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Abstract

This paper studies a planning problem for supplying hot water in domestic environment.
Hereby, boilers (e.g. gas or electric boilers, heat pumps or microCHPs) are used to heat water
and store it for domestic demands. We consider a simple boiler which is either turned on or
turned off and is connected to a buffer of limited capacity. The energy needed to run the
boiler has to be bought e.g. on a day-ahead market, so we are interested in a planning which
minimizes the cost to supply the boiler with energy in order to fulfill the given heat demand.
We present a greedy algorithm for this heating problem whose time complexity is O(Tα(T ))
where T is the number of time intervals and α is the inverse of Ackermann function.

1 Introduction

In modern society, a significant amount of energy is consumed for heating water [1]. Almost every
building is connected to a district heating system or equipped with appliances for heating water
locally. Typical appliances for heating water are electrical and gas heating systems, heat pumps
and Combined Heat and Power units (microCHP). The heated water is mostly stored in buffers
to be prepared for the demands of the inhabitants of the building.

In this paper we consider a local heating systems which consist of

• a supply which represents some source of energy (electricity, gas),

• a converter which converts the energy into heat (hot water),

• a buffer which stores the heat for later usage and

• a demand which represents the (predicted) consumption profile of heat.

A more formal definition of the considered setting for local heating and the used parameters and
variables is given in Section 1.1. Although the presented model can consider arbitrary types of
energy, in this paper we use electricity and heat to distinguish between consumed and produced
energy. However note, that this simple model of a local heating system can not only be applied for
heating water but has many other applications, e.g. heating demand of houses, fridges and freezers
and inventory management. More details about those applications are given also in Section 1.1.

In the presented model we assume that the electricity used to heat the water has to be bought
on a market. Although these prices are nowadays mostly fixed for private costumers, the supply
companies are faced with variable prices resulting e.g. from a day ahead market. Furthermore, it
is expected that in the future also the private customers get confronted with variable prices over
time. This motivated the objective of minimizing the total cost of electricity consumed by the
heating system during the planning period. Note that in cost or auction based control algorithms
for Smart Grids, this objective is also used (see e.g. [15]).
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Foundation and the iCare project (11854) supported by STW. E-mail: fink@ktiml.mff.cuni.cz, j.l.hurink@utwente.nl
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1.1 Problem statement and results

In the following we present a mathematical description of the studied model and a summary of
the results of this paper.

The base of our modelling is a discretization of the planning horizon, meaning that we split
the planning period into T time intervals of the same length resulting in a set T = {1, . . . , T} of
time intervals. In this paper, the letter t is always used as an index of time intervals.

For the heating system, we consider a simple converter which has only two states: In every
time interval the converter is either turned on or turned off for the complete time interval. The
amount of produced heat during one time interval in which the converter is turned on is denoted
by H. If the converter is turned off, then it consumes no electricity and produces no heat. Let
xt ∈ {0, 1} be the variable indicating whether the converter is running in time interval t ∈ T or
not. Furthermore, if the converter is running, then it consumes some amount of electricity which
costs Pt in time interval t ∈ T . In another words, Pt is the price for running the converter in time
interval t ∈ T . Summarizing, the objective of the planning problem is minimizing the cost for
producing the heat, which is given by

∑
t∈T Ptxt.

Coupled to the heating system is a buffer. The state of charge of the buffer in the beginning
of time interval t ∈ T is denoted by st and represents the amount of heat in the buffer. Note that
sT+1 is the state of charge at the end of planning period. Based of the physical properties of the
buffer, the state of charge st is limited by a lower bound Lt and an upper bound Ut. In practice,
these two bounds are usually constant over time since the upper bound Ut is the capacity of buffer
and the lower bound Lt is zero. However, it may be useful to allow different values, e.g. a given
initial state of charge can be modelled by setting L1 and U1 equal to the initial state. In this
paper, we always assume that L1 = U1, meaning that the initial state of charge s1 is fixed.

The (predicted) amount of consumed heat by the inhabitants of the house during time interval
t ∈ T is denoted by Dt. This amount is assumed to be given and has to be supplied by either
the buffer or the converter, or a combination of both, and is called the demand. In this paper, we
study the off-line version of the problem, so we assume that both the demands Dt and also the
prices Pt are given for the whole planning period already at the beginning of the planning period.

The variables xt specifying the operation of the converter and the states of charge of the buffer
st are restricted by the following constraints:

st+1 = st +Hxt −Dt for t ∈ T (1)

Lt ≤ st ≤ Ut for t ∈ {1, . . . , T + 1} (2)

xt ∈ {0, 1} for t ∈ T . (3)

Equation (1) is the charging equation of the buffer. During time interval t ∈ T , the state of charge
st of the buffer is increased by the production of the converter which is Hxt and it is decreased by
demand Dt. Equations (2) and (3) ensure that the domains of variables st and xt, respectively,
are taken into account. As already mentioned, in this paper the objective function is to minimize
the cost for the electricity needed to produce the heat

∑
t∈T Ptxt.

In a previous paper [8], we presented an algorithm for the problem of minimizing cost for the
local heating which is based on dynamic programming and it has the time complexity O(T 2). In
Section 4 we prove that the optimal solution also can be calculated using a greedy algorithm. This
greedy algorithm first sorts all time intervals by their prices Pt, and then it processes all time
intervals one-by-one. In the basic version of the algorithm, the necessary updates in each step
take time O(T ), so the total time complexity of the algorithm is also O(T 2). In Section 5, we
then use the disjoint-set data structure of the union-find algorithm (see e.g. Cormen et al. [4]) to
obtain a complexity of O(Tα(T )) where α is the inverse of the Ackermann function. Hereby, we
ignore the complexity of sorting the time intervals since the order may be a part of the input or
be fount using a bucket sort algorithm (see e.g. Cormen et al. [4]).
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2 Related works and applications

In the following we present related literature and give some possible further applications of this
model.

Some related works can be found in the inventory management and lotsizing literature (see e.g.
[6, 11] for reviews). In inventory control problems (see [17]) a buffer may represent an inventory of
items, whereby a converter represent the production of items and the demand represent the ordered
quantities. As our problem consists of only one commodity, the single item lot sizing problem is
related (see [3] for a review). Wagner and Whitin [20] presented an O(T 2) algorithm for the
uncapacitated lot-sizing problem which was improved by Federgruen and Tzur [7] to O(T log T ).
On the other hand, Florian, Lenstra and Rinnooy [10] proved that the lot-sizing problem with
upper bounds on production and order quantities is NP-complete. The computational complexity
of the capacitated lot sizing problems is studied in [2]. Pessoa at.al. [5] studied multiple variants
of Multi-level capacitated lot-sizing problem which is an NP-hard problem, so they presented
an automatic algorithm-generation approach based on heuristics and a multi-population genetic
algorithm. Quezada et.al. [16] proposed a stochastic dual dynamic integer programming algorithm
for the multi-echelon multi-item lot-sizing problem. Our problem is a special case of the capacitated
single item lot sizing problem which to our knowledge has not been considered in the literature.

One other related area is vehicle routing and scheduling (see e.g. [12] for an overview of this
area). For example, Lin, Gertsch and Russell [14] studied optimal vehicle refuelling policies. In
their model, a refuelling station can provide an arbitrary amount of gas while our converter is
restricted to two possible states of heat generation. Other papers on vehicle refuelling policies
are more distant from our research since they consider that a car is routed on a graph (see e.g.
[18, 13]).

Where above we gave related but different optimization problems, in the following we present
some possible applications of the model presented in this paper.

Hot water: Converter and buffer can be seen as a model of a simple electrical or gas boiler.
Hereby, demand represents the consumption of hot water in a house.

House Heating: The model may be used to express a very simple model for house heating. The
converter represents a simple heater. The capacity of the buffer corresponds to thermal
capacity of the heating system (e.g. hot water buffer or thermal capacity of concrete floors
and walls) and the state of charge of the buffer is related to the temperature inside the
house. Heat losses of the house may be modelled using the demand if we assume that the
temperature difference inside the house does not have significant influence on the losses.
More details about using thermal mass as a buffer is presented in [19] and computing heat
demands is explained in [9].

Fridges and freezers: A fridge essentially works in the opposite way than heating, so it may be
modelled similarly. Hereby, the state of charge of the buffer again represents the temperature
inside the fridge, but a higher state of charge means a lower temperature. The converter
does not produce heat to the fridge but it decreases the temperature inside the fridge, so
the converter increases the state of charge of the buffer (fridge). The demand decreases the
state of charge of the fridge due to thermal loss and usage of the fridge by humans.

3 Reformulation of the problem

Where the problem formulation given in Section 1.1 is helpful to explain the problem, a reformu-
lation of the problem presented in [8] enables a better presentation and analysis of our algorithm.
For sake of completeness, we give this reformulation in this section. We show that conditions (1)
and (2) can be replaced by one condition (7).
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First, we expand the recurrence formula (1) into an explicit equation

st+1 = s1 +

t∑
i=1

Hxi −
t∑

i=1

Di.

Since we assume that the initial state of charge is given by s1 = L1 = U1, we can replace s1 by
L1 and substitute this into inequalities (2), leading to

Lt+1 − L1 +
∑t

i=1Di

H
≤

t∑
i=1

xi ≤
Ut+1 − L1 +

∑t
i=1Di

H
.

Since the sum
∑t

i=1 xi is an integer between 0 and t we obtain the following simple constrains for
this sums

A′t ≤
t∑

i=1

xi ≤ B′t for t ∈ T (4)

where

A′t = max

{
0,

⌈
Lt+1 − L1 +

∑t
i=1Di

H

⌉}
and B′t = min

{
t,

⌊
Ut+1 − L1 +

∑t
i=1Di

H

⌋}
. (5)

Observe that the sequence of partial sums
∑t

i=1 xi for t = 1, . . . , T is non-decreasing and the
difference of two consecutive partial sums is at most 1. We say that a sequence (Zt)t of T + 1
integers Z0, Z1, . . . , ZT satisfies (6) if

Z0 = 0,

Zt−1 ≤ Zt ≤ Zt−1 + 1 for all t ∈ T .
(6)

From parameters A′t and B′t we can be easily compute parameters At and Bt such that sequences
(At)t and (Bt)t satisfy (6) and the binary variables xt satisfy (4) if and only if they satisfy

At ≤
t∑

i=1

xi ≤ Bt for t ∈ T . (7)

For more details, see [8].

4 Greedy algorithm

In this section we present a greedy algorithm for the problem of fulfilling the heat demand with
minimal cost which is based on the following formulation of the problem:

Minimize
∑

t∈T Ptxt

such that At ≤
∑t

i=1 xi ≤ Bt for t ∈ T (8)

xt ∈ {0, 1} for t ∈ T

For the following, we assume that the given bounds At and Bt are already such that the sequences
(At)t and (Bt)t satisfy (6).

The first natural question is under which conditions problem (8) has a feasible solution. An
obvious condition for the existence of a feasible solution is that At ≤ Bt for every t ∈ T . This
condition is also sufficient, since in this case xt = At − At−1 for t ∈ T gives a feasible solution.
Summarizing, we get the following lemma.
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Lemma 4.1. The problem (8) has a feasible solution if and only if

At ≤ Bt for every t ∈ T . (9)

Since the condition (9) can easily be evaluated in linear time, we assume in the remainder of
the paper that the problem (8) has a feasible solution. To solve the problem, we use the classical
greedy approach. First, the time intervals are sorted by prices Pt. Then, the time intervals are
processed in order of increasing prices and the converter is turned on in time interval t? ∈ T , if
there exists a feasible solution with xt? = 1. Note, that the existence of such a feasible solution
implies

At?−1 ≤
t?−1∑
i=1

xi <

t?∑
i=1

xi ≤ Bt?

which leads to the following lemma.

Lemma 4.2. If the problem (8) has a feasible solution (xt)t satisfying xt? = 1 for a given t? ∈ T ,
then the inequality At?−1 < Bt? must hold.

Actually, the condition At?−1 < Bt? is sufficient and the proof follows from Lemmas 4.3 and
4.4.

The greedy algorithm starts with the (infeasible) solution xt = 0 for every t ∈ T . Then it
finds the cheapest time interval t? satisfying At?−1 < Bt? and it sets xt? := 1. Next, the values
of sequences (At)t and (Bt)t have to be adopted to incorporate the choice xt? = 1. The following
lemma gives update rules for the values of (At)t and (Bt)t in every step and shows that this update
is correct.

Lemma 4.3. Let t? ∈ T be an interval satisfying At?−1 < Bt? , and let

tA = max {t ∈ T ; At = At?−1}+ 1 tB = min {t ∈ T ; Bt = Bt?}

A?
t =

{
At if t < tA

At − 1 if t ≥ tA
B?

t =

{
Bt if t < tB

Bt − 1 if t ≥ tB .

Then also the sequences (A?
t )t and (B?

t )t satisfy (6) and for every 0-1 sequence (xt)t with xt? = 1
the condition (7) holds if and only if

A?
t ≤

t∑
i=1
i6=t?

xi ≤ B?
t for every t ∈ T . (10)

Proof. Since the sequences (A?
t )t and (B?

t )t differ from sequences (At)t and (Bt)t by removing one
step of the step function at time intervals tA and tB , respectively, (A?

t )t and (B?
t )t satisfy (6). In

order to prove the second part, let (xt)t be a 0-1 sequence with xt? = 1. For such a sequence, the
condition (7) is equivalent to

At ≤
t∑

i=1
i6=t?

xi ≤ Bt for every t < t? and

At − 1 ≤
t∑

i=1
i 6=t?

xi ≤ Bt − 1 for every t ≥ t?.

(11)

Thus, it remains to prove that conditions (10) and (11) are equivalent. We show this only for
the lower bounds, since the upper bound case is similar. Observe that the lower bounds of (10)
and (11) only differ for time intervals t ∈ T with t? ≤ t < tA. For such t it holds that A?

t = At
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Algorithm 4.1: Greedy algorithm for minimizing cost.

Input: Sequences (At)t and (Bt)t satisfying (6) and (9)
Output: Optimal solution (xt)t the problem (8)

initialization: xt := 0 for all t ∈ T
for t? ∈ T sorted by prices (Pt)t do

if the condition (12) is satisfied then
xt? := 1
Apply Lemma 4.3

return Optimal solution (xt)t

and, thus, we only have to prove that (11) implies (10) since the lower bound in (10) is stronger.
However, the implication follows directly from

A?
t = At = At?−1 ≤

t?−1∑
i=1

xi ≤
t∑

i=1
i 6=t?

xi.

In practical applications, the price of electricity is usually positive. However, the presented
greedy algorithm works also if the price Pt is negative for some t ∈ T . If all prices are non-
negative, then without loss of generality we can assume that AT = BT since there is an optimal
solution which turns the converter on only AT -times (that is, there exists an optimal solution
with

∑
t∈T xt = AT ). In the general case where prices can be negative, the value of the objective

function may be improved by turning the converter on more often. In the latter case, we need
to extend the condition At?−1 < Bt? of the greedy algorithm to a condition which also considers
negative prices. The new condition is

At?−1 < Bt? and (At?−1 < AT or Pt? < 0). (12)

If At?−1 = AT then the total minimal number of runs of the converter has to be reached already
before the time interval t?. Thus, the lower bound (At)t does not force the converter to be on in
the time interval t?. In this case, it is obvious that an optimal solution satisfies xt? = 0 unless the
price Pt? is negative.

The greedy algorithm is summarized in Algorithm 4.1. In the following, mathematical induc-
tion is used to prove that this greedy algorithm finds an optimal solution. The following two
lemmas provide the base of the induction and the induction step.

Lemma 4.4. If AT = 0 and there is no t? ∈ T such that Bt? > 0 and Pt? < 0, then xt = 0 for
all t ∈ T is an optimal solution.

Proof. Since AT = 0 it follows that At = 0 for all t ∈ T and thus, the trivial solution xt = 0 for
all t ∈ T is feasible. Let t̄ = max {x ∈ T ; Bt = 0} and let (x̄t)t be an arbitrary feasible solution.
Observe that x̄t = 0 for t ≤ t̄ and Pt ≥ 0 for t > t̄. Hence,∑

t∈T
Ptx̄t =

∑
t>t̄

Ptx̄t ≥ 0 =
∑
t∈T

Ptxt

which implies that the solution (xt)t is optimal.

Lemma 4.5. Assuming that there exists a time interval t? ∈ T satisfying (12), let t? be the time
interval satisfying (12) with the minimal price Pt? . Then, there exists an optimal solution (xt)t
such that xt? = 1.
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Proof. We prove the lemma indirectly by proving that for every feasible solution (x̄t)t there exists
a feasible solution (x̂t)t such that x̂t? = 1 and

∑
t∈T Ptx̂t ≤

∑
t∈T Ptx̄t. Since we assume that

there always exists a feasible solution, the lemma follows from this observation.
Let (x̄t)t be a feasible solution. If x̄t = 1, we are done. Thus, we assume that x̄t = 0, and we

consider two cases.
Case 1 Assume

∑t?−1
i=1 x̄i > At?−1: Let t̂ = max {t < t? ; x̄t = 1} which is well-defined since∑t?−1

i=1 x̄i > At?−1 ≥ 0. The new solution now is defined by x̂t̂ = 0 and x̂t? = 1 and x̂t = x̄t for
t ∈ T \

{
t̂, t?

}
. In order to prove that (x̂t)t fulfils the mentioned conditions, we first prove that it

is feasible. The equality
∑t

i=1 x̂t =
∑t

i=1 x̄t does not hold only for time intervals t with t̂ ≤ t < t?.
However, for such t it holds that

At ≤ At?−1 ≤
t?−1∑
i=1

x̄i − 1 =

t∑
i=1

x̄i − 1 =

t∑
i=1

x̂i <

t∑
i=1

x̄i ≤ Bt.

Hence, (x̂t)t is feasible.
Next, for sake of contradiction we assume

∑
t∈T Ptx̂t >

∑
t∈T Ptx̄t, implying that Pt̂ < Pt? .

If t̂ satisfies (12), we have a contradiction with the definition of t?, so t̂ does not satisfy (12).
Applying Lemma 4.2 with x̄t̂ = 1 we get that At̂−1 < Bt̂ which implies that At̂−1 = AT and

Pt̂ ≥ 0. Since t̂ < t? we have At̂−1 = At?−1 = AT . Furthermore, we have Pt? > Pt̂ ≥ 0, meaning
that t? does not satisfy (12) which is a contradiction. Thus,

∑
t∈T Ptx̂t ≤

∑
t∈T Ptx̄t.

Case 2 Assume
∑t?−1

i=1 x̄i = At?−1: For this case we have to consider two subcases depending
on whether there exists a t ≥ t? such that x̄t = 1. For both subcases we only give the corresponding
solution (x̂t)t; the proof of feasibility and cost is similar to Case 1.

Case 2.1 Assume x̄t = 0 for all t ≥ t?: The new solution is defined by x̂t? = 1 and x̂t = x̄t for
t ∈ T \ {t?}.

Case 2.2 Assume that t̂ = min {t ≥ t? ; x̄t = 1} ∈ T is well-defined: The new solution is
defined by x̂t̂ = 0 and x̂t? = 1 and x̂t = x̄t for t ∈ T \

{
t̂, t?

}
.

Theorem 4.6. Algorithm 4.1 finds an optimal solution for the local heating problem in time
O(T 2).

Proof. Algorithm 4.1 assumes that the pre-computed sequences (At)t and (Bt)t satisfy (6) and
(9). The initialization can easily be computed in linear time.

We use induction on the number of updates according to Lemma 4.3 to prove that Algorithm
4.1 finds an optimal solution. As base of the induction, we assume that Algorithm 4.1 never
applies Lemma 4.3. In this case, there is no time interval t? which satisfies (12). Hence, AT = 0
and Lemma 4.4 implies that the trivial solution xt = 0 for all time intervals t ∈ T is an optimal
solution.

For the induction step, assume that Algorithm 4.1 finds a time interval t? satisfying (12) with
the minimal price Pt? and that Lemma 4.3 is applied with this t?. By the induction hypothesis,
Algorithm 4.1 finds an optimal solution (xt)t for the instance with sequences (A?

t ) and (B?
t )t where

t ∈ T \ {t?}. Algorithm 4.1 now extends this solution by setting xt? = 1. This solution (xt)t is
feasible for (At)t and (Bt)t by Lemma 4.3.

By Lemma 4.5 there exists an optimal solution (x̄t)t satisfying x̄t? = 1. By Lemma 4.3 the
solution (x̄t)t is feasible for the instance with sequences (A?

t ) and (B?
t )t where t ∈ T \ {t?}.

From induction hypothesis it follows that
∑

t∈T \{t?} Ptxt ≤
∑

t∈T \{t?} Ptx̄t. Hence,
∑

t∈T Ptxt ≤∑
t∈T Ptx̄t which implies that (xt)t is an optimal solution.
Since Lemma 4.3 is called at most T -times and every step is evaluated in time O(T ), the total

time complexity is O(T 2).

Algorithm 4.1 has quadratic complexity because the updates of sequences (At)t and (Bt)t take
linear time. This complexity easily can be improved using a binary tree. The basic idea is that
values of (At)t and (Bt)t are handled independently by two separate balanced binary trees (see
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e.g. Cormen et al. [4]). In the following, we only describe the tree for the sequence (At)t since
the tree for sequence (Bt)t can be handled analogously. Let Ad

t = At − At−1. The leaves of the
tree store the value Ad

t for all the time intervals t ∈ T . Time intervals are assigned to leaves in
a sorted way where the left subtree of every inner vertex contains earlier time intervals than the
right subtree. Every inner vertex of the tree stores the sum of values of Ad

t for all leaves t in the
subtree. Since the tree is constructed to be balanced, the length of every path from the root to a
leaf is log2(T ) + O(1). This binary tree is constructed in time O(T ). It is now straight-forward
to determine the simple exercise to find out how values At and Bt are determined and how to
update both trees when Lemma 4.3 is applied. Both operations are performed in logarithmic time,
so these binary trees improve the time complexity of Algorithm 4.1 to O(T log T ). We skip more
details because in the next section an even faster data structure is presented.

5 Union-find

In this section we use the disjoint-set data structure of the union-find algorithm (see e.g. Cormen
et al. [4]) to store and update values of sequences (At)t and (Bt)t to reduce the time complexity
of the presented algorithm.

A disjoint-set data structure is a data structure that keeps track of a set of elements partitioned
into a number of disjoint (non-overlapping) subsets. A union-find algorithm is an algorithm that
performs two useful operations on such a data structure:

Find: Determine which subset a particular element is in. This can be used for determining if two
elements are in the same subset.

Union: Join two subsets into a single subset.

Using a technique called path compression, both operation have amortized complexity O(α(n))
where α is the inverse of Ackermann function and n is the number of elements.

Let us first summarize the operations required by Algorithm 4.1: We need to determine whether
the condition (12) is satisfied and apply the updates in Lemma 4.3. More specifically, we need a
data structure supporting the following operations for a given time interval t?.

(U1) Find time intervals tA and tB as defined in Lemma 4.3.

(U2) Determine whether At?−1 < AT .

(U3) Determine whether At?−1 < Bt? .

(U4) Modify the data structure so that it gives the correct response for the above queries after
the updates defined in Lemma 4.3.

Consider a partitioning of time intervals t? ∈ T by values tB . The update (U4) can be
performed by uniting two consecutive partitions and setting the value tB to be the smallest of
the original partitions. Therefore, it is natural to use the disjoint-set data structure to store the
partitioning time intervals t? ∈ T by the values tB for every partition. Similarly, we use another
disjoint-set data structures to partition the set of time intervals T according to the values tA.
So, this data structure is able to answer the queries (U1) and (U2) and update itself (U4). Note
that we do not use these two disjoint-set data structures to store values At?−1 and Bt? since their
update may be too slow. However, we are able to determine whether Bt1 = Bt2 for time intervals
t1, t2 ∈ T (and similarly At1−1 = At2−1) since Bt1 = Bt2 if and only if t1 and t2 belong to the
same partition in the disjoint-set data structure. This fact is used later to determine whether (13)
is satisfied.

In order to simplify further notation, let ∼ be a relation on the set of time intervals T such
that t1 ∼ t2 if At1−1 = At2−1 and Bt1 = Bt2 where t1, t2 ∈ T . Observe that ∼ is an equivalence
relation on T in which every factor class contains a set of consecutive time intervals. Factor classes
of the equivalence ∼ are called B-A-sets. Since values of At for all time intervals t of one B-A-set
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S are equal, we denote this value by AS . Similarly, BS denotes the Bt value of all time intervals
t of a B-A-set S. Update (U4) modifies the relation ∼, but the only change in the relation ∼ is
that some B-A-sets are united. In fact, one update (U4) leads to at most two unions: B-A-sets
containing time intervals tA − 1 and tA may be united and B-A-sets containing time intervals
tB − 1 and tB may be united. Hence, we use the third disjoint-set data structure to store the
partitioning into B-A-sets.

Let the difference Bt? −At?−1 denote Dt? . Since all time intervals t? in one B-A-set have the
same value of the difference Dt? , this difference Dt? can be stored in every B-A-set. However,
this approach is insufficient to reach the desired time complexity. The difference Dt? is actually
stored only in some selected B-A-sets that form some kind of local minima of the sequence (Dt)t
since (U3) only requires to determine whether Dt? is zero or positive. Let us consider one B-A-set
S and let S− and S+ be the preceding and the succeeding B-A-set, respectively. Observe that
if AS− = AS , then BS− + 1 = BS and therefore DS = DS− + 1. Similarly, if BS = BS+ , then
AS + 1 = AS+ and therefore DS = DS+ + 1. In both cases it is not necessary to store the value
DS since the facts that DS− ≥ 0 or DS+ ≥ 0 imply that DS > 0. The difference DS is stored in
a B-A-set S if and only if

AS− < AS and BS < BS+ . (13)

Note that we are able to determine whether (13) is satisfied using the first two union-set data
structures. In summary, for t? ∈ S it holds that At?−1 = Bt? if and only if DS is stored in the
B-A-set S of the third disjoint-set data structure and DS = 0.

In order to perform the update (U4), let S1, S2, S3, S4 and S? be B-A-sets containing time
intervals tB − 1, tB , tA − 1, tA and t?; respectively. Note that S2, S3 and S? may be the same.
Observe that the difference Dt is changed only for time intervals t with tA ≤ t < tB , where
Dt decreases by one. Therefore, the evaluation of the condition (13) may change only for sets
S1, S2, S3 and S4. Furthermore, S? is the only B-A-set which can satisfy (13) and for which
the stored difference DS? can change. The only possible changes in the partitioning of the time
intervals T into B-A-sets are uniting S1 and S2 and uniting S3 and S4.

In the following, we only discuss updates of B-A-sets S1 and S2 since updates of B-A-sets S3

and S4 are analogous. Note that BS1
+ 1 = BS2

and new values according to Lemma 4.3 satisfy
B?

S1
= B?

S2
= BS1 . If AS1 < AS2 , then B-A-sets S1 and S2 are not united and the value of the

difference DS1 is deleted (if it already has been stored). If AS1 = AS2 , then B-A-sets S1 and S2 are
united. Observe that if the united set satisfies (13), then S1 has satisfied (13) and the difference
of the united set is the difference of S1. Furthermore, if S? 6= S2 and S? 6= S3, then S∗ satisfies
(13) and the value DS? decreases by 1. All updates of the disjoint-set data structure of B-A-sets
are summarized in Algorithm 5.1.

Since the number of operations find and union on the disjoint-set data structures is O(T ) and
the amortized complexity of these operations is O(α(T )), the following theorem follows.

Theorem 5.1. Algorithm 4.1 with the disjoint-set data structures finds an optimal solution for
the local heating problem in time O(Tα(T )).

6 Conclusion

This paper presents a O(T α(T )) algorithm for local heating problem, which is based on a greedy
algorithm and where the low complexity of the algorithm results from the use of a sophisticated
data structure.

Looking at the settings for heating systems in practice, we note that for a part of the systems a
valve can be used to control the heat flow to a buffer (e.g. district heating) and thereby the decision
set has a continuous domain. This mathematically means that the constrain (3) is replaced by
0 ≤ xt ≤ 1. We believe that it is possible to adopt our algorithm to this case, although some parts
may become more technical.
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Algorithm 5.1: Update of the disjoint-set data structure for B-A-sets

Input: Time interval t?

Find time intervals tA and tB
Find B-A-sets S1, S2, S3, S4 and S? containing tB − 1, tB , tA − 1, tA and t? respectively
if AS1 = AS2 then

Union of sets S1 and S2 into a set S12

if S12 satisfies (13) then
Set the difference DS12

to be the difference DS1
before the last uniting

if BS3
= BS4

then
Union of sets S3 and S4 into sets S34

if S34 satisfies (13) then
Set the difference DS34

to be the difference DS4
before the last uniting

if S? 6= S2 and S? 6= S3 then
Decrease the difference DS? by one

References

[1] C. Aguilar, D. J. White, and D. L. Ryan. Domestic water heating and water heater energy,
consumption in canada. The Canadian Building Energy End-use Data and Analysis Centre,
2, 2005.

[2] G. R. Bitran and H. H. Yanasse. Computational complexity of the capacitated lot size
problem. Management Science, 28(10):1174–1186, 1982.

[3] N. Brahimi, S. Dauzere-Peres, N. M. Najid, and A. Nordli. Single item lot sizing problems.
European Journal of Operational Research, 168(1):1–16, 2006.

[4] T. H. Cormen, C. E. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms. MIT
Press, 2001.
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