlager [2004], Boedecker et al. [2012]




Chaos

neuroevolution prefers to be close to the edge of chaos
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Conclusion

neural networks represent a very strong artificial intelligence model
there has been a huge step forward in the last decade

recurrent networks still have a long way to go

neural networks are good in the same things as humans

neural networks are bad in the same things as humans



Questions?

all pairs of neurons CPPN substrate
[a; ay] [bye: byl
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Recommended Reading

1) Neural Networks and Deep Learning - Michael Nielsen
A well written online book covering the basic topics of feed-forward neural networks. Freely available.
http://neuralnetworksanddeeplearning.com/

2) ImageNet Classification with Deep Convolutional Neural Networks - Krizhevsky et al. [2012].
One of the first great successes of deep convolutional networks. Short and clear paper, however, it assumes the knowledge of backprop, max-pooling, dropout, etc.
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

3) Deep Learning - lan Goodfellow and Yoshua Bengio and Aaron Courville [in preparation, 2016]
A book in preparation, which is available on-line. It is written by a few of the best deep learning scientists and describes most of the up-to-date techniques.

http://www.deeplearningbook.org/

4) Deep Learning in Neural Networks: An Overview - Schmidhuber et al. [2014]
A huge survey of neural networks.
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