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Abstract

A fault-free cycle in the n-dimensional hypercube Qn with f faulty vertices is long

if it has length at least 2n − 2f . If all faulty vertices are from the same bipartite
class of Qn, such length is the best possible. We prove a conjecture of Castañeda
and Gotchev [2] asserting that fn =

(

n

2

)

−2 where fn is the largest integer such that
for every set of at most fn faulty vertices, there exists a long fault-free cycle in Qn.
Furthermore, we present several results on similar problems of long paths and long
routings in faulty hypercubes and their complexity.
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1 Introduction

The n-dimensional hypercube Qn is a (bipartite) graph with all binary vectors
of length n as vertices and edges joining every two vertices that differ in exactly
one coordinate. The application of hypercubes as interconnection networks
inspired research of their fault-tolerant properties. Here we consider a problem
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of long fault-free cycles and long fault-free paths between two given vertices
of a hypercube in which some vertices are faulty.

Let F be a set of faulty vertices of Qn. A cycle C of Qn is a long fault-

free cycle if it does not contain any faulty vertex and the length of C is at
least 2n − 2|F |. A path P of Qn between vertices u and v is a long fault-free

path if it does not contain any faulty vertex and the length of P is at least
2n−2|F |−2. These concepts are motivated by the observation that if all faulty
vertices belong to the same bipartite class of Qn, then every long fault-free
cycle and long fault-free path are the longest possible.

Fu [6] proved that there exists a long fault-free cycle if |F | ≤ 2n − 4.
Castañeda and Gotchev [2] improved the bound to |F | ≤ 3n − 7 for n ≥ 5.
The similar problem for paths was first studied by Fu [7] who showed that
there is a long fault-free path in Qn between every two fault-free vertices if
|F | ≤ n− 2. Recently, the bound of Fu was improved by Kueng, Liang, Hsu,
and Tan [9] to |F | ≤ 2n − 5, but with an additional (strong) condition that
every vertex has at least two fault-free neighbors.

2 Long paths

A vertex u is surrounded by F if F contains all neighbors of u. Note that if a
vertex u is surrounded by F ∪{v} or v is surrounded by F ∪{u}, then there is
no long fault-free path of length at least 2 between u and v. We proved that
this necessary condition is also sufficient if |F | ≤ 2n− 4.

Theorem 2.1 ([4]) Let F be a set of at most 2n − 4 faulty vertices of Qn

where n ≥ 5. Then for every two fault-free vertices u and v, there exists a

long fault-free path between u and v in Qn if and only if u is not surrounded

by F ∪ {v} in Qn and v is not surrounded by F ∪ {u} in Qn.

Moreover, the bound on |F | is tight, as for every n ≥ 5 there is a con-
figuration of 2n − 3 faulty vertices and two fault-free vertices u, v satisfying
the above necessary condition, but no fault-free path between them is long.
Therefore, a natural question arises whether there exists a simple condition
on neighbors of end-vertices which allows to significantly increase the upper
bound on the number of faulty vertices.

Theorem 2.2 ([3]) Let F be a set of at most n
2

10
+ n

2
+ 1 faulty vertices of

Qn where n ≥ 15. Then there is a long fault-free path between every pair of

distinct vertices of the largest biconnected component of Qn − F .

The bound on |F | is asymptotically optimal in the following sense. Let



ψ(n) (φ(n)) be the largest integer such that for every set F of at most ψ(n)
(resp. φ(n)) faulty vertices of Qn there exists a long fault-free path (resp.
between every pair of distinct vertices) in the largest biconnected component
of Qn − F .

Theorem 2.3 ([3]) φ(n) ≤
(

n

2

)

−2 for n ≥ 4 and ψ(n) ≤ 2
(

n

2

)

−1 for n ≥ 6.

Putting together Theorems 2.2 and 2.3, we conclude that φ(n), ψ(n) ∈
Θ(n2). Imposing even more specific condition on end-vertices, we can still
increase the upper bound on |F | by a multiplicative constant.

Theorem 2.4 ([5]) If n ≥ 5, |F | ≤ n
2+n−4

4
, and u, v are two fault-free ver-

tices such that both have at most 3 faulty neighbors, then there exists a long

fault-free path between u and v.

Furthermore, another such a condition is on the minimal distance in F .
Clearly, if every two vertices from F are at (Hamming) distance at least 3,
then the minimal degree δ(Qn − F ) in Qn − F is at least n− 1.

Theorem 2.5 ([8]) Let F ⊆ V (Qn) where n ≥ 1 such that δ(Qn−F ) ≥ n−1.
Then Qn −F contains a long uv-path for every pair of fault-free vertices u, v.

3 Long cycles

Let fn be the largest integer such that for every set of at most fn faulty vertices
of Qn there exists a long fault-free cycle. Castañeda and Gotchev [2] noticed,
independently on us, that for n ≥ 4 there is a set F of

(

n

2

)

− 1 faulty vertices
such that Qn has no long fault-free cycle. Such a set F may be, for example,
formed by all but one vertex at distance 2 from a fixed vertex.

Moreover, they conjectured [2] that fn =
(

n

2

)

−2. Recently, we proved that
the conjecture holds.

Theorem 3.1 ([5]) For every set of at most
(

n

2

)

− 2 faulty vertices, n ≥ 3,
there is a long fault-free cycle in Qn.

Furthermore, Theorem 2.5 implies that there is a long cycle in Qn − F if
δ(Qn − F ) ≥ n− 1 and n ≥ 3.

4 Routing

We also extend the problem for more paths that interconnect two given sets
A,B of vertices with A 6= B and |A| = |B| = k. An AB-path is a path



between a vertex of A and a vertex of B. An AB-routing is a collection of k
vertex-disjoint AB-paths. An AB-routing P1, P2, . . . , Pk in Qn − F is long if

|P1| + |P2| + · · · + |Pk| ≥ 2n − 2|F | − k − 1.

Note that for k = 1, this definition corresponds to long paths. For general k,
it can be shown that a long AB-routing exists in Qn − F for any F only if

b(A ∪B) + b(A ∩B) ≤ 2 (1)

where b(C) =
∣

∣|C∩X|−|C∩Y |
∣

∣ is the balance of C, and X,Y are the bipartite
classes of Qn.

In particular, the (necessary) condition (1) for k = 2 is equivalent to
b(A∪B) < |A∪B|, i.e. A∪B is not monopartite. A set C is called monopartite

if all vertices in C have the same parity.

Theorem 4.1 ([5]) Let n ≥ 5, F ⊆ V (Qn), A,B ⊆ V (Qn − F ) be such that

|F | ≤ ⌊n/2⌋, |A| = |B| = 2, A 6= B, and A ∪ B is not monopartite. Then

Qn − F has a long AB-routing.

As a consequence, if F ∪ {u, v} is not monopartite and |F | ≤ ⌊n/2⌋ + 1,
we obtain uv-paths in Qn − F of length at least 2n − 2|F | − 1, which is more
than is guaranteed by long paths.

5 Complexity

We conclude this survey with a study of computational complexity of our main
problems, denoted by LC, LP and LPP, and formulated in the following
way: Given n and a set F of faulty vertices of Qn (and vertices u, v for the
last problem), is there a long fault-free cycle, a long fault-free path, or a long
fault-free path between u and v, respectively? Considering the applications
in data compression [1], for each problem P ∈ {LC,LP,LPP} it is useful to
deal also with the variant P ′ where the input is formed by the set of fault-free
vertices.

If |F | ≤
(

n

2

)

− 2, the problems LC, LC′, LP, LP′ are (trivially) decidable
in polynomial time by Theorem 3.1. The next theorem shows that the same
conclusion holds even for LPP and LPP′ under a slightly weaker, but still
quadratic bound on |F |. Moreover, it also shows that the construction of a
long fault-free path or cycle takes only constant amortized time per one vertex
of the output.



Theorem 5.1 ([3]) Let Qn contain at most n
2

10
+ n

2
+ 1 faulty vertices. There

is an algorithm deciding in O(n8) time whether a long fault-free path P between

a given pair of distinct vertices exists. If P exists, the algorithm constructs P
in linear time with respect to its length.

On the other hand, in case that the number of faults is not limited, all the
problems are intractable.

Theorem 5.2 For every P ∈ {LC,LP,LPP}, P is NP-hard and P ′ is NP-

complete.

Moreover, there exists a polynomial p(n) of degree 6 such that LC, LP,
LPP remain NP-hard even if the number of faults is at most p(n).
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