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Jǐŕı Fink∗ Petr Gregor†

Abstract

The linear extension diameter of a finite poset P is the diameter of the graph on
all linear extensions of P as vertices, two of them being adjacent whenever they differ
in a single adjacent transposition. We determine the linear extension diameter of the
subposet of the Boolean lattice induced by the 1st and kth levels and describe an explicit
construction of all diametral pairs. This partially solves a question of Felsner and Massow.
The diametral pairs are obtained from minimal vertex-edge covers of so called dependency
graphs, a new concept which may be of independent interest.

1 Introduction

The linear extension graph G(P) of a finite poset P has all its linear extensions as vertices,
two of them being adjacent whenever they differ in a single adjacent transposition. Linear
extension graphs were first defined by Pruesse and Ruskey [7] who considered the problem
of generating all linear extensions of a poset P by (adjacent) transpositions; that is, finding
Hamiltonian path in G(P). An explicit study of structural properties of linear extension
graphs was started by Björner and Wachs [1] and by Reuter [8]; see also [6]. Among its
properties, let us mention that the linear extension graph of any poset is a partial cube;
that is, an isometric subgraph of a hypercube. Incomparable pairs of the poset correspond
to directions in the minimal hypercube into which the linear extension graph isometrically
embeds.

The linear extension diameter of a finite poset P, denoted by led(P), is the diameter of
G(P). It equals the maximum number of pairs of P that appear in a reversed order in two
linear extensions of P. In other words, it is the maximum number of incomparable pairs in
a 2-dimensional extension of P. The linear extension diameter was introduced by Felsner
and Reuter [4] who investigated its relation to other poset parameters such as height, width,
fractional dimension and other properties. They also conjectured that the linear extension
diameter of the Boolean lattice is

led(Bn) = 22n−2 − (n+ 1)2n−2. (1)

Felsner and Massow [3] proved this conjecture by an (elegant) combinatorial argument and
characterized all diametral pairs of linear extensions of Bn. They are formed by a reversed
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lexicographical order with respect to some permutation σ of atoms (shortly σ-revlex) and a σ-
revlex order where σ denotes the reverse of σ. Moreover, they extended this characterization
to a more general class of downset lattices of 2-dimensional posets.

Brightwell and Massow [2] show that determining the linear extension diameter of a given
poset is NP-complete problem. Interestingly, diametral pairs can be used to obtain optimal
drawings of the poset [3]. For further properties of linear extension graphs and the linear
extension diameter the interested reader is referred to a dissertation of Massow [5] and the
references within.

In this paper we determine the linear extension diameter of the subposet B1,kn of the
Boolean lattice Bn induced by the 1st and kth levels and we describe an explicit construction
of all diametral pairs of linear extensions. This partially solves a question of Felsner and
Massow [3] on diametral pairs of subposets of the Boolean lattice induced by two levels.

Theorem 1. For every 1 < k ≤ n,

led(B1,kn ) =

((n
k

)
2

)
+ 2

(
n

k + 1

)
+

(
n

2

)
−

n−2∑
i=k

i≡n (mod 2)

(
i

k

)
.

Almost all diametral pairs are formed by two linear extensions that reverse all pairs of
atoms, all pairs of k-sets and certain pairs of an atom and a k-set that correspond to a
minimal vertex cover of so called dependency graph, which is defined below. For a precise
characterization of diametral pairs see Theorems 17 and 19. Our approach in fact allows to
determine the maximal distance between two linear extensions with fixed orders of atoms in
terms of the minimal size of a vertex cover of the respective dependency graph. The concept
of dependency graphs is new, as far as we know, and may be of independent interest.

2 Preliminaries

The distance d(L1, L2) between two linear extensions L1, L2 in the linear extension graph
G(P) of a finite poset P equals the number of pairs of elements of P that appear in L1 and
L2 in a reversed order. Such pair is called a reversal (or a reversed pair). Clearly, a reversal
can be only an incomparable pair of P.

The poset B1,kn where 1 < k ≤ n consists of all singletons (called atoms) and k-sets over

[n] = {1, . . . , n}, ordered by inclusion. Every automorphism of B1,kn is obtained as a (unique)
extension of some permutation of atoms. Note that in general, an automorphism of P leads to
an automorphism of G(P). We use letters S, T, . . . to denote subsets of [n] whereas u, v, . . .
denotes the elements from [n]. For ease of notation, let us write k-sets of [n] compactly; for
example {u, v, w} as uvw. (Thus, uv represents the 2-set {u, v} whereas {u, v} represents the
pair {{u}, {v}} of atoms.)

For a permutation σ of [n] we write u <σ v if u is before v in σ; that is, σ−1(u) < σ−1(v).
For a set S ⊆ [n] let maxσ(S) denote the maximum in S with respect to <σ. Analogously we
define minσ(S). Furthermore, let σ denote the reverse of σ and let inv(σ) be the number of
inversions in σ. For example, for σ = 2341 we have 3 <σ 1, σ = 1432, and inv(σ) = 3.

Let Lkn(σ) for 1 < k ≤ n and a permutation σ of [n] be the set of all linear extensions of

B1,kn with the order of atoms preserving the relation <σ. Note that the indices k and n may
be omitted whenever they are clear from the context. When looking for a diametral pair of
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linear extensions L1, L2 in G(B1,kn ), we may assume without loss of generality that L1 ∈ L(id)
where id denotes the identity permutation. All other diametral pairs can be obtained by
automorphisms of B1,kn .

Let σ be a fixed permutation of [n], 1 < k ≤ n, L1 ∈ Lkn(id), and L2 ∈ Lkn(σ). The order
in L1 and L2 is denoted by <L1 and <L2 , respectively. Clearly, the number of pairs of atoms
reversed in L1, L2 is inv(σ), the number of inversions in σ. For a k-set S and an atom u /∈ S,
the pair {S, u} is said to be

• free in L(σ) if u >σ v for every v ∈ S; otherwise, it is fixed in L(σ),

• reversible if it is free in L(σ) or in L(id); otherwise it is nonreversible.

• simple if it is free both in L(σ) and in L(id); otherwise it is nonsimple.

For example, for σ = 2341 and k = 2 the pair {23, 1} is free in L(σ) and fixed in L(id);
hence it is reversible and nonsimple. The pair {34, 2} is fixed both in L(σ) and L(id); hence
it is nonreversible. The pair {23, 4} is free both in L(σ) and L(id); hence it is reversible and
simple.

If {S, u} is free in L(σ), there exists L ∈ L(σ) such that S <L u; otherwise, u <L S for
every L ∈ L(σ). If {S, u} is not reversible, then {S, u} cannot be reversed in any pair of linear
extensions L1 ∈ L(id), L2 ∈ L(σ). Clearly {S, u} is simple if and only if u >id v and u >σ v
for every v ∈ S. Let s(σ) denote the number of simple pairs with respect to σ. Clearly, the
number of all reversible pairs is

2

(
n

k + 1

)
− s(σ).

Indeed, every (k + 1)-set T corresponds to reversible pairs {T \ {maxid(T )},maxid(T )} and
{T \ {maxσ(T )},maxσ(T )}, which are distinct if and only if they are nonsimple.

Ideally, for a given permutation σ we would like to find a pair of linear extensions L1 ∈
L(id), L2 ∈ L(σ) such that every pair of k-sets and every reversible pair (of an atom and a
k-set) is reversed in L1, L2; that is, we would like d(L1, L2) = inc(σ) where

inc(σ) =

((n
k

)
2

)
+ 2

(
n

k + 1

)
+ inv(σ)− s(σ)

is the number of incomparable pairs in the intersection poset of all linear extensions from
L(id) or L(σ). However, we will see in the next section that by Proposition 3, this is possible
only if the dependency graph G(σ) has no edge; that is, k = n or, k = n− 1 and σ(n) 6= n.

In general, we study how close to inc(σ) we can get. Therefore, we define the following
number of not reversed pairs in L1, L2, called deficiency :

nr(L1, L2) = nrk,k(L1, L2) + nr1,k(L1, L2) + nrs1,k(L1, L2) where (2)

• nrk,k(L1, L2) is the number of pairs of k-sets not reversed in L1, L2,

• nr1,k(L1, L2) is the number of reversible nonsimple pairs {S, u} not reversed in L1, L2,

• nrs1,k(L1, L2) is the number of reversible simple pairs {S, u} not reversed in L1, L2.

The following equality follows directly from the definitions.

Proposition 2. For every permutation σ of [n], 1 < k ≤ n, L1 ∈ Lkn(id), L2 ∈ Lkn(σ) it holds
that

d(L1, L2) =

((n
k

)
2

)
+ 2

(
n

k + 1

)
+ inv(σ)− s(σ)− nr(L1, L2).
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Figure 1: The dependency graph G2
5(id). The empty sets AS , BS are not depicted.

3 Dependency graphs

In this section we define a dependency graph for a given permutation σ of [n] and show that
its vertex cover number bounds from below the deficiency of two linear extensions L1 ∈ Lkn(id)
and L2 ∈ Lkn(σ) plus the number of simple pairs with respect to σ.

Let us fix 1 < k ≤ n and a permutation σ of [n]. For a k-set S let AS(= AidS ) and BσS be
the families of all pairs {S, u} that are free in L(id), respectively in L(σ). That is,

AS = {{S, u}; u >id v for every v ∈ S}, BσS = {{S, u}; u >σ v for every v ∈ S}. (3)

Note that AS and BσS can be both empty as

|AS | = n−maxid(S), |BσS | = n− σ−1(maxσ(S)). (4)

Let CσS be the complete bipartite graph on vertex sets AS and BσS as bipartite classes. The
index σ in BσS and CσS is omitted whenever it is clear from the context. Note our abuse of
notation since AS∩BS may be nonempty, but when AS and BS are regarded as sets of vertices
of CS , they are considered to be disjoint. More precisely, {S, u} ∈ AS∩BS if and only if {S, u}
is simple, but we distinguish the copies of a simple pair {S, u} as distinct vertices in AS and
BS . The edge between these copies is called a simple edge.

Let A =
⋃
S∈([n]

k )AS and B =
⋃
S∈([n]

k ) BS . The dependency graph Gkn(σ) of σ is a (bipar-

tite) graph on vertices of A and B defined by

Gkn(σ) =
⋃

S∈([n]
k )

CσS .

Note that the indices k and n may be omitted whenever they are clear from the context. See
Figure 1 for an example of the dependency graph G2

5(id).
Note that G(σ) has no edge if and only if AS = ∅ or BS = ∅ for every k-set S ⊆ [n]. Since

AS = ∅ if and only if n ∈ S and BS = ∅ if and only if σ(n) ∈ S by (4), this is equivalent to
k = n or, k = n− 1 and σ(n) 6= n.

The edges of G(σ) have the following interpretation, called dependency.

Proposition 3. Let σ be a permutation of [n], 1 < k ≤ n, L1 ∈ Lkn(id), and L2 ∈ Lkn(σ). For
every edge of Gkn(σ) between {S, u} ∈ AS and {S, v} ∈ BS, if there is a k-set T containing u
and v such that {S, T} is reversed in L1, L2, then u <L1 S or v <L2 S.

Proof. Suppose that {S, T} is reversed, S <L1 u and S <L2 v. Since u <L1 T and v <L2 T ,
it follows that S is before T in both L1 and L2, a contradiction.
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Recall that a vertex cover of a graph G is a set of vertices covering every edge of G. The
vertex cover number α(G) of the graph G is the minimum size of a vertex cover of G. In the
first part towards the proof of Theorem 1 we show that the vertex cover number of Gkn(σ)
bounds from below the deficiency of two linear extensions L1 ∈ Lkn(id), L2 ∈ Lkn(σ) plus the
number of simple pairs with respect to σ.

Lemma 4. For every permutation σ of [n], 1 < k ≤ n, L1 ∈ Lkn(id), L2 ∈ Lkn(σ), the
dependency graph Gkn(σ) has a vertex cover of size at most nr(L1, L2) + s(σ).

Proof. We start with the following sets of vertices of G(σ) (regarded as disjoint):

VA = {{S, u} ∈ A; u <L1 S}, VB = {{S, u} ∈ B; u <L2 S}.

If {S, u} ∈ A is nonsimple, then it is fixed in L(σ), so u <L2 S. Similarly, if {S, u} ∈ B is
nonsimple, then it is fixed in L(id), so u <L1 S. Hence,

|{{S, u} ∈ VA; {S, u} nonsimple}|+ |{{S, u} ∈ VB; {S, u} nonsimple}| = nr1,k(L1, L2). (5)

To ensure that every simple edge is covered, we put

V ′A = VA ∪ {{S, u} ∈ A; {S, u} is simple, {S, u} /∈ VA and {S, u} /∈ VB}.

If a simple {S, u} belongs to both V ′A and VB, then it is not reversed in L1, L2. Hence,

|{{S, u} ∈ V ′A; {S, u} simple}|+ |{{S, u} ∈ VB; {S, u} simple}| ≤ nrs1,k(L1, L2) + s(σ). (6)

Now, which edges of G(σ) are covered by V ′A ∪ VB?

a) Every simple edge is covered.

b) By Proposition 3, an edge between {S, u} ∈ A and {S, v} ∈ B is covered if there is a
k-set T containing u and v such that {S, T} is reversed.

c) For simple pairs {S, u}, {S, v} with u 6= v, at least one of the two edges between
{S, u} ∈ A and {S, v} ∈ B, and between {S, v} ∈ A and {S, u} ∈ B is covered because
these four vertices induce K2,2 in CS and both its simple edges are covered by a).

Therefore, for every uncovered edge between {S, u} ∈ A and {S, v} ∈ B we may assign a k-set
T containing u and v such that {S, T} is not reversed. Specifically, we put T = S′ ∪ {u, v}
where S′ ⊆ S consists of the k − 2 least elements in S. Note that the pair {S, T} cannot be
assigned to any other uncovered edge. This implies that the number of edges uncovered by
V ′A ∪ VB is at most nrk,k(L1, L2).

It remains to add the vertex from B of each uncovered edge to VB, so we get a new set V ′B.
Finally, from (2), (5), (6) we conclude that the vertices of V ′A with V ′B form a vertex cover of
G(σ) of size at most nr(L1, L2) + s(σ).

From Proposition 2 and Lemma 4 we obtain the following upper bound.

Corollary 5. For every permutation σ of [n], 1 < k ≤ n, L1 ∈ Lkn(id), and L2 ∈ Lkn(σ) it
holds that

d(L1, L2) ≤
((n

k

)
2

)
+ 2

(
n

k + 1

)
+ inv(σ)− α(Gkn(σ)).
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4 Tight construction

In this section we finish the proof of Theorem 1. The next lemma shows that the bound from
Corollary 5 is attained by some pair of linear extensions L1 ∈ Lkn(id), L2 ∈ Lkn(σ). Hence, it
gives us the maximal distance between two linear extensions with fixed order of atoms. Then
we show that maximum over all permutations σ of [n] is attained only by σ = id. Finally, we
give an explicit formula for α(Gkn(id)).

For a linear extension L of B1,kn and i ∈ [n], the set of positions in L between the ith atom
(in the order <L) and the next atom is called the ith slot. The last slot of L is the nth slot;
that is, the set of positions after the last atom in L.

Lemma 6. For every permutation σ of [n], 1 < k ≤ n, there exists L1 ∈ Lkn(id), L2 ∈ Lkn(σ)
such that

d(L1, L2) =

((n
k

)
2

)
+ 2

(
n

k + 1

)
+ inv(σ)− α(Gkn(σ)).

Proof. By the definition of G(σ) we have

α(G(σ)) =
∑

S∈([n]
k )

min(|AS |, |BS |).

To construct the desired extensions L1 ∈ L(id), L2 ∈ L(σ), we first decide for each k-set S
into which slot it is placed in L1 and in L2. Our aim is to reverse all free pairs {S, u} in a
larger bipartite class of CS . (If |AS | = |BS | we choose the class AS .) For this purpose, we put
S into the smallest slot possible in one extension and into the last slot of the other extension.
Namely, for

i = maxid(S) = n− |AS |, j = σ−1(maxσ(S)) = n− |BS |,

• if i ≤ j, we put S into the ith slot in L1 and into the last slot in L2;

• if i > j, we put S into the jth slot in L2 and into the last slot in L1.

Now, if |AS | ≥ |BS |, then every pair {S, u} ∈ AS is reversed since S <L1 u and u <L2 S,
and every nonsimple pair {S, v} ∈ BS is not reversed since v <L1 S as {S, v} is fixed in L(id)
and v <L2 S. The case |AS | < |BS | is analogous. In either way, all simple pairs are reversed,
so nrs1,k(L1, L2) = 0. Recall that {S, u} is simple if and only if {S, u} ∈ AS ∩ BS . Hence,
the number of simple pairs plus nonsimple not reversed pairs {S, u} for some u is precisely
min(|AS |, |BS |). Altogether for all k-sets S,

nr1,k(L1, L2) + s(σ) = α(G(σ)). (7)

It remains to show that by a proper ordering within slots of L1, L2, we reverse all pairs
of k-sets.

1. If distinct k-sets are not together in a last slot of the same linear extension, then they
are already reversed. Thus, in all but last slots we may choose an arbitrary order.

2. Let Z be the family of all k-sets that are in last slots of both linear extensions; that is,

Z =

{
S ∈

(
[n]

k

)
; {n = maxid([n]),maxσ([n])} ⊆ S

}
,
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and let Z1 and Z2 be the families of remaining k-sets in the last slots of L1 and L2,
respectively. First, we arbitrarily order Z in the last slot of L1 so that Z precedes Z1.
Then we order Z reversely (than in L1) in the last slot of L2 so that Z precedes Z2.
See the example below.

3. Finally, we order Z1 in the last slots of L1 reversely than it appears in L2. Analogously,
we order Z2 in the last slots of L2 reversely than it appears in L1.

Since nrk,k(L1, L2) = 0 and nrs1,k(L1, L2) = 0, it follows from Proposition 2 that

d(L1, L2) =

((n
k

)
2

)
+ 2

(
n

k + 1

)
+ inv(σ)− s(σ)− nr1,k(L1, L2)

so the statement follows from (7).

Note that the constructed linear extensions are not unique. For example, for σ = 2341
and k = 2 we have Z = {14}, Z1 = {23, 24, 34}, Z2 = {12, 13} and the above construction
yields to pairs L1 = (1, 2, 12, 3, 13, 4, 14, 34, 24, 23), L2 = (2, 3, 23, 4, 24, 34, 1, 14, 13, 12) or
L1 = (1, 2, 12, 3, 13, 4, 14, 24, 34, 23), L2 = (2, 3, 23, 4, 34, 24, 1, 14, 13, 12).

By Corollary 5 and Lemma 6, to determine the linear extension diameter of B1,kn it only
remains to find the maximal value of inv(σ)− α(Gkn(σ)) over all permutations σ of [n]. The
last piece of proof of Theorem 1 shows that the maximum is attained by the reversed identity.

Lemma 7. For every 1 < k ≤ n, inv(σ)− α(Gkn(σ)) is maximized (only) for σ = id.

Proof. For every permutation σ of [n] there is a sequence σ = σ1, σ2, . . . , σp = id of permuta-
tions such that σi and σi+1 differ by an adjacent transposition and inv(σi+1) = inv(σi) + 1.
It suffices to show that α(G(σi+1)) ≤ α(G(σi)) for every 1 ≤ i < p.

Let x < y be the two adjacent atoms in which σi and σi+1 differ. Since inv(σi+1) =
inv(σi) + 1, we have x <σi y and y <σi+1 x. Recall that |AS | = n − maxid(S), |BσS | =
n− σ−1(maxσ(S)) and

α(G(σ)) =
∑

S∈([n]
k )

min(|AS |, |BσS |).

By the definition (3) of BσS , for every k-set S it holds that

Bσi+1

S =


BσiS ∪ {{S, x}} if x /∈ S and y = maxσi(S),

BσiS \ {{S, y}} if x = maxσi(S) and y /∈ S,
BσiS otherwise.

(8)

It follows that α(Cσi+1

S ) = min(|AS |, |Bσi+1

S |) differs from α(CσiS ) by at most 1. To conclude
the proof, we claim for every k-set S with x /∈ S and y = maxσi(S) that

if α(Cσi+1

S ) = α(CσiS ) + 1, then α(Cσi+1

T ) = α(CσiT )− 1 for the k-set T = (S ∪ {x}) \ {y}; (9)

that is, an increase of the minimum vertex cover in one component is compensated by a
decrease in another (unique) component. From (9) it follows that α(G(σi+1)) ≤ α(G(σi)).

To prove the claim (9), assume that α(Cσi+1

S ) = α(CσiS ) + 1 for a k-set S with x /∈ S and
y = maxσi(S). Note that x = maxσi(T ) and y /∈ T for the k-set T = (S ∪ {x}) \ {y}, so
|Bσi+1

S | = |BσiS |+ 1 and |Bσi+1

T | = |BσiT | − 1 by (8). Thus, we have

|Bσi+1

T | = |BσiS | < |AS | = n−max(S) ≤ n−max(T ) = |AT |.
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The first equality holds since σ−1i (y) = σ−1i+1(x), the strict inequality holds since BσiS is the
smaller class of CσiS , the last inequality holds since x < y. Hence, Bσi+1

T is the smaller class of
Cσi+1

T , and therefore (9) holds.

From Corollary 5, Lemma 6 and Lemma 7 we obtain the exact value of the linear extension
diameter of B1,kn . Let us write shortly αkn = α(Gkn(id)).

Corollary 8. For every 1 < k ≤ n,

led(B1,kn ) =

((n
k

)
2

)
+ 2

(
n

k + 1

)
+

(
n

2

)
− αkn.

That is, led(B1,kn ) = inc(id)−αkn. The value of αkn can be expressed recursively as follows.

Lemma 9. For every 1 < k ≤ n, it holds αkk = αkk+1 = 0 and αkn+2 = αkn +
(
n
k

)
. Hence,

αkn =

n−2∑
i=k

i≡n (mod 2)

(
i

k

)
.

Proof. Gkk(id) is empty and Gkk+1(id) is edgeless, so αkk = αkk+1 = 0. In order to calculate the

difference αkn+2 − αkn, let us assume that the ground set [n] is extended by elements 0 and

n + 1. We consider the graph CS in Gkn+2(id) for each k-set S ∈
({0,...,n+1}

k

)
. If S contains 0

or n+ 1, then BS or AS , respectively, is empty.
Otherwise; S ∈

([n]
k

)
, the class AS is extended by the vertex {S, n+ 1}, and the class BS

is extended by the vertex {S, 0}. Thus, the minimal vertex cover of CS increments exactly
by 1 in Gkn+2(id) compared to Gkn(id). Hence we establish the recurrence αkn+2 − αkn =

(
n
k

)
,

which leads to the explicit formula.

Now, Theorem 1 follows from Corollary 8 and Lemma 9. For k = 2, 3, 4 we obtain the
following formulas for αkn and led(B1,kn ).

k αk
n

led(B1,kn )

2 1
48 (4n3 − 18n2 + 20n− 3 + 3(−1)n)

1
16 (2n4 − 4n2 + 1− (−1)n)

3 1
96 (2n4 − 16n3 + 40n2 − 32n+ 3− 3(−1)n)

1
288 (4n6 − 24n5 + 70n4 − 168n3 + 376n2 − 240n− 9 + 9(−1)n)

4 1
960 (4n5 − 50n4 + 220n3 − 400n2 + 256n− 15 + 15(−1)n)

1
5760 (5n8 − 60n7 + 290n6 − 648n5 + 185n4 + 2100n3 − 660n2 − 1392n+ 90− 90(−1)n)

5 Diametral linear extensions

Recall that for diametral linear extensions L1, L2 of B1,kn we may assume L1 ∈ Lkn(id). All

other diametral pairs are obtained by automorphisms of B1,kn . From previous sections we know
that linear extensions L1 ∈ Lkn(id) and L2 of B1,kn are diametral if and only if L2 ∈ Lkn(id) and
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nr(L1, L2) = αkn. In this section we describe an explicit construction of all diametral pairs of
linear extensions, see Theorem 17. The case k = 2 is stated separately in Theorem 19.

We start with two additional properties of dependency graphs, in particular of Gkn(id).

Proposition 10. Let σ be a permutation of [n], 1 < k ≤ n. If there is an edge between {S, u}
and {S, v} in Gkn(σ), then no vertex {T, x} with x ∈ S and T containing u and v is in Gkn(σ).

Proof. Assume that {S, u} ∈ AS and {S, v} ∈ BS ; that is, u >id x and v >σ x for every
x ∈ S. Hence by (3), {T, x} /∈ AT if T contains u, and {T, x} /∈ BT if T contains v.

To each edge of Gkn(id) where 1 < k ≤ n we assign the following pairs of k-sets called a
dependency family. Assume that an edge e joins vertices {S, u} and {S, v}, then

D(e) = {{S, S′ ∪ {u, v}}; S′ ⊂ S, |S′| = k − 2}. (10)

By Proposition 3, for every edge e of Gkn(id) between {S, u} ∈ AS and {S, v} ∈ BS , if S <L1 u
and S <L2 v for linear extensions L1 ∈ Lkn(id), L2 ∈ Lkn(id), then every pair of k-sets in D(e)
is unreversed in L1, L2. Another key property of dependency families is as follows.

Proposition 11. The dependency families of edges of Gkn(id) where 1 < k ≤ n are pairwise
disjoint.

Proof. First, consider distinct edges e = {{S, u}, {S, v}}, e′ = {{S, u′}, {S, v′}} from the same
component CS of Gkn(id). Since there are no simple pairs for σ = id, we have {u, v} 6= {u′, v′}.
Moreover, none of u, u′, v, v′ is in S. Hence it follows from (10) that D(e) and D(e′) are
disjoint.

Second, suppose that {S, T} ∈ D(e) ∩ D(e′) for some edges e = {{S, u}, {S, v}}, e′ =
{{T, u′}, {T, v′}} from distinct components CS and CT . Then by (10), {u, v} ⊆ T and {u′, v′} ⊆
S which contradicts Proposition 10.

A vertex-edge cover of a graph G = (V,E) is a pair (A,B) where A ⊆ V , B ⊆ E such
that every edge not in B has a vertex in A. Its size is |A| + |B|. A minimal vertex-edge
cover is a vertex-edge cover of minimal size. Observe that complete bipartite graphs are more
efficiently covered by vertices than edges, except K1,1 which has a minimal cover by a single
vertex or by a single edge.

Observation 12. Every minimal vertex-edge cover of Kn,m where n,m ≥ 1 is a vertex cover
unless n = m = 1.

We have seen in the proof of Lemma 4 that unreversed pairs that contribute to nr(L1, L2)
are related to vertex-edge covers of Gkn(σ). For precise description we need to consider vertex-
edge covers of Gkn(id) more carefully for the case k = 2.

Observation 13. G2
2(id) is empty, G2

3(id) is edgeless, and for n ≥ 4 the only component of
G2
n(id) isomorphic to K1,1, is the component C2(n−1).

The next lemma shows that diametral linear extensions have all pairs of k-sets reversed,
up to one exception for k = 2.

Lemma 14. Let 1 < k ≤ n, L1 ∈ Lkn(id), L2 ∈ Lkn(id) such that a pair {A,B} of k-sets is not
reversed in L1, L2. Then nr(L1, L2) > αkn unless k = 2, n ≥ 4, and {A,B} = {2(n− 1), 1n}.
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Proof. First, recall that for σ = id there are no simple pairs. Similarly as in (5), for (disjoint)
sets of vertices

VA = {{S, u} ∈ A; u <L1 S}, VB = {{S, u} ∈ B; u <L2 S}

we have |VA| + |VB| = nr1,k(L1, L2). If VA ∪ VB covers G(id), then |VA| + |VB| ≥ αkn. Since
nrk,k(L1, L2) ≥ 1 by the assumption of the lemma, we obtain

nr(L1, L2) = nrk,k(L1, L2) + nr1,k(L1, L2) > αkn.

Otherwise, let U 6= ∅ be the set of edges of G(id) uncovered by VA ∪ VB. Since every
component of G(id) is a complete bipartite graph, (VA ∪ VB, U) is a vertex-edge cover of
G(id) and αkn is the minimal size of a vertex cover of G(id), we have |VA| + |VB| + |U | ≥ αkn
by Observation 12. By Proposition 3, every pair of k-sets in the dependency family D(e)
of each edge e from U is not reversed in L1, L2. Since dependency families are disjoint by
Proposition 11, we have

nrk,k(L1, L2) ≥
∑
e∈U
|D(e)|.

We distinguish two cases regarding k. If k ≥ 3, then |D(e)| ≥ 3 for every edge e by (10).
Consequently, nrk,k(L1, L2) ≥ 3|U | > |U | since U 6= ∅. Therefore,

nr(L1, L2) = nr1,k(L1, L2) + nrk,k(L1, L2) > |VA|+ |VB|+ |U | ≥ αkn.

If k = 2, then |D(e)| = 1 for every edge e, so nrk,k(L1, L2) ≥ |U |. If there is an un-
covered edge e ∈ U in some component CS 6' K1,1, then by Observation 12, the restriction
of the vertex-edge cover (VA ∪ VB, U) on the component CS is of size greater than α(CS).
Consequently,

nr(L1, L2) = nr1,k(L1, L2) + nrk,k(L1, L2) ≥ |VA|+ |VB|+ |U | > αkn.

By Observation 13, the only remaining case is when U contains exactly the edge e′ from the
component C2(n−1) ' K1,1. Since D(e′) = {{2(n− 1), 1n}}, this is the exceptional case in the
statement.

Every minimal vertex cover of Gkn(id) consists of minimal bipartite classes of each compo-
nent CS . Note that if |AS | = |BS | 6= 0 for some k-set S, a minimal vertex cover of Gkn(id) is
not unique. Let V be a minimal vertex cover of Gkn(id). Two linear extensions L1 ∈ Lkn(id),
L2 ∈ Lkn(id) are said to be V -compatible if for every k-set S,

a) S is in the ith slot in L1 and in the last slot in L2 if BS ⊆ V ,

b) S is in the jth slot in L2 and in the last slot in L1 if AS ⊆ V ,

c) all pairs of k-sets are reversed in L1, L2,

where i = max(S) = n−|AS |, j = n−min(S)+1 = n−|BS |. Note that if AS = BS = ∅, then
i = j = n, so the slots for S are correctly defined. An alternative definition of V -compatible
extensions is as follows.
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Proposition 15. Let 1 < k ≤ n and V be a minimal vertex cover of Gkn(id). Then L1 ∈
Lkn(id), L2 ∈ Lkn(id) are V -compatible if and only if VA∪VB = V and nrk,k(L1, L2) = 0 where

VA = {{S, u} ∈ A; u <L1 S}, VB = {{S, u} ∈ B; u <L2 S}. (11)

Proof. Assume VA ∪ VB = V . Thus, for every k-set S, AS ∩ VA = ∅ and BS ⊆ VB if BS ⊆ V ,
and BS ∩ VB = ∅ and AS ⊆ VA if AS ⊆ V . Equivalently by (11),

• S <L1 u for every {S, u} ∈ AS and u <L2 S for every {S, u} ∈ BS if BS ⊆ V ,

• S <L2 u for every {S, u} ∈ BS and u <L1 S for every {S, u} ∈ AS if AS ⊆ V .

In particular,

• max(S) <L1 S <L1 max(S) + 1 and 1 <L2 S if BS ⊆ V ,

• min(S) <L2 S <L2 min(S)− 1 and n <L1 S if AS ⊆ V .

That is, a) and b) holds. Since nrk,k(L1, L2) = 0 is equivalent to c), we obtain that L1, L2

are V -compatible. The other implication follows straightforwardly from the definition.

An example of V -compatible linear extensions for the minimal vertex cover V with BS ⊆
V whenever |AS | = |BS | is constructed in Lemma 6. For n = 4 we obtain for instance
L1 = (1, 2, 12, 3, 13, 23, 4, 14, 24, 34) and L2 = (4, 3, 34, 2, 24, 1, 14, 23, 13, 12).

For two linear extensions L1, L2 of B1,k
n let Z(L1, L2), Z1(L1, L2), and Z2(L1, L2) be the

families of k-sets that are in the last slots both in L1 and L2, in the last slot only in L1, and
in the last slot only in L2, respectively.

Proposition 16. Let L1, L2 be linear extensions of B1,k
n , 1 < k ≤ n. If nrk,k(L1, L2) = 0

then S <L1 T1 and S <L2 T2 for every S ∈ Z(L1, L2), T1 ∈ Z1(L1, L2), and T2 ∈ Z2(L1, L2).

Proof. We have T1 <L2 S and T2 <L1 S since T1 is not in the last slot of L2 and T2 is not in
the last slot of T1. Since both {S, T1} and {S, T2} are reversed, the statement follows.

It follows that all V -compatible pairs L1, L2 for a given minimal vertex cover V of Gkn(id)
can be obtained by ordering k-sets in slots as described by steps 1.– 3. in the construction in
Lemma 6 for σ = id. Note that there are two degrees of freedom in the construction:

i) the order of k-sets in each but last slot in L1 or L2,

ii) the order of Z(L1, L2) in the last slot of L1.

Theorem 17. Linear extensions L1 ∈ Lkn(id), L2 of B1,kn for 2 < k ≤ n are diametral if
and only if they are V -compatible for some minimal vertex cover V of the dependency graph
Gkn(id). All other diametral linear extensions are obtained by automorphisms of B1,k

n .

Proof. The sufficiency follows from nr(L1, L2) = αkn and L2 ∈ L(id) for every V -compatible
L1, L2 since nr1,k(L1, L2) = |VA ∪VB| = |V | = αkn by Proposition 15 and nrk,k(L1, L2) = 0 by
c). The necessity follows from Lemma 14 and Proposition 15 since diametral extensions L1 ∈
L(id), L2 ∈ L(id) have nrk,k(L1, L2) = 0 and nr1,k(L1, L2) = αkn, so they have VA ∪ VB = V

for some minimal vertex cover V of Gkn(id). Automorphisms of B1,k
n only allow an arbitrary

order of atoms in L1.
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For k = 2 and n ≥ 4 we have additional diametral pairs obtained from an additional
minimal vertex-edge cover of G2

n(id). Let V be a minimal vertex cover of G2
n(id) where

n ≥ 4. We say that L1 ∈ L2n(id), L2 ∈ L2n(id) are V -almost compatible if for every 2-set S
except 2(n− 1),

a) S is in the ith slot in L1 and in the last slot in L2 if BS ⊆ V ,

b) S is in the jth slot in L2 and in the last slot in L1 if AS ⊆ V ,

c) 2(n− 1) is in the (n− 1)th slot both in L1 and in L2,

d) all pairs of 2-sets except {2(n− 1), 1n} are reversed in L1, L2,

where i = max(S) = n− |AS |, j = n−min(S) + 1 = n− |BS |. Note that for k = 2 we have
Z(L1, L2) = {1n}, so c) does not contradict d). Similarly as above, we have the following
equivalent definition.

Proposition 18. Let n ≥ 4 and V be a minimal vertex cover of G2
n(id). Then L1 ∈ L2n(id),

L2 ∈ L2n(id) are V -almost compatible if and only if VA∪VB = V \V (C2(n−1)) and {2(n−1), 1n}
is the only pair of 2-sets unreversed in L1, L2 where

VA = {{S, u} ∈ A; u <L1 S}, VB = {{S, u} ∈ B; u <L2 S}.

Proof. Similar to the proof of Proposition 15, omitted.

An example of V -almost compatible pair for n = 4 is L1 = (1, 2, 12, 3, 13, 23, 4, 14, 24, 34),
L2 = (4, 3, 34, 2, 24, 23, 1, 14, 13, 12). Note that d) implies that 2(n−1) is last in the (n−1)th
slot in both L1, L2. Every V -almost compatible pair can be obtained from some V -compatible
pair by moving 2(n− 1) to last positions in the (n− 1)th slots in both linear extensions.

It is remarkable that in the above example the order in L1, L2 is in fact σ-reversed
lexicographical and σ-reversed lexicographical, respectively, where σ = id. However, it turns
out that this is possible only for n ≤ 4.

Theorem 19. Linear extensions L1 ∈ L2n(id), L2 of B1,2n for n ≥ 2 are diametral if and only
if they are V -compatible or V -almost compatible for some minimal vertex cover V of G2

n(id).
All other diametral linear extensions are obtained by automorphisms of B1,2

n .

Proof. The sufficiency follows from nr(L1, L2) = α2
n and L2 ∈ L(id) for every V -compatible or

V -almost compatible L1, L2. The case of V -compatible L1, L2 is the same as in Theorem 17.
For V -almost compatible L1, L2 we have nr1,2(L1, L2) = |VA∪VB| = α2

n−1 and nr2,2(L1, L2) =
1 by Proposition 18.

The necessity follows from Lemma 14 and Propositions 15 and 18 since diametral exten-
sions L1 ∈ L(id), L2 ∈ L(id) have nr2,2(L1, L2) = 0 and nr1,2(L1, L2) = α2

n, or nr2,2(L1, L2) =
1 with unreversed {2(n− 1), 1n} and nr1,2(L1, L2) = α2

n − 1. The first case is the same as in
Theorem 17. In the latter case, (VA∪VB, {{2(n− 1), 1}, {2(n− 1), n}}) is a vertex-edge cover
of G(id) of size α2

n. It follows that VA ∪ VB = V \ V (C2(n−1)) for some minimal vertex cover

V of G2
n(id). Automorphisms of B1,2

n only allow an arbitrary order of atoms in L1.

One may ask whether a given linear extension can be in more than one diametral pair.
It turns out from the constructions of V -compatible and V -almost compatible pairs that the
answer is negative up to k = 2, n ≥ 4 and a linear extension L1 that is V -compatible with
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some L2 and has 2(n− 1) on the last position in the (n− 1)th slot. In this case L1 is almost
V -compatible with L′2 obtained from L2 by moving 2(n−1) to the last position in the (n−1)th
slot. See the above examples of V -compatible and V -almost compatible pairs.
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