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Abstract

This paper studies planning problems for a group of heating systems which supply the
hot water demand for domestic use in houses. These systems (e.g. gas or electric boilers,
heat pumps or microCHPs) use an external energy source to heat up water and store this hot
water for supplying the domestic demands. The latter allows to some extent a decoupling of
the heat production from the heat demand. We focus on the situation where each heating
system has its own demand and buffer and the supply of the heating systems is coming from
a common source. In practice, the common source may lead to a coupling of the planning for
the group of heating systems. On the one hand, the external supply of the energy for heating
up the water may have to be bought by an energy supplier on e.g. a day-ahead market. As
the price of energy varies over time on such markets, this supplier is interested in a planning
which minimizes the total cost to supply the heating systems with energy. On the other hand,
the bottleneck to supply the energy also may be the capacity of the distribution system (e.g.
the electricity networks or the gas network). As this has to be dimensioned for the maximal
consumption, in this case it is important to minimize the maximal peak.

The two mentioned coupling constraints for supplying the energy for producing the heat,
lead to two different objectives for the planning of the group of heating systems: minimizing
cost and minimizing the maximal peak. In this paper, we study the algorithmic complexity of
the two resulting planning problems. For minimizing costs, a classical dynamic programming
approach is given which solves the problem in polynomial time. On the other hand, we prove
that minimizing the maximal peak is NP-hard and discuss why this problem is hard. Based
on this, we show that this problem becomes polynomial if all heating systems have the same
consumption of energy when turned on. Finally, we present a Fix Parameter Tractable (FPT)
algorithm for minimizing the maximal peak which is linear in the number of time intervals.

Keyworks: Complexity, dynamic programming, job scheduling, lot-sizing

1 Introduction

In modern society, a significant amount of energy is consumed for heating water [2]. Almost
every building in developed countries is connected to a district heating system or equipped with
appliances for heating water locally. Typical appliances for heating water are electrical and gas
heating systems, heat pumps and Combined Heat and Power units (microCHP). The resulting
water is stored in buffers to be prepared for demands of inhabitants.

A schematic overview of a local heating system is presented in Figure 1. It consists of

• a supply which represents some source of energy (electricity, gas),

• a converter which converts the energy into heat (hot water),

• a buffer which stores heat for later usage and

• a demand which represents the consumption profile of heat.
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A more formal definition of the used model for local heating and the used parameters and variables
is given in Section 1.1. For the presentation of the model electricity and heat is used to distinguish
between consumed and produced energy, but the given model can handle arbitrary types of energy.
Furthermore, even though the presented model of the local heating system is quite simple, it cannot
only be applied for heating water but has many other applications, e.g. heating demand of houses,
fridges and freezers and inventory managements. Section 1.1 presents more details about those
applications.

The combination of a heating device and a buffer gives some freedom in deciding when the heat
has to be produced. To use this freedom in a proper way, different objectives may be considered in
practice. On one hand, the electricity used to heat water has to be bought. Although these prices
are nowadays mostly fixed for private costumers, the supply companies delivering the electricity
are faced with variable prices resulting e.g. from a day-ahead market. This leads to the objective
of minimizing the total cost of electricity consumed by all heating systems in the area of the supply
company during the planning period. Note that in cost or auction based control algorithms for
Smart Grids, this objective is also used (see e.g. [23]). On the other hand, the energy used for
heating is transported from a supply to the heating systems by electrical networks or gas pipes.
These transport media have to be able to transport all the used energy and therefore have to be
dimensioned for the maximal consumption peak of all houses connected to the transport network.
Thus, minimizing the maximal consumption over all these houses may decrease investments in the
distribution networks.

The above mentioned aspects lead to two basic planning problems for a group of heating
systems which are both based on the same model but they differ in the objective function. The first
problem is called minimizing cost. The second one is minimizing peak where peak is the maximal
consumption of electricity over the planning period. Those problems are formally defined in Section
1.1. We show that the algorithmic complexity of those problems is substantially different, although
the problems differ only by the objective function. The use of a classical dynamic programming
approach (see e.g. [11]) gives a simple polynomial-time algorithm. On the other hand, we proof
that minimizing peak is NP-hard and we discuss why minimizing peak makes the problem hard.
We show that minimizing peak becomes polynomial if all converters have the same consumption of
electricity when turned on. We also present a dynamic programming algorithm for the general case
of minimizing peak which is linear in the number of time intervals and the multiplicative constant
depends only on the number of heating systems and the ratio between capacity and production of
the heating systems, meaning that the algorithm is a Fix Parameter Tractable (FPT) algorithm.

1.1 Problem statement and results

In this section we present a mathematical description of the studied model, possible applications
of this model and a summary of the results of this paper. The used parameters and decision
variables are summarized the following table.

C set of heating systems
T set of time intervals
Ec consumed electricity of converter c if turned on
Hc produced heat of converter c if turned on
Dc,t heat demand from the heating system c in time interval t
Pt price of electricity in time interval t
Lc,t lower bound on the state of charge of buffer c in time interval t
Uc,t upper bound on the state of charge of buffer c in time interval t
xc,t operational state of the converter xc,t

sc,t state of charge of buffer c in the beginning of time interval t
First of all, we consider a discrete time model for the considered problem, meaning that we

split the planning period into T time intervals of the same length. We consider sets C = {1, . . . , C}
of C heating systems and T = {1, . . . , T} of T time intervals. In this paper, the letter c is always
an index of a heating system and t is an index of a time interval. For mathematical purposes,
we separate a heating system into a converter, a buffer and a demand; see Figure 1. We say “a
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Figure 1: Schematic picture of heating systems split into converters, buffers and demands. A
group of those heating systems is connected to a common supply of energy.

converter c” or “a buffer c” or “a demand c” to refer to the devices of the heating system c ∈ C.
We consider a simple converter which has only two states: In every time interval the converter

is either turned on or turned off. The amount of consumed electricity is Ec and the amount of
produced heat (or any other form of energy) is Hc during one time interval in which the converter
c ∈ C is turned on. If the converter is turned off, then it consumes and produces no energy. Let
xc,t ∈ {0, 1} be the variable indicating whether the converter c ∈ C is running in time interval
t ∈ T .

The state of charge of a buffer c ∈ C at the beginning of time interval t ∈ T is denoted by
sc,t which represents the amount of heat in the buffer. Note that sc,T+1 is the state of charge
at the end of planning period. The state of charge sc,t is limited by a lower bound Lc,t and an
upper bound Uc,t. Those two bounds are usually constant over time: the upper bound Uc,t is the
capacity of buffer and the lower bound Lc,t is mostly zero. But it may be useful to allow different
values, e.g. a given initial state of charge can be modelled by setting Lc,1 and Uc,1 equal to the
initial state. In this paper, we assume that Lc,1 = Uc,1, so the initial state of charge sc,1 is fixed.

The amount of consumed heat by the inhabitants of the house from heating system c ∈ C
during time interval t ∈ T is denoted by Dc,t. This amount is assumed to be given and is called
the demand of heating system c. Furthermore, the price of a unit of electricity consumed by a
converter in time interval t ∈ T is denoted by Pt. We discuss in Section 5 that different prices
of electricity for different converters do not influence the developed algorithms. In this paper, we
study off-line problems, so we assume that both demands Dc,t and prices Pt are given for the
whole planning period.

The operational variables of the converters xc,t and the states of charge of buffers sc,t are
restricted by the following invariants.

sc,t+1 = sc,t + Hcxc,t −Dc,t for c ∈ C, t ∈ T (1)

Lc,t ≤ sc,t ≤ Uc,t for c ∈ C, t ∈ T ∪ {T + 1} (2)

xc,t ∈ {0, 1} for c ∈ C, t ∈ T (3)

Equation (1) is the charging equation of the buffer. During time interval t ∈ T , the state of charge
sc,t of a buffer c ∈ C is increased by the production of the converter which is Hcxc,t and it is
decreased by the demand Dc,t. Equations (2) and (3) ensure that the domains of variables sc,t
and xc,t, respectively, are taken into account.
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In this paper, we compare the complexity of the following two objective functions.

Minimizing cost: minimize
∑
c∈C

Ec

∑
t∈T

Ptxc,t (4)

Minimizing peak: minimize m (5)

where m ≥
∑
c∈C

Ecxc,t for t ∈ T (6)

Since Ecxc,t is the amount of consumed electricity by a converter c in time t and EcPtxc,t is the
cost for this electricity, the sum in (4) is the cost for electricity consumed by all converters during
the whole planning period. Furthermore, since the sum

∑
c∈C Ecxc,t is the amount of electricity

consumed by all converters in time t, the inequality (6) and the objective function (5) guarantee
that the value of the variable m is the maximal consumption of electricity during one time period
within the whole planning period.

The contribution of this paper are as follows. First, we prove that minimizing peak is NP-hard
even for two time intervals (T = 2) and it is strongly NP-hard if the number of time intervals T is a
part of input (Section 3). To make it easier to get more insight in the differences between the two
objectives, in Section 4 some preprocessing methods for the input data are presented. They, both,
simplify the mathematical model and decrease the computation time if a Mixed Integer Linear
Programming solver is used for minimizing peak. Afterwards, in Section 5, a classical dynamic
programming approach (see e.g. [11]) is given, which results in a polynomial-time algorithm for
minimizing cost. This leads to the question which elements of the problem make the objective
to minimize peak hard. The polynomial reduction presented in Section 3 sets up parameters Hc,
Lc,t, Uc,t and Dc,t in such a way that every converter has to run exactly once and the consumption
of converters Ec is used for partitioning integers into time intervals. Therefore, partitioning the
consumption of converters Ec makes minimizing peak hard. Thus, we investigate the special case
where the consumption values Ec of all converters are equal, since in this case partition is trivial.
We show that minimizing peak is also easy in this case by presenting a polynomial time algorithm
(Section 6).

However, as the assumption that all converters have the same consumption is not really practi-
cal. Therefore we consider which other restriction makes minimizing peak tractable. As minimizing
peak is NP-hard already for two time interval and practical study cases often have a fixed number
of heating systems but a long planning period, it would be useful to have a FPTalgorithm for
minimizing peak which is polynomial in the number of time intervals T if the number of heating
systems C is fixed. We present such an algorithm which is polynomial in T if C and a radio
between capacity of buffers and production of converters is fixed (Section 5).

Furthermore, Section 4 presents some preprocessing methods for the input data which both
simplifies the mathematical model and decreases computation time if a Mixed Integer Linear
Programming solver is used for minimizing peak.

1.2 Motivation

The considered problems originate from a project called MeppelEnergie which plans to build a
group of houses and a biogas station in Meppel, a small city in the Netherlands1. In this project,
the houses will have a heat pump for space heating and tap demands. Due to Dutch legislation,
the biogas station will provide electricity only to those heat pumps. Therefore, the heat pumps
should be scheduled in such a way that they only consume, if possible, the electricity produced by
the biogas station. If this is not possible, the remaining energy has to be bought on the electricity
market at minimal cost.

The study [15] shows that some central control of all heat pumps is necessary to avoid large
peak loads. Therefore, our task is to design one or more algorithms to control all heat pumps. The
first of our proposed algorithms is called global MILP control which uses an Mix Integers Linear

1For more details, see websites http://www.utwente.nl/ctit/energy/projects/meppel.html and http://www.

meppelwoont.nl/nieuwveense-landen/

http://www.utwente.nl/ctit/energy/projects/meppel.html
http://www.meppelwoont.nl/nieuwveense-landen/
http://www.meppelwoont.nl/nieuwveense-landen/
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Programming solver to find an optimal (or near to optimal) solution of the minimizing peak
problem. The paper [15] shows that this approach can be used only for small number of houses.
For larger number of houses, a faster algorithm for the minimizing peak problem is necessary but
the problem is NP-hard. Therefore, we try to find an easier problem which can be solved faster
(polynomial algorithm for the case where all heat pump consume the same amount of energy; FPT
algorithm for the general case). In practice, it may be sufficient to find a solution which is close
to the optimum. One such approximation algorithm is presented in [15].

Other approach is a cost-based control where a central controller distributes prices for every
time and every heat pump computes electrical consumption minimizing cost. This cost-based ap-
proach can be used by TRIANA methodology [26] or multi-commodity auction where the auction-
eer’s goal is to find a price for every time interval which minimizes peak of the total consumption
of electricity. In both cases, controllers of heat pumps are required to solved the minimizing cost
problem.

In the time of writing this paper, the first group of houses of the project MeppelEnergie is
being built. When the biogas station and sufficiently many houses will be finished, we will show
practical results of our theoretical study.

The remaining of the paper is organized as follows. Section 2 gives applications of our results
and related literature. The hardness of the problem of minimizing peak is proved in Section
3. Section 4 presents a simpler form of our problem which is used in later sections. Dynamic
programming is used in Section 5 to present polynomial algorithm for minimizing cost and a
FPTalgorithm for minimizing peak. A polynomial algorithm for a special case of minimizing peak
is presented in Section 6.

2 Related works and applications

In the following we present related literature and give some possible applications of this model.
Some related works can be found in inventory management and lot-sizing literature (see e.g.

[12, 18] for reviews). In inventory control problems (see [24]) a buffer may represent an inventory
of items, whereby a converter represent the production of items and demand represent the ordered
quantities. Note, that on a first view the buffer constraint (1) and (2) seem to be identical to the
classical inventory holding constraints. However, there are a few differences. On the one hand,
in inventory problems the lower bounds are in general 0. On the other hand, inventory control
problems with different production facilities (in our case the converters) consider the situation
that several production facilities share an inventory (since otherwise the problem decouples in
independent problems). However, the main difference between the problem considered in this
paper and inventory problems is in the objective. In our case the objective does not contain
any holding costs or fixed costs for starting the production in a certain time period. In case of
peak minimization thereby the objective is the only binding element between the different heating
systems and makes that the problem is quite different to inventory problems. In case of cost
minimization, the problem splits into independent problems for the different heating systems and
in Section 5 we present a dynamic program to solve this problem which is in its base similar to
dynamic programs for specific inventory problems.

One other related area is vehicle routing and scheduling (see e.g. [20] for an overview of this
area). For example, Lin, Gertsch and Russell [22] studied optimal vehicle refuelling policies. In
their model, a refueling station can provide an arbitrary amount of gas while our converter is
restricted into two possible states of heat generation. Other papers on vehicle refuelling policies
are more distant from our research since a car is routed on a graph (see e.g. [25, 21]).

As our problem consists of only one commodity, also the single item lot-sizing problems some-
how related (see [9] for a review). Wagner and Whitin [29] presented an O(T 2) algorithm for the
uncapacitated lot-sizing problem which was improved by Federgruen and Tzur [14], Wagelmans
et. al. [28] and Aggarwal and Park [1] to O(T log T ). On the other hand, Florian, Lenstra and
Rinnooy [16] proved that the lot-sizing problem with upper bounds on production and order quan-
tities is NP-hard. Computational complexity of the capacited lot-sizing problems is studied in [4].
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Our problem is a special case of capacited single item lot-sizing problem which does not seem to
be considered in the literature.

A problem somewhat similar to the problem in this paper was considered by Bosman et al.[6, 8]
who studied a microCHP planning problem and proved that minimizing peak is NP-hard in their
model [7]. Bosman et al.[5] also presents a dynamic programming algorithm for the microCHP
planning problem whose time complexity is O(T 3C+1) where T is the number of time intervals
and C is the number of microCHPs.

In the following we give some possible applications of a model presented in this paper.

Hot water: Converter and buffer form a model of a simple electrical or gas boiler. Demand
represents the consumption of hot water in a house.

House heating: The model may be used to express a very simple model for house heating. The
converter represents a simple heater. The capacity of the buffer corresponds to thermal
capacity of the heating system (e.g. hot water buffer or thermal capacity of concrete floors
and walls) and the state of charge of the buffer is related to the temperature inside the
house. Heat losses of the house may be modelled using the demand if we assume that the
temperature difference inside the house does not have significant influence on the losses.
More details about using thermal mass as a buffers are presented in [27] and computing heat
demands are explained in [15].

Fridges and freezers: A fridge essentially works in the opposite way than heating, so it may
be modelled similarly. However, we have to be careful with the correct interpretation of
all parameters. The state of charge of the buffer again represents the temperature inside
the fridge, but a higher state of charge means a lower temperature. The converter does not
produce heat to the fridge but it decreases the temperature inside the fridge, so the converter
increases the state of charge of the buffer (fridge). The demand decreases the state of charge
of the fridge due to thermal loss and usage of the fridge by humans.

3 Minimizing peak

In this section, we prove that minimizing peak is NP-hard. We present two polynomial reductions.
In the first reduction we use the Partition problem to prove that minimizing peak is already NP-
hard for problems with only two time intervals. In the second reduction we use the 3-partition
to prove that minimizing peak is strongly NP-hard if the number of time intervals is part of the
input.

The problem of minimizing peak is an optimization problem. The corresponding decision
problem is a question whether for a given M there exists a solution satisfying conditions (1), (2)
and (3) such that the maximal peak is at most M , that is M ≥

∑
c∈C Ecxc,t for all t ∈ T . This

problem belongs to NP since for given values of binary variables xc,t for c ∈ C and t ∈ T we can
easily compute states of charges sc,t by the recurrence formula (1) and check whether capacity
conditions (2) are satisfied.

For the first reduction we use the partition problem where the decision whether a given multiset
of N positive integers {I1, . . . , IN} can be partitioned into two subsets S1 and S2 such that the
sum of the numbers in S1 equals the sum of the numbers in S2. Although the partition problem
is NP-complete, there is a pseudo-polynomial time dynamic programming solution, and there are
heuristics that solve (specific versions of) the problem, either optimally or approximately, see
Kellerer et al. [19].

The instance of the peak minimization problem in the reduction has exactly T = 2 time
intervals. All demands are unitary, that is Dc,1 = Dc,2 = 1 for c ∈ C, all buffers have the capacity
2 and the initial state of charge is 1, i.e. Lc,1 = Uc,1 = 1, Lc,2 = Lc,3 = 0 and Uc,2 = Uc,3 = 2
for c ∈ C. Furthermore, the production of all converters c is Hc = 2. Note that this choice of the
parameters implies that the capacity constraints (1) and (2) of the buffers are satisfied if and only
if every converter runs exactly once. Finally, the number of converters C is chosen to be equal to
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the number of integers N and the consumption of converters corresponds to the integers of the
partition problem, i.e. Ec = Ic for c ∈ C. We ask for a solution where the maximal peak is at
most the half of the sum of integers I1, . . . , IN .

Since every converter has to run exactly once, we have a one-to-one correspondence between
assigning integers I1, . . . , IN into subsets S1 and S2 and scheduling the converters in the two
time intervals 1 and 2. Therefore, the integers I1, . . . , IN can be partitioned into two subsets of
equal sum if and only if there exists a scheduling of the converters such that the consumption
of electricity in both time intervals is equal. This completes the proof that minimizing peak is
NP-hard even for two time intervals.

In the following we consider an arbitrary number of time intervals and prove that this makes
the problem of minimizing the peak strongly NP-hard using a reduction from the 3-partition
problem. The decision question in the 3-partition problem is whether a given sequence I1, . . . , I3N
of 3N positive integers can be partitioned into N sets S1, . . . , SN such that every number of the
sequence is contained in exactly one set and the sums of the numbers in each subset are equal.
The 3-partition problem is a well-known strongly NP-complete problem and it remains hard even
if some restrictions are set up on the integers [17].

The reduction of the 3-partition problem to the problem of minimizing peaks is similar to the
reduction presented above. For this, the number of time intervals T is the number of subsets
N and the number of converters C is 3N . We again choose the parameters for the buffers and
demands in such a way that every converter has to run exactly once:

• demands are unitary, i.e. Dc,t = 1 for c ∈ C and t ∈ T

• the initial state of charge is T − 1, i.e. Uc,1 = Lc,1 = T − 1 for c ∈ C

• buffers have the capacity 2T−2, i.e. Uc,t = 2T−2 and Lc,t = 0 for c ∈ C and t ∈ {2, . . . , t + 1}

• and the productions of all converters is Hc = T .

The choice implies that if some converter c does not run during the planning period, then the final
state of charge of the corresponding buffer gets sc,T+1 = −1 which violates its capacity constraints
(2). If some converter c runs twice (or more times), then the final state of charge sc,T+1 of its
buffer is (at least) 2T − 1 which also violates its capacity constraints (2). Therefore, the capacity
constraints (1) and (2) of all buffers are satisfied if and only if every converter runs exactly once.

Finally, the C numbers of the partitioning problem are assigned as consumption values to the
converters, that is Ec = Ic for c ∈ C. The decision question is whether there exists a scheduling of
converters such that the peak is at most M = 1

T

∑
c∈C Ic. Since every converter has to run exactly

once, we have one-to-one correspondence between assigning integers into subsets and scheduling
of converters in the different time intervals. Therefore, integers can be partitioned into T subsets
of equal sum if and only if there exists schedule for the converters such that the consumptions of
electricity is constant over the planning period. This completes the proof that minimizing peak is
strongly NP-hard for an arbitrary number of time intervals.

4 Reformulation

In this section, we simplify the problem presented in Section 1.1. We show that conditions (1)
and (2) can be replaced by one condition (11). This simpler formulation is used in the following
sections.

First, we expand the recurrence formula (1) into an explicit equation.

sc,t+1 = sc,1 +

t∑
i=1

Hcxc,i −
t∑

i=1

Dc,i
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Since we assume that the initial state of charge satisfies sc,1 = Lc,1 = Uc,1, we can replace sc,1 by
Lc,1 and substitute into inequalities (2).

Lc,t+1 ≤ Lc,1 + Hc

t∑
i=1

xc,i −
t∑

i=1

Dc,i ≤ Uc,t+1

which can be rewritten as

Lc,t+1 − Lc,1 +
∑t

i=1 Dc,i

Hc
≤

t∑
i=1

xc,i ≤
Uc,t+1 − Lc,1 +

∑t
i=1 Dc,i

Hc

Since the sum
∑t

i=1 xc,i is an integer between 0 and t we obtain the following simple condition

A′c,t ≤
t∑

i=1

xc,i ≤ B′c,t for c ∈ C, t ∈ T (7)

where

A′c,t = max

{
0,

⌈
Lc,t+1 − Lc,1 +

∑t
i=1 Dc,i

Hc

⌉}
, (8)

B′c,t = min

{
t,

⌊
Uc,t+1 − Lc,1 +

∑t
i=1 Dc,i

Hc

⌋}
. (9)

The values of A′c,t and B′c,t for all c ∈ C and t ∈ T can be easily computed in time O(CT ). In
the rest of this section we study properties of sequences A′c,1, . . . , A

′
c,T and B′c,1, . . . , B

′
c,T which

are shortly denoted by (A′c,t)t and (B′c,t)t, respectively.

Observe that the sequence of partial sums
∑t

i=1 xc,i for t = 1, . . . , T is non-decreasing and the
difference of two consecutive elements is at most 1. We say that a sequence (Zt)t of T integers
satisfies (10) if

Z1 ∈ {0, 1} ,
Zt ≤ Zt+1 ≤ Zt + 1 for all t = 1, . . . , T − 1.

(10)

We show that we can replace parameters A′c,t and B′c,t by parameters Ac,t and Bc,t is such a way
that sequences (Ac,t)t and (Bc,t)t satisfy (10) and binary variables xc,t satisfy (7) if and only if
they satisfy

Ac,t ≤
t∑

i=1

xc,i ≤ Bc,t for c ∈ C, t ∈ T . (11)

We present an algorithmic approach to obtain the required sequences (Ac,t)t and (Bc,t)t. Hereby,
we process the heating systems C one by one. Throughout this approach, binary variables xc,t

satisfy (7) if and only if they satisfy (11). In the end of the approach, sequences (Ac,t)t and (Bc,t)t
satisfy (10). We start by setting Ac,t = A′c,t and Bc,t = B′c,t for all t ∈ T .

We first process the sequence (Ac,t)t. Note that if demand Dc,t+1 is negative or the upper
bound (Uc,t)t is not constant over time, then it can happen that Ac,t > Ac,t+1. However, the sum∑t

i=1 xc,t cannot be greater than
∑t+1

i=1 xc,t, so in this case we can replace the value of Ac,t+1 by
Ac,t. Next note, that if demand Dc,t+1 is greater than production Hc or (Uc,t)t is not constant
over time, then it can happen that Ac,t+1 ≥ Ac,t + 2. Since the state of charge of the buffer needs

to be prepared for this large demand, the sum
∑t

i=1 xc,t has to be at least Ac,t+1 − 1, meaning
that we can replace the value of Ac,t by Ac,t+1 − 1. We iteratively correct the sequence (Ac,t)t
until there is no t such that Ac,t > Ac,t+1 or Ac,t+1 ≥ Ac,t +2. Then, the sequence (Ac,t)t satisfies
(10). Note that one change of a value Ac,t may enforce many other changes but all those changes
can be processed in linear time.
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In an analogous way, we can obtain Bc,t from B′c,t. If Bc,t > Bc,t+1, then we replace Bc,t by
Bc,t+1. If Bc,t+1 ≥ Bc,t + 2, then we replace Bc,t+1 by Bc,t + 1.

The preprocessing presented above gives us a simple system to answer the natural question
whether a feasible solution satisfying constraints (1), (2) and (3) exists. It is now easy to see
that there exists binary xc,t satisfying (11) if and only if Ac,t ≤ Bc,t for every c ∈ C and t ∈ T .
Obviously, this condition is necessary. The condition is also sufficient, since in this case xc,1 = Ac,1

and xc,t = Ac,t −Ac,t−1 for t = 2, . . . , T gives a feasible solution.
It may be interesting to notice that all changes presented in this section are essentially based

on Gomory-Chvátal cutting planes [10] which may speed up branch-and-bound. Our experiments
show that those changes decrease computation time if Integer Linear Programming solvers are
used to find the minimal peak.

5 Dynamic programming

In this section we present dynamic programming algorithms for minimizing cost and minimizing
peak. The classical dynamic programming algorithm [11] for minimizing cost is used and it is
presented here for completeness and for easier understanding of the dynamic programming algo-
rithm for minimizing peak. Those two algorithms are similar, so we first describe both algorithms
together and then we determine their time complexity.

The substantial reason why minimizing cost is polynomial is that every heating system can be
solved separately because there is no mutual restriction between the variables of different heating
systems. Therefore, feasible solutions of the different heating systems can be joined to achieve a
feasible solution of the whole model and vice versa. Furthermore, the sum of costs of the separate
solutions of all heating systems equals the total cost of the whole model. Hence, an optimal
solution of the whole model can be composed from optimal solutions of the separated heating
systems. The main concern is to describe a polynomial time algorithm for minimizing cost of a
single heating system. The problem of minimizing cost of a single heating system c ∈ C is given
as

Minimize
∑

t∈T Pc,txc,t

such that Ac,t ≤
∑t

i=1 xc,i ≤ Bc,t for t ∈ T
xc,t ∈ {0, 1} for t ∈ T .

Note that the amount of consumed electricity Ec by the converter c is not important.
We describe a simple dynamic programming algorithm for this problem which is in its base

similar to dynamic programs for special lot-sizing problems. The algorithm uses a function f(t, n)
which denotes the minimal cost of energy for time intervals 1, . . . , t if the converter is running
exactly n times during those intervals and constraint (11) is satisfied. The dynamic programming
is based on the recursive formula

f(t, n) =


min {f(t− 1, n), f(t− 1, n− 1) + Pt} if t ∈ T and Ac,t ≤ n ≤ Bc,t

0 if t = n = 0

∞ otherwise.

(12)

The term f(t − 1, n) represents the case that it is possible to turn off the converter in the time
interval t. The term f(t − 1, n − 1) + Pt represents the case that the converter is turned on and
we have to pay for electricity in the time interval t. The initial conditions for this recurrence are
f(0, 0) = 0 and f(n, t) = ∞ if the converter cannot run n times during the first t time intervals
(e.g. the term n− 1 in the recursive formula can be negative).

In the following, we present the algorithm for minimizing peak. The algorithm uses a similar
state space as above. Each state is determined by a time interval t and numbers nc giving the
number of runs of the converters c ∈ C up to time interval t. We use a recursive formula similar
to (12) and the boundary condition (11) for every heating system.
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Formally, a state is a pair (t, ~n) where t is a time interval and ~n = (n1, . . . , nC) is a vector
where nc is the number of runs of a converter c ∈ {1, . . . , C} up to time interval t. Note that a
state is feasible if

Ac,t ≤ nc ≤ Bc,t for all c ∈ C (13)

which means that condition (11) is satisfied for all c ∈ C. We introduce a function F (t, ~n) which
denotes the minimal peak during time intervals 1, . . . , t if the converter c runs exactly nc-times
during intervals 1, . . . , t for every c ∈ C. The function F is determined by the recursive function

F (t, ~n) =


min

~y∈{0,1}C
max

{∑
c∈C

Ecyc, F (t− 1, ~n− ~y)

}
if t ∈ T and (13) holds

0 if t = 0 and ~n = ~0

∞ otherwise.

(14)

where ~y = (y1, . . . , yC) ∈ {0, 1}C are all combinations to turn on and turn off converters in time
interval t. The initial condition of the recursion are F (0,~0) = 0 and F (t, ~n) if the state (t, ~n) is
infeasible.

It remains to determine the time complexity of the dynamic programming algorithms. For
minimizing cost of a single heating system, formula (12) can be evaluated in constant time. The
time complexity depends on the number of pairs (t, n) that satisfies the condition

Ac,t ≤ n ≤ Bc,t. (15)

For a fixed time t the number of n satisfying (15) can be bounded in two ways. The first way
uses constraints 0 ≤ n ≤ t ≤ T which implies that the number of n satisfying (15) is O(T ), so the
number of pair (t, n) is O(T 2). Hence, the overall time complexity of the dynamic programming
algorithm for minimizing cost for all heating systems is O(CT 2).

In the second way, we use the fact that number of n satisfying (15) is Bc,t −Ac,t + 1. In order
to estimate the difference Bc,t −Ac,t, we substitute formula’s (8) and (9) to obtain

Bc,t −Ac,t ≤ B′c,t −A′c,t ≤
Uc,t+1 − Lc,t+1

Hc
.

Using this estimate we can upper bound the number of n satisfying (15) by Rc which is given by

Rc = max
t∈T

⌊
Uc,t+1 − Lc,t+1

Hc

⌋
+ 1.

Therefore, time complexity of the dynamic programming algorithm for minimizing cost of a single
heating system c ∈ C isO(T min {T,Rc}) and time complexity for whole model isO(TC min {T,R})
where R = maxc∈C Rc.

Similarly in the algorithm for minimizing peak, we have at most RC states for every time
interval t, so the total number of states is at most RCT . The complexity of evaluation the recursive
formula for one state is O(2C), thus the total time complexity of this dynamic programming
algorithm is O((2R)C · T ). Therefore, the algorithm is linear in the number of time intervals T if
the number of heating systems C and the ratio R are fixed. In summary, the algorithm is FPT
(Fix-Parameter Tractable) algorithm where the fixed parameters are C and R.

6 Equal consumption of converters

In this section we consider the special case of the problem of minimizing peak where all converters
have the same consumption. This essentially means that the objective is minimizing the maximal
number of simultaneously running converters. Furthermore, it is sufficient to solve the decision
problem whether there exists a feasible planning of all converters such that at most M converters
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are running in every time interval for given M . Based on that, we can find the optimal value of M
by binary search in at most log(C) steps. In this section, we present a polynomial time algorithm
which decides whether there exists xc,t ∈ {0, 1} for t ∈ T and c ∈ C such that∑

c∈C
xc,t ≤M for t ∈ T and

Ac,t ≤
t∑

i=1

xc,i ≤ Bc,t for c ∈ C, t ∈ T
(16)

holds. We reformulate this problem as a job scheduling and a network flow problem.

We assume that sequences (Ac,t)t and (Bc,t)t satisfy (10). Observe that if there exists xc,t

satisfying (16), then there exists another solution x′c,t satisfying (16) and
∑

t∈T x′c,t = Ac,T . So,
we can decrease the upper bound Bc,t to min {Bc,t, Ac,T } without influencing feasibility of (16).
Therefore, without loss of generality we also assume that Ac,T = Bc,T .

Now, we reformulate our decision problem as a job scheduling problem. For every heating
system c we introduce Ac,T jobs. Each job is a pair (c, j) where c ∈ C is a heating system and
j ∈ {1, . . . , Ac,T } denotes one of the Ac,T runs of the converter c. The aim is to assign a time
interval zc,j for every job (c, j), meaning that {zc,j ; j = 1, . . . , Ac,T } is the set of time intervals in
which converter c is running. As two jobs of the same converter cannot be assigned to the same

time interval, the sequence (zc,j)
Ac,T

j=1 is assumed to be increasing which means that jobs of every
heating system have a chain dependency.

In order to satisfy the upper bounds of a buffer c we introduce a release time rc,j for every
job (c, j) which is the minimal t such that Bc,t = j. Similarly for the lower bound, we introduce
a deadline dc,j for every job (c, j) which is the minimal t such that Ac,t = j. Since at most M
converters can be running in every time interval, jobs have to be scheduled on M parallel machines.
Note that all jobs have unit processing time and all parallel machines are identical.

This problem can be solved using the more general scheduling problem Pm|ri, pi = 1, chains|Lmax.
Dror et al.[13] established that Pm|ri, pi = 1, chains|Lmax can be solved in polynomial time. For
completeness of the paper, we present the reduction of the problem of minimizing peak into a
network flow problem. This reduction is based on a construction presented by Baptiste at al.[3]
who consider the problem Pm|ri, pi = 1, chains|

∑
fi.

The network consists of vertices of five types. First, the network has one source vertex v1.
Second, every job (c, j) has one vertex v2c,j . Third, for every heating system c and time t the

network has one vertex v3c,t. Fourth, every time t has one vertex v4t . Fifth, the network has one
sink vertex v5.

The network consists of oriented edges of four types. First, the source vertex v1 is connected
to every job vertex v2c,j . Second, every job vertex v2c,j is connected to a vertex v3c,t if job (c, j)

can be processed in time t; that is rc,j ≤ t ≤ dc,j . Third, every vertex v3c,t is connected to the
time vertex v4t . Fourth, every time vertex v4t is connected to the sink v5. The capacity of edges
from time vertices to the sink is M and other edges have capacity 1. The decision problem in this
network is whether there exists flow from the source to the sink of size

∑
c∈C Ac,T which is the

total number of jobs.

We describe the correspondence between flow in the network and assignments of jobs to ma-
chines. The supply in the sink equals to the total number of jobs, so every edge from the source
has to be saturated in a desired flow. A job (c, j) runs in time t if the edge from job vertex v2c,j to

the vertex v3c,t is saturated. Since job vertex v2c,j has exactly one saturated incoming edge, every

job has to be assigned to exactly one time t. Since every vertex v3c,t has exactly one outgoing edge,
at most one incoming edge can be saturated, so two jobs of the same heating system cannot be
assigned to the same time interval. Hence, every machine c is processing at most one job in every
time interval. Every time vertex v4t has at most M saturated incoming edges since it has exactly
one outgoing edge which has capacity M . Hence, at most M converters are running in every time
interval.
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Since the number of vertices of the network flow instance is O(CT ), the problem of minimizing
peak for converters with equal consumption is polynomially solvable. Note that we can assign
different capacities to edges from time vertices v4t to the sink v5 which can be useful in practice
to fulfill a given electrical profile.

7 Conclusion

This paper investigates the complexity of minimizing peak and minimizing cost for a heating
problem for a group of heating systems. We prove that minimizing peak is strongly NP-hard in
general and it remains NP-hard if the number of time intervals T is fixed and at least two. On
the other hand, minimizing peak becomes polynomial if the number of heating systems C and
parameters of buffers and converters are fixed. The time complexity of our dynamic programming
algorithm is O((2R)C · T ) where R is a ratio between the capacity of a buffer and the production
of a converter. However, in practical study cases, different lengths of the time intervals may be of
interest. Since shortening a time interval decreases the production of heat by the converter, the
ratio R is increased, and thus the time complexity of our algorithm is strongly influenced by the
change of the lengths of the time intervals. Therefore, it would be better to have an algorithm for
minimizing peak which is polynomial in T and whose multiplicative constant depends only on C.
We are especially interested whether there exists an algorithm whose time complexity is O(DC ·T )
where D is a constant.

In contrast to minimizing peak, we prove that minimizing cost is polynomially solvable by a
dynamic programming algorithm of running time O(RTC) which can also be bounded by O(T 2C).
Algorithms for minimizing cost are important for cost and auction base control of Smart Grids [23].
This leaves an interesting open problem whether there exists faster algorithm for minimizing cost of
a single heating system than the dynamic programming algorithm presented in this paper. Finally,
note that practical converters may have more operation modes [26]. The presented dynamic
programming algorithm can be adopted for such a situation, but the computation time is increased,
so faster algorithms would also be useful in this case.
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