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Abstract. Does every matching in the n-dimensional hypercube Qn extend
to a Hamiltonian cycle? This question was raised by Ruskey and Savage in

1993 and even though a positive answer in known in some special cases, the

problem still remains open in general. In this paper we present recent results
on extendability of matchings in hypercubes to Hamiltonian cycles and paths

as well as on the computational complexity of these problems, motivated by the

Ruskey-Savage question. Moreover, we verify the conjecture of Vandenbussche
and West saying that every matching in Qn, n ≥ 2, extends to a 2-factor.

1. Introduction

The n-dimensional hypercube Qn is the graph on the set of all n-bit strings with
edges joining two vertices whenever they differ in exactly one bit. There is a large
literature on structural properties of this class of graphs which comes from research
on the topological structure and analysis of hypercubic interconnection networks
[24].

It is well known that Qn is Hamiltonian for every n ≥ 2. Among a number
of appealing problems related to Hamiltonicity of hypercubes, the most prominent
role was played by the notorious Middle Levels Conjecture, recently resolved by
Mütze [17]. But there is another long-standing question, raised in 1993 by Ruskey
and Savage [20], asking whether every matching in Qn extends to a Hamiltonian
cycle. A positive solution has been verified for n ≤ 5 by a computer search [25],
but for larger values of n, the answer is known only in several special cases. It may
be of interest that matchings in hypercubes that can be avoided by a Hamiltonian
cycle were characterized in [2].

The purpose of this paper is to present recent results on extendability of match-
ings in hypercubes to Hamitonian cycles, Hamiltonian paths and 2-factors as well
as on the computational complexity of these problems, motivated by the Ruskey-
Savage question.

2. Preliminaries

Throughout this paper, n always denotes an integer such that n ≥ 2. Given an
n-bit string u, we use ui to denote the i-th element of the sequence u1 . . . un = u.
Vertex and edge sets of a graph G are denoted by V (G) and E(G), respectively.

Given the n-dimensional hypercube Qn, the parity χ(v) of a vertex v of Qn is
defined by χ(v) =

∏n
i=1(−1)vi . A set S ⊆ V (Qn) is called balanced if

∑
v∈S χ(v) =

0. We use d(u, v) to denote the Hamming distance of u, v ∈ V (Qn), i.e. d(u, v) =
|{i | ui 6= vi}|. The dimension of an edge uv of Qn is defined as the integer i such
that ui 6= vi. If ui = 0 6= vi, the parity of an edge uv is defined as the parity of
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u. The set of all edges of Qn of the same dimension and the same parity is called
a half-layer.

Let K(Qn) denote the complete graph on the set of vertices of Qn. We use B(Qn)
to denote the spanning subgraph of K(Qn) containing only edges uv ∈ E(K(Qn))
such that d(u, v) is odd. While K(Qn) is a completion of Qn, B(Qn) may be viewed
as a bipartite completion of Qn.

A matching is a set of edges without common vertices. A matching M in a graph
G is called perfect if every vertex of G is incident with an edge of M . A matching M
in K(Qn) is called balanced if the set of all vertices that are incident with an edge
of M forms a balanced subset of V (Qn). We say that a set of edges P of K(Qn) is
extendable if there exists a set of edges R of Qn such that P ∪R is a Hamiltonian
cycle of K(Qn).

3. (Nearly) perfect matchings

An affirmative answer to the Ruskey-Savage problem in the case of perfect match-
ings was obtained a decade ago by Fink [6] who thus verified a conjecture published
by Kreweras [16] and popularized by Knuth [14]. Fink’s theorem actually provides
a slightly stronger statement saying that every matching in K(Qn) is extendable
[6, 7]. This result inspired several generalizations [1, 12], e.g. the authors of [1]
showed that the Kreweras conjecture also holds for sparse spanning regular sub-
graphs of hypercubes. Note that Fink’s theorem implies a positive solution for
every matching that can be extended to a perfect matching, which includes e.g.
every induced matching [21]. However, it does not settle the problem in general, as
hypercubes may contain matchings that are maximal with respect to inclusion but
still not perfect [10].

It is well known that Qn is not only Hamiltonian, but moreover, there is a Hamil-
tonian path between vertices x and y if and only if χ(x) 6= χ(y) [13]. In joint work
with Škrekovski [11], we extend Fink’s theorem in a similar fashion. In particular,
the following result provides a necessary and sufficient condition for the existence
of a Hamiltonian path in Qn between given vertices x and y containing a given
perfect matching. Similarly as Fink’s theorem extends matchings in K(Qn), we
extend matchings in the complete bipartite graph B(Qn).

Theorem 3.1 ([11]). Let P be a perfect matching of B(Qn), n ≥ 5, and x, y ∈
V (Qn). Then P may be extended by edges of Qn into a Hamiltonian path in B(Qn)
between x and y if and only if

• χ(x) 6= χ(y),
• xy 6∈ P ,
• (P ∪ {x′y′}) \ {xx′, yy′} does not contain a half-layer,

where x′, y′ are the vertices of Qn such that xx′, yy′ ∈ P .

It should be noted that the proof of Theorem 3.1 is computer-assisted: the case
n = 5, which serves as the basis for the inductive proof, was verified by a computer
search [19]. The assumption n ≥ 5 is essential, as for n = 4 the computer search
identified 8 non-isomorphic counterexamples.

Theorem 3.1 can be also viewed as an extension of Fink’s theorem to perfect
matchings with one additional edge. In this equivalent formulation it says that
P ∪{xy} is extendable whenever the three conditions of Theorem 3.1 hold. We can
provide another extension of Fink’s theorem to perfect matchings with one edge
missing; note that this is not an easy corollary of Theorem 3.1.

Theorem 3.2. Every matching of B(Qn) which covers all but two vertices of Qn

is extendable.
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4. Small matchings

As far as arbitrary matchings are concerned, a positive solution to the Ruskey-
Savage problem was obtained only for matchings of linear size, the most recent
upper bound being 3n− 10 due to Wang and Zhang [23]. We are able to improve
this result in two ways.

Firstly, matchings of quadratic size were studied by the second author of this
paper in [3]. However, they were only extended to long cycles which need not
necessarily cover all the vertices.

Theorem 4.1 ([3]). For every matching M in K(Qn) of size at most n2

12 + n
4 there

is a set S ⊆ E(Qn) such that M ∪ S forms a cycle in K(Qn) of length at least
3
4 |V (Qn)|.

Building on this result, we derive another quadratic upper bound on the size of
a matching, but this time the matching extends to a Hamiltonian cycle.

Theorem 4.2 ([4]). Every matching in Qn of size at most n2

16 + n
4 is extendable.

5. Other variants of the problem

Vandenbussche and West [22] conjectured that every matching in the hypercube
extends into a 2-factor, which is a weaker variant of the Ruskey-Savage problem.
We prove this conjecture.

Theorem 5.1 ([8]). Every matching in the hypercube can be extended into a 2-
factor.

The basic idea of the proof of Theorem 5.1 is considering the hypercube Qn as
the Cartesian product Q2 �Qn−2. The only property of Qn−2 used in the proof is
the bipartiteness of Qn−2. Therefore, it proves in fact a stronger statement: every
matching of Q2 �G can be extended into a 2-factor for every bipartite graph G.
Furthermore, with a more involved argument we can show that a similar statement
holds for non-bipartite G as well.

Theorem 5.2. Every matching in Q2 �G can be extended into a 2-factor for every
graph G.

One may ask whether the graphQ2 in Theorem 5.2 can be replaced by some other
graph. In general, the characterization of all graphs H such that every matching
of H �G can be extended into a 2-factor for every graph G is still open.

On the other hand, inspired by the previous results, namely Theorems 3.1, 3.2
and 4.1, we may be tempted to suggest a stronger variant of the Ruskey-Savage
problem as follows: Is it true that every matching in B(Qn) is extendable? We can
show that the answer is positive only for small values of n.

Theorem 5.3 ([4]). Every balanced matching M in K(Qn) such that |M | ≤
max(8, n− 1) is extendable.

Hence every matching in B(Qn) is extendable for n ≤ 4. This is, however, not
true in general, as demonstrated by the following result.

Theorem 5.4 ([4]). For every n ≥ 9 there is a matching M ⊆ E(B(Qn)) \E(Qn)

of size 2
( n−1
bn−1

2 c
)

+ 1 which is not extendable.

Note that the matching of size Θ(2n/
√
n) from Theorem 5.4 lies in B(Qn) but

not in Qn. Hence it does not answer the Ruskey-Savage problem which still remains
open.
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6. Algorithms

When the existence of a combinatorial object is proven, it is natural to ask if
there also exists an efficient algorithm for finding this object. For example, this
paper is based on the existence of Hamiltonian cycles in hypercubes, while a survey
of efficient algorithms that generate such cycles may be found in [14]. When Mütze
[17] proved the Hamiltonicity of the middle levels graph, he and Nummenpalo [18]
also presented an algorithm that generates such a Hamiltonian cycle in an efficient
way.

Motivated by these natural algorithmic questions, Knuth [15] asked whether
a Hamiltonian cycle extending a given perfect matching of the hypercube can be
found in linear time. We present such an algorithm [9] using the Random Access
Machine (RAM) with n-bit words as the model of computation.

Theorem 6.1 ([9]). There exists an algorithm which, given a perfect matching P
of K(Qn), finds a perfect matching R of Qn such that P ∪ R is a Hamiltonian
cycle of K(Qn). The time complexity on n-bit word RAM is linear in the number
of vertices of the hypercube Qn.

However, this algorithm does not generate edges of a Hamiltonian cycle extending
a given perfect matching in the order in which these edges lie on the cycle. Although
it is possible to store all generated edges and then list them in the appropriate order,
this is not an efficient way to find only a few first edges. On the other hand, efficient
algorithms for finding edges in the order of a Hamiltonian cycle are known both for
the hypercube [5, 14] and for the middle levels graph [18].

Motivated by this fact, we develop an algorithm which

• given a perfect matching P of Qn

• iteratively finds a perfect matching R of Qn

• so that edges of R are generated in the order of the Hamiltonian cycle P ∪R
• and the first k edges, k = 1, 2, . . . , 2n, are found in time O(k2 poly(n)).

Since the size of the given perfect matching P is exponential in n, it is assumed
that P is given by an oracle which for a given vertex u of Qn returns the edge uv
of P .

Theorem 6.2 ([9]). There exists an algorithm which for a perfect matching P of
K(Qn) given by an oracle finds a perfect matching R = {u1v1, . . . , u2n−1v2n−1} of
Qn such that P ∪R forms a Hamiltonian cycle of K(Qn) and viui+1 ∈ P for every
i = 1, . . . , 2n−1−1. Furthermore, the algorithm finds the first k edges u1v1, . . . , ukvk
in time O(k2 poly(n)).
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