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Abstract

The matching graph M(G) of a graph G has a vertex set of all perfect matchings
of G, with two vertices being adjacent whenever the union of the corresponding perfect
matchings forms a Hamiltonian cycle.

We prove that the matching graph M(Qd) of the d-dimensional hypercube is bipartite
and connected for d ≥ 4. This proves Kreweras’ conjecture [8] that the graph Md is
connected, where Md is obtained from M(Qd) by contracting all vertices of M(Qd) which
correspond to isomorphic perfect matchings.

1 Introduction

A set of edges P ⊆ E of a graph G = (V, E) is a matching if every vertex of G is incident
with at most one edge of P . If a vertex v of G is incident with an edge of P , then v is covered
by P , otherwise v is uncovered by P . A matching P is perfect if every vertex of G is covered
by P .

The d-dimensional hypercube (shortly d-cube) Qd is a graph whose vertex set consists of
all binary vectors of length d, with two vertices being adjacent whenever the corresponding
vectors differ at exactly one coordinate. The binary vectors are labelled by the set [d] :=
{1, 2, . . . , d}.

It is well known that Qd is Hamiltonian for every d ≥ 2. This statement can be traced
back to 1872 [7]. Since then the research on Hamiltonian cycles in d-cubes satisfying certain
additional properties has received considerable attention. An interested reader can find more
details about this topic in the survey of Savage [10]. Dvořák [3] showed that every set of
at most 2d − 3 edges of Qd (d ≥ 2) that induces vertex-disjoint paths is contained in a
Hamiltonian cycle. Dimitrov et al. [1] proved that for every perfect matching P of Qd (d ≥ 3)
there exists some Hamiltonian cycle that faults P if and only if P is not a set of all edges of
one dimension of Qd.

∗This work was partially supported by the Czech Science Foundation 201/05/H014 and the Czech Ministry
of Education 1M0545.
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The matching graph M(G) of a graph G on an even number of vertices has a vertex set
of all perfect matchings of G, with two vertices being adjacent whenever the union of the
corresponding perfect matchings forms a Hamiltonian cycle of G; e.g. Figure 1 shows the
matching graph M(G). There is a natural one-to-one correspondence between Hamiltonian
cycles of G and edges of M(G). The problem of determining h(d), the number of Hamiltonian
cycles of a d-cube, is a well-known open problem. Douglas [2] presents upper and lower bounds
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d−1
∏

i=5

i2
d−i−1

)

d(1344)2
d−4

22d−2
−1−d ≤ h(d) ≤

(
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−2d−1−log2(d)

.

We are interested in structural properties of M(Qd).

We say that two perfect matchings P and R are isomorphic if there exists an isomorphism
f : V (Qd) → V (Qd) such that f(u)f(v) ∈ R for every edge uv ∈ P . This relation of
isomorphism is an equivalence and it partitions the set of all perfect matchings. Kreweras
[8] considered a graph Md which is obtained from M(Qd) by contracting all vertices of each
class of this equivalence. For example, Q3 has two non-isomorphic perfect matchings, so M3

has two vertices connected by an edge. The graph M4 is presented on Figure 3.

Kreweras [8] proved by inspection of all perfect matchings that the graphs M3 and M4

are connected and he conjectured that the graph Md is connected for every d ≥ 3. It is more
general to also ask whether the graph M(Qd) is connected since the connectivity of M(Qd)
implies the connectivity of Md. The answer is negative for d = 3 (see Figure 1). However, we
prove that this is the only counter-example.

Figure 1: The matching graph M(Q3). The circles and bold lines are vertices and edges of
M(Q3).

We also prove that the matching graph M(Kn,n) of the complete bipartite graph Kn,n is
bipartite for even n, which implies that M(Qd) is bipartite. This is an interesting property
which helps us find a walk in M(Qd) of even length. We show other interesting properties of
matching graphs M(Qd) and M(Kn,n) in [4].
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2 Perfect matchings extend to Hamiltonian cycles

Let K(G) be the complete graph on the vertices of a graph G. If G is bipartite and connected,
then let B(G) be a complete bipartite graph with the same color classes as G. Let P be a
perfect matching of K(Qd). Let Γ(P ) be the set of all perfect matchings R of Qd such that
P ∪ R is a Hamiltonian cycle of K(Qd). Note that if P is a perfect matching of Qd and
R ∈ Γ(P ), then P ∪ R is a Hamiltonian cycle of Qd, so PR is an edge of M(Qd).

Kreweras conjectured [8] that every perfect matching in the d-cube with d ≥ 2 extends to
a Hamiltonian cycle. We [5] proved the following stronger form of this conjecture.

Theorem 1 (Fink [5]). For every perfect matching P of K(Qd) the set Γ(P ) is non-empty
where d ≥ 2.

We say that an edge uv of K(Qd) crosses a dimension α ∈ [d] if vertices u and v differ in
dimension α, otherwise uv avoids α. A perfect matching P of K(Qd) crosses α if P contains
an edge crossing α, otherwise P avoids α. Let Iα

d be the perfect matching of Qd that contains
all edges in dimension α ∈ [d]. Observe that a perfect matching P of Qd crosses α if and only
if P ∩ Iα

d 6= ∅.

Proposition 2. Let P be a perfect matching of K(Qd) avoiding β ∈ [d] and e ∈ I
β
d . There

exists R ∈ Γ(P ) containing e.

Proof. The proof proceeds by induction on d. The statement holds for d = 2. Let us assume
that the statement is true for every k-cube Qk with 2 ≤ k ≤ d − 1 and let us prove it for d.

Clearly, P crosses some α ∈ [d] \ {β}. We divide the d-cube Qd by dimension α into two
(d − 1)-subcubes Q1 and Q2 so that e ∈ E(Q1). Let Ki := K(Qi) and P i := P ∩ E(Ki) for
i ∈ {1, 2}.

The set of edges P 1 is a matching of K1 which is not perfect since P crosses α. Let M

be the set of vertices of K1 that are uncovered by P 1. The size of M is even. If we divide Q1

by dimension β, then numbers of vertices of M on both subcubes of Q1 are even because P 1

avoids β. We choose an arbitrary perfect matching S1 on vertices of M such that S1 avoids β.
The perfect matching P 1 ∪ S1 of K1 avoids β. By induction there exists a perfect matching
R1 ∈ Γ(P 1 ∪ S1) of Q1 containing e. Let

S2 :=

{

xy ∈ E(K2)

∣

∣

∣

∣

∃x′, y′ ∈ V (Q1) such that xx′, yy′ ∈ P and
there exists a path between x′ and y′ of P 1 ∪ R1

}

. (1)

Observe that P 1 ∪ R1 is a partition of Q1 into vertex-disjoint paths between vertices
uncovered by P 1. For every path between x′ and y′ of this partition there exist vertices x and
y of Q2 such that xx′, yy′ ∈ P . Thus, the set of edges S2 is a matching of K2. Moreover, the
set of edges P 2 ∪ S2 is a perfect matching of K2 because S2 covers each vertex covered by P

but not by P 2. Hence, there exists a perfect matching R2 ∈ Γ(P 2 ∪ S2) of Q2 by Theorem 1.
Clearly, R := R1 ∪R2 is a perfect matching of Qd containing e. Finally, R ∈ Γ(P ) by Lemma
3.

Lemma 3. Let P be a perfect matching of K(Qd) crossing some dimension α ∈ [d]. Let the
d-cube Qd be divided into two (d− 1)-subcubes Q1 and Q2 by dimension α. Let Ki := K(Qi)
and P i := P ∩ E(Ki) for i ∈ {1, 2}. Let S1 be a perfect matching on vertices of K(Q1)
uncovered by P 1. Let R1 ∈ Γ(P 1 ∪ S1). Let S2 be given by (1). Let R2 ∈ Γ(P 2 ∪ S2) and
R := R1 ∪ R2. Then R ∈ Γ(P ).

3



Proof. We prove that P ∪ R is a Hamiltonian cycle of K(Qd). Suppose on the contrary that
C is a cycle of P ∪ R which is not Hamiltonian. Since P crosses α, both S1 and S2 are
non-empty sets. Because P i ∪ Si ∪ Ri is a Hamiltonian cycle of Ki, whole cycle C cannot
belong to Ki, for i ∈ {1, 2}. So C has edges in both K1 and K2. Now, we shorten every
path xx′ · · · y′y such that x, y ∈ V (Q2); x′, y′ ∈ V (Q1); xx′, yy′ ∈ P and x′ · · · y′ is a path
of P 1 ∪ R1 by the edge xy ∈ S2. Hence, we obtain a cycle C ′ of (P 2 ∪ S2) ∪ R2. We prove
that C ′ does not contain a vertex of K2 which is a contradiction because (P 2 ∪ S2) ∪R2 is a
Hamiltonian cycle of K2.

If C does not contain a vertex u of K2, then C ′ also does not contain u. Suppose that C

does not contain a vertex v of K1. Let x′ and y′ be the end vertices of the longest path of
P 1 ∪ R1 that contains v. Let xx′, yy′ ∈ P . Observe that x, y ∈ V (K2) and xy ∈ S2. Hence,
C ′ does not contain x and y.

Observe that the perfect matching R obtained in Lemma 3 avoids dimension α. The
interested reader may ask whether there exists a perfect matching R in Theorem 1 that
avoids given set of dimension A ⊂ [d]. Clearly, the graph on edges of P and allowed edges of
Qd (i.e. edges of Qd that avoid every dimension of A) must be connected. Gregor [6] proved
that this is also a sufficient condition which implies following lemma.

Lemma 4. For every perfect matching P of K(Qd) and α ∈ [d] there exists R ∈ Γ(P )
avoiding α if and only if P crosses α where d ≥ 2.

Moreover, Ruskey and Savage [9, page 19, question 3] asked the following more general
question:

Does every (not necessarily perfect) matching of Qd for d ≥ 2 extend to a Hamiltonian
cycle of Qd?

3 Bipartiteness of M(Kn,n)

There is a natural one-to-one correspondence between perfect matchings of the complete
bipartite graph Kn,n and permutations on a set of size n. A permutation π is even if n− k is
even where k is a number of cycles of π, otherwise π is odd. It is well-known that π1◦π2 is even
if and only if permutations π1 and π2 have the same parity. Hence, the inverse permutation
π−1

2
has the same parity as π2.

Let c(P ) be the number of components of the graph on a set of edges P . Recall that
B(G) is the complete bipartite graph with the same color classes as a bipartite and connected
graph G.

Let P1 and P2 be perfect matchings of Kn,n and π1 and π2 be their corresponding per-
mutations. Observe that c(P1 ∪ P2) is equal to the number of cycles of π1 ◦ π−1

2
. If n is even

and P1 ∪ P2 is a Hamiltonian cycle of Kn,n, then π1 and π2 have different parities. Hence,
M(Kn,n) is bipartite for n even. The matching graph M(Qd) is also bipartite because M(Qd)
is a subgraph of M(B(Qd)) which is isomorphic to M(K2d−1,2d−1).

The above discussion proves the following theorem.

Theorem 5. The matching graphs M(Qd) and M(B(Qd)) are bipartite.
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We did not define which perfect matchings of B(Qd) are even and odd. But we know that
perfect matchings P1 and P2 of B(Qd) belong to the same color class of M(B(Qd)) if and
only if c(P1 ∪ P2) is even. Hence, we fix one perfect matching of B(Qd) to be even.

Let us recall that Iα
d is the perfect matching of Qd that contains all edges in dimension

α ∈ [d]. We simply count that c(Iα
d ∪ I

β
d ) = 2d−2 for every two different dimensions α, β ∈ [d]

because the graph on edges Iα
d ∪ I

β
d consists of 2d−2 independent cycles of size 4. Hence,

perfect matchings Iα
d and I

β
d belong to the same color class of M(B(Qd)) for d ≥ 3. We call

a perfect matching P of B(Qd) even if c(P ∪ I1
d) is even and otherwise odd where d ≥ 3.

4 Walks in M(Qd)

We will prove that M(Qd) is connected by induction on d. Therefore, we need to know how
we can make a walk in M(Qd) from a walk in M(Qd−1). In this section we present two
lemmas which help us.

Let P 0 and P 1 be perfect matchings of Qd−1. We denote by
〈

P 0|P 1
〉

the perfect matching
of Qd containing P i in the (d−1)-subcube of vertices having i in the coordinate d for i ∈ {0, 1}.

Lemma 6. Let P1, P2, P3, R1, R2, and R3 be perfect matchings of Qd−1 such that P1 ∪ P2,
P2 ∪ P3, R1 ∪ R2, and R2 ∪ R3 are Hamiltonian cycles of Qd−1. If P2 ∩ R2 6= ∅, then there
exists a perfect matching S of Qd such that 〈P1|R1〉 ∪ S and S ∪ 〈P3|R3〉 are Hamiltonian
cycles of Qd. Moreover, S crosses the dimension d and every dimension that is crossed by P2

or R2.

Proof. Let uv ∈ P2 ∩ R2. Let ui be the vertex of Qd obtained from u by appending i into
dimension d, where i ∈ {0, 1}. Vertices v0 and v1 are defined similarly.

Let S := (〈P2|R2〉 \ {u0v0, u1v1}) ∪ {u0u1, v0v1}. The graph on edges 〈P1|R1〉 ∪ 〈P2|R2〉
consists of two cycles covering all vertices of Qd. These cycles are joined together in 〈P1|R1〉∪
S. Hence, 〈P1|R1〉 ∪ S is a Hamiltonian cycle of Qd. Similarly, S ∪ 〈P3|R3〉 is a Hamiltonian
cycle of Qd.

The edge u0u1 crosses dimension d, so S also crosses d. Let us consider a dimension
β ∈ [d − 1] which is crossed by P2 or R2. Without loss of generality we suppose that P2

crosses β. There exist at least 2 edges crossing β in P2. It can happen that the edge u0v0 is
one of them, so at least one edge crossing β remains in S.

Let P be a perfect matching of K(Qd) and A ⊆ [d]. We say that P crosses A if P crosses
every dimension of A.

Lemma 7. Let P1, P2, P3, and R1 be perfect matchings of Qd−1 such that P1∪P2 and P2∪P3

are Hamiltonian cycles of Qd−1. Let α, β ∈ [d− 1], α 6= β. If P2 crosses [d− 1] \ {α} and R1

avoids β, then there exists a perfect matching S of Qd such that 〈P1|R1〉 ∪ S and S ∪ 〈P3|R1〉
are Hamiltonian cycles of Qd and S crosses [d] \ {α}.

Proof. Let e ∈ P2 ∩ I
β
d−1

. There exists R2 ∈ Γ(R1) containing e by Proposition 2. If we apply
Lemma 6 on P1, P2, P3, R1, R2, and R1, then we obtain a perfect matching S which satisfies
the requirements of this lemma.
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5 Base of induction

Let us recall that Md is obtained from M(Qd) by contracting all vertices of M(Qd) whose
corresponding perfect matchings are isomorphic. Let P and R be perfect matchings of Qd. If
there exists a walk between vertices representing P and R in M(Qd), then the length of the
shortest one is d(P, R), otherwise d(P, R) is infinity. Hence, d(P, R) < ∞ means that P and
R belong to the same component of M(Qd).

The proof, that M(Qd) is connected, proceeds by induction on d. We present a base of
this induction in this section. We showed that M(Q3) has 3 components (see Figure 1), so
the induction starts from d = 4. Kreweras [8] proved that M4 is connected (see Figure 3).
We prove that if Md is connected and d ≥ 4, then M(Qd) is connected. Hence, M(Q4) is
connected.

First, we present a simple lemma.

Perfect matching S0

4
= Iα

4

Perfect matching S6

4
= I

β
4

Perfect matching S1

4
Perfect matching S2

4

Perfect matching S3

4 Perfect matching S4

4
Perfect matching S5

4

Figure 2: The walk between perfect matchings Iα
4 and I

β
4

in M(Q4).

Lemma 8. If d ≥ 4, then d(Iα
d , I

β
d ) ≤ 6 for every α, β ∈ [d], α 6= β.

Proof. The proof proceeds by induction on d. The walk between Iα
4 and I

β
4

is drawn in Figure
2.

Let Iα
d−1

= S0
d−1

, S1
d−1

, S2
d−1

, S3
d−1

, S4
d−1

, S5
d−1

, S6
d−1

= I
β
d−1

be a walk in M(Qd−1). Let

Si
d :=

〈

Si
d−1

|Si
d−1

〉

for even i. For odd i let Si
d be given by Lemma 6 where P1 = R1 := Si−1

d−1
,

P2 = R2 := Si
d−1

, and P3 = R3 := Si+1

d−1
. Then Iα

d = S0
d , S1

d , S2
d , S3

d , S4
d , S5

d , S6
d = I

β
d is a walk

in M(Qd).
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Let us recall that perfect matchings P and R are isomorphic if there exists an isomorphism
f : V (Qd) → V (Qd) such that f(u)f(v) ∈ R for edge uv ∈ P . This relation of isomorphism is
an equivalence on the set of all perfect matching. Let [P ] be the equivalence class containing
P . Observe that [Id] := {Iα

d | α ∈ [d]} is an equivalence class. If there exists a walk between
[P ] and [R] of Md, then the length of the shortest one is d([P ], [R]), otherwise d([P ], [R]) is
infinity.

Let us consider perfect matchings P and R of Qd such that d([P ], [R]) = 1. There
exist isomorphisms f and g such that f(P ) ∪ g(R) forms a Hamiltonian cycle. Moreover,
P ∪ f−1(g(R)) forms a Hamiltonian cycle. Hence, we have a perfect matching f−1(g(R)) ∈
Γ(P ) such that f−1(g(R)) is isomorphic to R.

Proposition 9. If d ≥ 4 and Md is connected, then M(Qd) is connected.

Proof. We prove that vertices {P ∈ V (M(Qd)) | d([P ], [Id]) ≤ k} belong into one component
of M(Qd) by induction on k. This claim holds for k = 0 by Lemma 8.

Let P be a perfect matching of Qd such that d([P ], [Id]) = k. There exists a perfect
matching R of Qd such that d([R], [Id]) = k − 1 and d([P ], [R]) = 1. Hence, there exists
R′ ∈ Γ(P ) isomorphic to R. By induction d(Id, R

′) < ∞. Therefore, d(P, Id) < ∞.

Type 4400, number 12 Type 6200, number 48 Type 4400, number 24

Type 2222, number 48 Type 4220, number 96 Type 2222, number 32

Type 4220, number 48

Type 8000, number 4

Figure 3: The graph M4. For every equivalence class [P ] of isomorphism there is a frame
which contains P . Four type numbers above each frame are numbers of edges crossing each
dimension. Above each frame there is also a number of perfect matchings which are contracted
to the equivalence class.
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6 Induction step

We define a set of perfect matchings Z(d, k, α) of Qd by following induction on d, where
d ≥ k ≥ 3 and α ∈ [d].

Definition 10. Let Z(d, d, α) contain only Iα
d . The set Z(d, k, α), where d > k ≥ 3 and

α ∈ [d], is the set of all perfect matchings of Qd in the form 〈P1|P2〉, where P1 ∈ Z(d−1, k, α)
and P2 is an even perfect matching of Qd−1 avoiding some dimension β ∈ [d − 1] \ {α}.

Observe that every perfect matching of Z(d, k, α) is even and it contains Iα
k in some k-

subcube Qk. We want to prove that the graph M(Qd) is connected, so we need to show that
there exists a perfect matching I of Qd such that for every perfect matching P of Qd there
exists a walk between P and I in M(Qd). Lemma 8 says that perfect matchings [Id] belong
to a common component of M(Qd), so it is sufficient to find a walk from P to an arbitrary
one of [Id]. Without loss of generality we assume that P is odd by Theorems 1 and 5. We find
this walk in two steps: First, we find a walk from P to some perfect matching of Z(d, k, α)
for some α ∈ [d] and k, d ≥ k ≥ 3. Next, for every perfect matching of Z(d, k, α) we find a
walk to some perfect matching of Z(d, k + 1, α), so by induction on k we obtain a walk from
P to Z(d, d, α) which contains only Iα

d by definition.
Since Qd is bipartite, we call vertices of one color class black and the other white.

Lemma 11. For every odd perfect matching P of B(Qd) there exists Y ∈ Z(d, k, α) for some
dimension α ∈ [d] and k, d ≥ k ≥ 3, such that d(P, Y ) ≤ 3.

Proof. We prove by induction on d that for every perfect matching P of B(Qd) there exist
perfect matchings R, X and Y of Qd such that P ∪ R, R ∪ X and X ∪ Y are Hamiltonian
cycles and X crosses [d] \ {α} and Y ∈ Z(d, k, α).

First, we prove the statement for d = 3. Let P be an odd perfect matching of B(Q3).
Therefore, c(P ∪ Iδ

3) is 1 or 3 for every δ ∈ [3]. If there exists δ ∈ [3] such that c(P ∪ Iδ
3) = 1,

then we choose R := Y := Iδ
3 and X ∈ Γ(R).

We prove that there exists δ ∈ [3] such that c(P ∪ Iδ
3) = 1. Suppose on the contrary that

c(P ∪ Iδ
3) = 3 for every δ ∈ [3]. The graph on edges P ∪ Iδ

3 consists of two common edges
and one cycle of size 4. Perfect matchings of [I3] are pairwise disjoint and P has two common
edges with each of them. This is a contradiction because P has only 4 edges.

In the induction step we need to have a dimension γ ∈ [d] that is crossed by at least 4
edges of P . If d ≥ 5, such a dimension exists for every perfect matching P of B(Qd) by the
pigeonhole principle. Every perfect matching P of B(Q4) has 8 edges. If P contains an edge
crossing at least two dimensions, then we use the pigeonhole principle again.

A perfect matching P of Q4 is balanced if it has 2 edges in every dimension. Luckily,
Kreweras [8] proved that there are 8 perfect matchings of Q4 up to isomorphism and only two
of them are balanced; see Figure 3. Check that the balanced perfect matchings S3

4 drawn in
Figure 2 and R1 drawn of Figure 4 satisfy the requirements of this lemma.

Now, we present the induction step. Let γ ∈ [d] such that P has at least 4 edges crossing
γ. Without loss of generality we assume that γ = d. We divide Qd into two (d− 1)-subcubes
Q1 and Q2 by dimension γ. Let Bi := B(Qi) and P i := P ∩ E(Bi) for i ∈ {1, 2}. Let M be
the set of vertices of B1 that are uncovered by P 1. We know that |M | ≥ 4. Moreover, M has
the same number of black vertices as white ones.

Let b1 and b2 be two different black vertices of M and w1 and w2 be two different white
vertices of M . Let S′ be a matching of B1 covering M \ {b1, b2, w1, w2}. We have two ways of
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extending S′ to obtain a matching S1 of B1 covering M : We can insert edges {b1w1, b2w2} or
{b1w2, b2w1}. Those two ways give us two perfect matchings P 1 ∪ S1 of B1 having different
parity. Of course, we choose the way that gives us odd perfect matching P 1 ∪ S1.

Let R1, X1 and Y 1 be perfect matchings of Q1 given by induction – (P 1∪S1)∪R1, R1∪X1

and X1 ∪ Y 1 are Hamiltonian cycles of B1, X1 crosses [d − 1] \ {α} and Y 1 ∈ Z(d − 1, k, α).
Hence, R1 is even by Theorem 5. Let S2 be given by (1).

We prove that P 2 ∪ S2 is odd. Let R̄2 ∈ Γ(P 2 ∪ S2) by Theorem 1. Let R̄ := R1 ∪ R̄2.
By Lemma 3 it holds that R̄ ∈ Γ(P ), so R̄ is even by Theorem 5. Also R̄2 is even because R1

and R̄ are even. Hence, P 2 ∪ S2 is odd by Theorem 5. Moreover, P 2 ∪ S2 6= Iα
d−1

.
Hence, the perfect matching P 2 ∪ S2 crosses some β ∈ [d − 1] \ {α} and there exists

R2 ∈ Γ(P 2 ∪S2) avoiding β by Lemma 4. Let R := R1 ∪R2. Therefore, R ∈ Γ(P ) by Lemma
3 and R is even by Theorem 5. Because R1 is even, R2 is even. We apply Lemma 7 on
R1, X1, Y 1 and R2 to obtain a perfect matching X such that

〈

R1|R2
〉

∪X and X ∪
〈

Y 1|R2
〉

are Hamiltonian cycles of Qd and X crosses [d] \ {α}. Finally, Y :=
〈

Y 1|R2
〉

∈ Z(d, k, α) by
definition.

Perfect matching R1

Perfect matching R3

Perfect matching R2

Perfect matching R4 = Iα
4

= S

Perfect matching R0 = P = [Iα
3
|Iγ

3
]

Figure 4: A walk between P ∈ Z(4, 3, α) and Iα
4 .

Lemma 12. Let P ∈ Z(d, k, α), where 3 ≤ k < d and α ∈ [d]. If M(Qk) is connected or
k = 3, then there exists S ∈ Z(d, k + 1, α) such that d(P, S) < ∞.

Proof. We prove by induction on d that for every P ∈ Z(d, k, α) there exists a walk P =
R0, R1, . . . , Rn = S in M(Qd) of even length such that Rl crosses [d] \ {α} for every odd l

and S ∈ Z(d, k + 1, α). The base of this induction is for d = k + 1.
By definition of Z(d, k, α) we divide P into perfect matchings P 1 and P 2 such that P =

〈

P 1|P 2
〉

, P 1 ∈ Z(d − 1, k, α) and P 2 is an even perfect matching of Qd−1 avoiding some
β ∈ [d − 1] \ {α}.

First, we present the base of induction for d = 4, so k = 3. By definition, P 1 = Iα
3 and

P 2 is even. There are two perfect matchings of Q3 up to isomorphism with different parities;
see Figure 1. Hence, P 2 = I

γ
3

for some γ ∈ [3]. If P 2 = Iα
3 , then P = Iα

4 , which belongs to
Z(4, 4, α) by definition. Otherwise, the walk in Figure 4 satisfies requirements of this lemma.

Now, we present the base of the induction for k ≥ 4 and k + 1 = d. In that case
P 1 = Iα

k . There exists a walk P 2 = R0, R1, . . . , Rn = Iα
k on M(Qk) of even length because
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M(Qk) is connected and bipartite and P 2 is even. Let R′

l :=
〈

P 1|Rl

〉

for even l. Clearly,
R′

n ∈ Z(d, k + 1, α) because R′

n = Iα
k+1

.
Let l be odd. Since Rl is odd, it holds that Rl 6= Iα

k . We choose an edge el ∈ Rl \ Iα
k .

By Proposition 2 there exists Zl ∈ Γ(Iα
k ) containing el. The perfect matching Zl crosses

[k] \ {α} by Lemma 4. We apply Lemma 6 on Rl−1, Rl, Rl+1, I
α
k , Zl, and Iα

k to obtain a
perfect matching R′

l. The walk P = R′

0, R
′

1, . . . , R
′

n = Iα
k+1

satisfies the requirements.
Finally, we present the induction step for k ≥ 3 and k+1 < d. By induction there exists a

walk P 1 = R0, R1, . . . , Rn = S1 in M(Qd−1) of even length such that S1 ∈ Z(d − 1, k + 1, α)
and Rl crosses [d− 1] \ {α} for every odd l. Let R′

l :=
〈

Rl|P
2
〉

for even l. For odd l we apply
Lemma 7 on Rl−1, Rl, Rl+1 and P 2 to obtain a perfect matching R′

l of Qd crossing [d] \ {α}.
Now, the walk P = R′

0, R
′

1, . . . , R
′

n = S satisfies the requirements and S ∈ Z(d, k + 1, α).

Corollary 13. Let P ∈ Z(d, k, α), where 3 ≤ k ≤ d and α ∈ [d]. If M(Ql) is connected for
every l ∈ {4, 5, . . . , d − 1}, then d(P, Iα

d ) < ∞.

Proof. The proof proceeds by induction on d − k. If d = k, then P = Iα
d by definition of

Z(d, k, α). Let 3 ≤ k < d. By Lemma 12 there exists S ∈ Z(d, k+1, α) such that d(P, S) < ∞.
By induction d(S, Iα

d ) < ∞. Hence, d(P, Iα
d ) < ∞.

Theorem 14. The matching graph M(Qd) is connected for d ≥ 4.

Proof. The proof proceeds by induction on d. Kreweras [8] proved that the graph M4 is
connected; see Figure 3. Hence, the graph M(Q4) is connected by Proposition 9 and the
statement holds for d = 4. Let us assume that the graph M(Ql) is connected for every l with
4 ≤ l ≤ d − 1. Let us prove that for some β ∈ [d] and for every perfect matching P of Qd it

holds that d(P, I
β
d ) < ∞.

If P is even, then we choose R ∈ Γ(P ) by Theorem 1 which is odd by Theorem 5.
Otherwise, we simply consider R := P . By Lemma 11 there exists S ∈ Z(d, k, α) such that

d(R, S) ≤ 3. By Corollary 13 it holds that d(S, Iα
d ) < ∞ and d(Iα

d , I
β
d ) ≤ 6 by Lemma 8.

Corollary 15. The graph Md is connected for d ≥ 3.
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Submitted.

[2] R. J. Douglas. Bounds on the number of hamiltonian circuits in the n-cube. Discrete
Math., 17:143–146, 1977.
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