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Abstract

Kreweras’ conjecture [9] asserts that every perfect matching of the hypercube Qd can be
extended to a Hamiltonian cycle of Qd. We [5] proved this conjecture but here we present a
simplified proof.

The matching graph M(G) of a graph G has a vertex set of all perfect matchings of G,
with two vertices being adjacent whenever the union of the corresponding perfect matchings
forms a Hamiltonian cycle of G. We show that the matching graph M(Kn,n) of a complete
bipartite graph is bipartite if and only if n is even or n = 1. We prove that M(Kn,n) is
connected for n even and M(Kn,n) has two components for n odd, n ≥ 3. We also compute
distances between perfect matchings in M(Kn,n).

1 Introduction

A set of edges P ⊆ E of a graph G = (V,E) is a matching if every vertex of G is incident with at
most one edge of P . If a vertex v of G is incident with an edge of P , then v is covered by P . A
matching P is perfect if every vertex of G is covered by P .

The d-dimensional hypercube Qd is a graph whose vertex set consists of all binary vectors of
length d, with two vertices being adjacent whenever the corresponding vectors differ at exactly
one coordinate.

It is well known that Qd is Hamiltonian for every d ≥ 2. This statement can be traced back to
1872 [7]. Since then the research on Hamiltonian cycles in hypercubes satisfying certain additional
properties has received considerable attention. An interested reader can find more details on this
topic in the survey of Savage [11]. Dvořák [2] showed that every set of at most 2d− 3 edges of Qd

(d ≥ 2) that induces vertex-disjoint paths is contained in a Hamiltonian cycle. Dimitrov et al.[1]
proved that for every perfect matching P of Qd (d ≥ 3) there exists some Hamiltonian cycle that
faults P , if and only if P is not a set all edges of Qd of one dimension.

Kreweras [9] [8, page 33, question 55] conjectured the following:

Conjecture 1. Every perfect matching in the d-dimensional hypercube with d ≥ 2 extends to a
Hamiltonian cycle.

We [5] proved this conjecture but here we present a simplified proof.
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The matching graph M(G) of a graph G on even number of vertices has a vertex set of all
perfect matchings of G, with two vertices being adjacent whenever the union of the corresponding
perfect matchings forms a Hamiltonian cycle. Note that Kreweras’ conjecture 1 can be restated
in the following way: There is no isolated vertex in M(Qd) for d ≥ 2.

There is a natural one-to-one correspondence between Hamiltonian cycles of G and edges of
M(G). The enumeration of all Hamiltonian cycles of a hypercube is a well-known open problem.
Feder and Subi [3] presented the following bounds
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where Hd is the number of Hamiltonian cycles of Qd.

A partitioning of the edges of a graph G into perfect matchings is a 1-factorization. A 1-
factorization is perfect if the union of every pair of its perfect matchings forms a Hamiltonian
cycle of G. Observe that k-regular G on even number of vertices has a perfect 1-factorization if
and only if M(G) contains a complete graph on k vertices as a subgraph. Wanless [12] proved
that Kp,p and K2p−1,2p−1 have perfect 1-factorization if p is a prime and proved that Kn,n has no
perfect 1-factorization if n is even and n > 2. Wanless [12] conjectured that Kn,n has a perfect
1-factorization if n is odd and n ≥ 3.

Let G be a graph. We say that a bijection f : V (G) → V (G) is an automorphism if {u, v} is
an edge of G if and only if {f(u), f(v)} is an edge of G for every u, v ∈ V (G).

We say that two perfect matchings P and R are isomorphic if there exists an automorphism
f : V (Qd) → V (Qd) such that f(u)f(v) ∈ R for every edge uv ∈ P . This relation of isomorphism
is an equivalence and it partitions the set of all perfect matchings. Kreweras [9] considered a graph
Md which is obtained from M(Qd) by contracting all vertices of each class of this equivalence.

Kreweras [9] proved by inspection of all perfect matchings of Q3 and Q4 that the graphs M3

and M4 are connected and he conjectured that Md is connected for every d ≥ 3. It is more general
to also ask whether the graph M(Qd) is connected since the connectivity of M(Qd) implies the
connectivity of Md. The answer is negative for d = 3. However, we [4] proved that M(Qd) is
connected for d ≥ 4. Since M(Qd) is an induced subgraph of M(K2d−1,2d−1), it is natural to ask
whether M(Kn,n) is connected.

For the study of properties of M(Qd), one might ask what additional requirements can we
pose on the extending perfect matching R in Theorem 3. For example, can we find R that satisfies
Theorem 3 and contains only edges from a given list of dimensions of hypercube? A natural
necessary condition says that the set D of allowed edges for R together with the prescribed
matching P form a connected subgraph. The following result due to Gregor [6] shows that this
condition is also sufficient in the case when D is formed by disjoint subcubes of (possibly different)
dimensions. Let K(A) be the complete graph on a set of vertices A.

Theorem 2 (Gregor [6]). Let A1, . . . , Am ⊆ V (Qd), d ≥ 2, be pairwise disjoint subcubes of
nonzero dimension. Let A =

⋃

i∈[m] Ai, D =
⋃

i∈[m] E(Ai) and let P be a perfect matching of

K(A). There exists R ⊆ D such that P ∪ R forms a Hamiltonian cycle of K(A) if and only if
P ∪ D is connected.

In this article we prove that M(Kn,n) is bipartite if and only if n is even or n = 1. If n is even
or n = 1 then M(Kn,n) is connected, otherwise M(Kn,n) has two components. We proved that
distance between every pair of perfect matchings in M(Kn,n) is at most 3. Moreover, Theorem 8
presents exact distance between every pair of perfect matching in M(Kn,n).

2 Perfect matchings extend to Hamiltonian cycles

Let K(G) be the complete graph on the vertices of a graph G. Observe that the following theorem
simply implies Kreweras’ conjecture 1.
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Theorem 3 (Fink [5]). For every perfect matching P of K(Qd) there exists a perfect matching R

of Qd such that P ∪ R forms a Hamiltonian cycle of K(Qd) where d ≥ 2.

Proof. The proof proceeds by induction on d. The statement holds for d = 2. Let us assume that
the statement is true for every hypercube Qk with 2 ≤ k ≤ d − 1 and let us prove it for d.

Let P be a perfect matching of K(Qd) and let u1u2 be an edge of P . We divide the d-
dimensional hypercube Qd into two (d−1)-dimensional subcubes Q1 and Q2 such that ui ∈ V (Qi)
for i ∈ {1, 2}. Let Ki = K(Qi) and P i = P ∩E(Ki) for i ∈ {1, 2}. Since u1u2 does not belong to
P1 ∪ P2, both matchings P1 and P2 are not perfect.

The number of vertices of K1 that are uncovered by P 1 is even and we choose an arbitrary
perfect matching S1 on those vertices. Hence, P 1 ∪S1 is a perfect matchings of K1. By induction
there exists a perfect matching R1 of Q1 such that (P 1 ∪ S1) ∪ R1 forms a Hamiltonian cycle of
K1.

Our aim is to proceed in a similar way in Q2: We find a matching S2 of K2 covering vertices that
are uncovered by P 2. By induction we obtain a perfect matching R2 of Q2 such that (P 2∪S2)∪R2

forms a Hamiltonian cycle of K2. Clearly, R := R1 ∪ R2 is a perfect matching of Qd. The only
obstacle proves that P ∪R forms a Hamiltonian cycle of K(Qd). For this purpose we define S2 to
be the set of following short cuts

S2 :=

{

xy ∈ E(K2)

∣

∣

∣

∣

∃x′, y′ ∈ V (Q1) such that xx′, yy′ ∈ P and
there exists a path between x′ and y′ of P 1 ∪ R1

}

.

Observe that P 1∪R1 is a partition of Q1 into vertex-disjoint paths between vertices uncovered
by P 1. For every path between x′ and y′ of this partition there exist vertices x and y of Q2 such
that xx′, yy′ ∈ P . Thus, the set of edges S2 is a matching of K2. Moreover, the set of edges
P 2 ∪ S2 is a perfect matching of K2 because S2 covers each vertex covered by P but uncovered
by P 2. By induction there exists a perfect matching R2 of Q2 such that (P 2 ∪ S2) ∪ R2 forms a
Hamiltonian cycle of K2. Let R := R1 ∪ R2.

It remains to prove that P ∪R forms a Hamiltonian cycle of K(Qd). Clearly, P ∪R is a set of
vertex-disjoint cycles covering all vertices. Suppose on the contrary that P ∪ R contains a cycle
C that is not Hamiltonian. Notice that C cannot belong to K1 or to K2, because P1 ∪ R1 and
P2 ∪ R2 have no cycle. Therefore, C has edges in both K1 and K2. We shorten C into a cycle
C ′ of K2 in the following way: We replace every path xx′ · · · y′y such that x, y ∈ V (Q2); x′, y′ ∈
V (Q1); xx′, yy′ ∈ P and x′ · · · y′ is a path of P 1 ∪ R1, by an edge xy ∈ S2. Since C ′ is a cycle
which contains only edges of P 2 ∪ S2 ∪ R2, both cycles C ′ and C cover all vertices of Q2. Hence,
C does not cover a vertex v of Q1. Let x′ and y′ be the end-vertices of the maximal path of
P 1 ∪R1 that contains v. Let xx′ and yy′ be edges of P . Observe that x, y ∈ V (K2) and xy ∈ S2.
Since C does not contain whole path xx′ . . . y′y, the cycle C ′ does not cover x and y which is a
contradiction.

Ruskey and Savage [10, page 19, question 3] asked the following question:

Does every (not necessarily perfect) matching of Qd for d ≥ 2 extends to a Hamiltonian cycle
of Qd?

The statement can be shown to be true for d = 2, 3, 4. However, our approach does not seem
to lead to proving this stronger statement.

3 Bipartiteness

The number components of a graph on edge set E is denoted by c(E). Let P1 and P2 be two
perfect matchings of the same graph. Note that P1∪P2 is a set of c(P1∪P2) vertex-disjoint cycles
where common edges P1 ∩ P2 are considered as a cycle of length two.

There is a natural one-to-one correspondence between perfect matchings of the complete bi-
partite graph Kn,n and permutations on a set of size n. Let In be the perfect matching on Kn,n

that corresponds to the identical permutation on a set of size n.
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A permutation π on a set M of size n is called transposition if π swaps exactly two elements of
M . A permutation is even if it can be expressed as a composition of even number of transpositions;
otherwise permutation is odd. A cycle of a permutation is a subset of permutation whose elements
trade places with one another. It can be shown that every permutation is either odd or even and
it cannot be both. From known properties of permutations it follows that a permutation π on
n-element set is even if and only if the number of cycles of π has the same parity as n. Moreover, it
is known that composition π1 ◦π2 is even if and only if π1 and π2 have the same parity. Therefore,
the inverse permutation π−1 has the same parity as π.

We say that a perfect matching of Kn,n is even if its corresponding permutation is even;
otherwise its parity is odd.

Let P1 and P2 be two perfect matchings of Kn,n and π1 and π2 be their corresponding permu-
tations. Note that cycles of a permutation π1 correspond to cycles of a graph on edges P1 ∪ In.
Moreover, cycles of a composition permutation π1 ◦π−1

2 correspond to cycles of P1∪P2. Therefore,
the following statements are equivalent.

• P1 and P2 have the same parity.

• π1 and π2 have the same parity.

• π1 and π−1
2 have the same parity.

• π1 ◦ π−1
2 is an even permutation.

• The number of cycles of π1 ◦ π−1
2 has the same parity as n.

• c(P1 ∪ P2) ≡ n (mod 2).

The following lemma summarizes above discussion.

Lemma 4. Two perfect matchings P1 and P2 of Kn,n have the same parity if and only if c(P1 ∪
P2) ≡ n (mod 2). Moreover, if P1 ∪ P2 forms a Hamiltonian cycles of Kn,n then P1 and P2 have
the same parity if and only if n is odd.

From the last lemma it follows that a matching graph M(Kn,n) is bipartite for n even where
one partite contains even perfect matchings and the other parity contains odd perfect matchings.
A matching graph M(Qd) is bipartite because it is an induced subgraph of M(K2d−1,2d−1).

Theorem 5. The graph M(Qd) is bipartite.

It is a natural question whether M(Kn,n) is bipartite also for n odd. The answer is negative
for n > 1. Let b0, . . . , bn−1 be vertices of one color class of Kn,n and w0, . . . , wn−1 be vertices of
the other color class. Let

Zi = {bkwk+i mod n | 0 ≤ k < n} , 0 ≤ i < p,

be perfect matchings of Kn,n, where p is the smallest prime that divides n.

Let 0 ≤ i < j < p. A graph on edges Zi ∪ Zj has only one cycle

b0, wj mod n, bj−i mod n, w(j−i)+j mod n, b2(j−i) mod n, . . . , bn(j−i) mod n = b0

because j − i and n are relatively prime numbers. Hence, Z0, . . . , Zp−1 form a complete subgraph
of M(Kn,n).

Theorem 6. The graph M(Kn,n) is bipartite, if and only if n is even or n = 1.
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4 Connectivity

From Lemma 4 it follows that a union of two permutations P1 and P2 of Kn,n with different parities
cannot form a Hamiltonian cycle if n is at least 3 and odd. Hence, M(Kn,n) is not connected for
such n.

Lemma 7. For every perfect matching P of Kn,n such that c(P ∪ In) ≡ n (mod 2), n ≥ 2, there
exists a perfect matching R of Kn,n such that P ∪R and R∪ In form Hamiltonian cycles of Kn,n.

Figure 1: The circles and bold lines are vertices and edges of M(K3,3). The matching graph
M(K3,3) has two components; the upper one contains even perfect matchings of K3,3 and the
lower one contains odd perfect matchings.

Proof. The proof proceeds by induction on n. The statement holds for n ∈ {2, 3}, see Figure 1 for
n = 3. Let us suppose that the statement is true for every Kk,k with 2 ≤ k < n and let us prove
it for Kn,n where n ≥ 4.

We divide the proof into three cases:

1. P = In

2. There exists a cycle of length at least six in P ∪ In.

3. There exist at least two cycles of length four in P ∪ In.

Every perfect matching P belongs to at least one case because there is no cycle of odd length in
the bipartite graph P ∪ In. If P ∪ In contains only one cycle of length four and no cycle of length
at least 6, then c(P ∪ In) = n − 1 which contradicts the assumption c(P ∪ In) ≡ n (mod 2).

The first case is simple because it is sufficient to choose an arbitrary perfect matching R of
Kn,n such that R ∪ In forms a Hamiltonian cycle.

Let us consider that the graph P ∪ In contains a cycle ba, wb, bb, wc, bc, wd, . . . , ba of length at
least six. Let P ′ := (P \ {bawb, bbwc, bcwd}) ∪ {bawd}. The matching P ′ of Kn,n does not cover
vertices wb, bb, wc and bc so P ′ is a perfect matching of Kn−2,n−2 up to isomorphism. Moreover,
c(P ∪ In) = c(P ′ ∪ In−2) because we only shorten the cycle. By induction there exists a perfect
matching R′ of Kn−2,n−2 such that P ′∪R′ and R′∪In−2 form Hamiltonian cycles of Kn−2,n−2. Let
be be the vertex of Kn−2,n−2 such that bewd ∈ R′ . Note that R := (R′\{bewd})∪{bewc, bcwb, bbwd}
is a perfect matching of Kn,n. We observe that R ∪ In forms a Hamiltonian cycle of Kn,n be-
cause we replace the edge bewd in R′ ∪ In−2 by the path be, wc, bc, wb, bb, wd. Similarly, P ∪ R

forms a Hamiltonian cycle of Kn,n because we replace a path ba, wd, be in P ′ ∪ R′ by the path
ba, wb, bc, wd, bb, wc, be.

Now, we consider that P contains edges bawb, bbwa, bcwd and bdwc which belong to two cycles
of length four in P ∪ In. Let us define a perfect matching P ′ = (P \ {bawb, bbwa, bcwd, bdwc}) ∪
{bcwc, bdwd} of Kn−2,n−2. We again use the induction to find a perfect matching R′ of Kn−2,n−2

such that P ′∪R′ and R′∪In−2 form Hamiltonian cycles of Kn−2,n−2. Let we and bf be vertices of
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Kn−2,n−2 such that bdwe, bfwd ∈ R′. Note that R := (R′\{bdwe, bfwd})∪{bawe, bbwd, bdwa, bfwb}
is a perfect matching of Kn,n. The union R ∪ In forms a Hamiltonian cycle of Kn,n because we
replace a path bf , wd, bd, we in R′ ∪ In−2 by a path bf , wb, bb, wd, bd, wa, ba, we. Finally, P ∪ R is
Hamiltonian cycle of Kn,n because we replace an edge bcwc by a path bc, wd, bb, wa, bd, wc and a
path bf , wd, bd, we by bf , wb, ba, we.

Let f : V (Kn,n) → V (Kn,n) be an automorphism. We extend domain and codomain of f

on edges of Kn,n in this natural way: f({u, v}) = {f(u), f(v)}, where uv ∈ E(Kn,n). Fur-
thermore, we extend domain and codomain of f on perfect matchings of Kn,n in this way:
f(P ) = {f(e) | e ∈ P }, where P is perfect matching of Kn,n. Note that for every two perfect
matchings P and R of Kn,n there exists an automorphism f such that f(P ) = R.

Theorem 8. The distance between perfect matchings P and S of Kn,n, n ≥ 2, in the matching
graph M(Kn,n) is the following.

Conditions n is even n is odd

c(P ∪ S) = n 0 0
c(P ∪ S) = 1 1 1
c(P ∪ S) ≡ n (mod 2) 2 2

1 < c(P ∪ S) < n
c(P ∪ S) ≡ n + 1 (mod 2) 3 ∞

Proof. If c(P ∪ S) = n, then P = S. If c(P ∪ S) = 1, then P ∪ S forms a Hamiltonian cycle and
there is an edge PS in the graph M(Kn,n). Let us suppose that 1 < c(P ∪ S) < n. Hence, the
distance between P and S is at least 2.

Let us consider that c(P ∪ S) ≡ n (mod 2). Let f be an automorphism on Kn,n such that
f(In) = S. We observe that c(f−1(P ) ∪ In) = c(P ∪ S) ≡ n (mod 2). By Lemma 7, there exists
a perfect matching R of Kn,n such that f−1(P )∪R and R ∪ In form Hamiltonian cycles of Kn,n.
Hence, P ∪ f(R) and f(R) ∪ S form Hamiltonian cycles of Kn,n.

Let us consider that c(P ∪ S) ≡ n + 1 (mod 2) and n is even. By Theorem 6, the distance
between P and S is odd. Let R be a perfect matching of Kn,n such that P ∪R forms a Hamiltonian
cycle. The distance between R and S is 2 because c(R ∪ S) ≡ n (mod 2). Hence, the distance
between P and S is 3.

If n is odd then there is no pair of perfect matchings with different parity whose union forms
a Hamiltonian cycle of Kn,n by Lemma 4. Therefore, if c(P ∪ S) ≡ n + 1 (mod 2) and n is odd,
then P and S belong to different components of M(Kn,n).

Corollary 9. The graph M(Kn,n) has one component for n even and two components for n odd,
where n ≥ 2.

Acknowledgement. I am very grateful to Pert Gregor and Václav Koubek and Tomáš Dvořák
for fruitful discussions on this topic.
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