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Abstract

A fault-free path in the n-dimensional hypercube Qn with f faulty vertices is said to be

long if it has length at least 2n

− 2f − 2. Similarly, a fault-free cycle in Qn is long if it has

length at least 2n

− 2f . If all faulty vertices are from the same bipartite class of Qn, such

length is the best possible. We show that for every set of at most 2n− 4 faulty vertices in Qn

and every two fault-free vertices u and v satisfying a simple necessary condition on neighbors

of u and v, there exists a long fault-free path between u and v. This number of faulty vertices

is tight and improves the previously known results. Furthermore, we show for every set of at

most n2/10 + n/2 + 1 faulty vertices in Qn where n ≥ 15 that Qn has a long fault-free cycle.

This is a first quadratic bound, which is known to be asymptotically optimal.

1 Introduction

The n-dimensional hypercube Qn is a (bipartite) graph with all binary vectors of length n as
vertices and with edges joining every two vertices that differ in exactly one coordinate. The
application of hypercubes as interconnection networks inspired many questions related to their
fault-tolerance. In particular, in this paper we consider a problem of long fault-free cycles and
long fault-free paths between two given vertices in hypercubes in which some vertices are faulty.

This problem is sometimes considered in a more general setting also with faulty edges, not
only vertices. Assume that we have fv faulty vertices and fe faulty edges in Qn. A path or a
cycle in Qn is said to be fault-free if it contains no faulty vertex and no faulty edge. Furthermore,
a cycle in Qn is long if it has length at least 2n − 2fv. Similarly, a path in Qn is long if it has
length at least 2n − 2fv − 2. Note that every long path between vertices u and v has length at
least 2n − 2fv − 1 if d(u, v) is odd, where d(u, v) is the distance between u and v. Furthermore,
if all faulty vertices belong to the same bipartite class of Qn, then every long fault-free cycle and
long fault-free path is the longest possible. In this view, the problem of long fault-free cycles and
paths is a relaxation of a substantially more difficult problem of Hamiltonian cycles and paths in
hypercubes with balanced faulty vertices in the sense that in the former problem we are allowed
to choose another up to fv vertices that will be avoided (see e.g. [4] for some references on the
latter problem).

As far as we know, the problem of long fault-free cycles in hypercubes was first studied by Tseng
[14] who showed that such cycle in Qn exists if fv + fe ≤ n − 1, fv ≤ n − 1, and fe ≤ n − 4. This
bound was slightly improved by Sengupta [12] to fv + fe ≤ n− 1, and fv > 0 or fe ≤ n− 2. Then
it was substantially strengthened by Fu [5] to fv ≤ 2n − 4 (and fe = 0), and further naturally
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generalized by Hsieh [7] to fv + fe ≤ 2n − 4 and fe ≤ n − 2. The latest improvement due to
Castañeda and Gotchev [3] is for fv ≤ 3n − 7 (fe = 0) and n ≥ 5. Note that all these bounds are
linear in the dimension n. We provide a first quadratic bound on fv (and fe = 0), which is known
to be asymptotically optimal.

The similar problem for paths was first studied by Fu [6] who showed that there is a long
fault-free path in Qn between every two fault-free vertices if fv ≤ n − 2 (and fe = 0). Hung,
Chang, and Sun [8] showed that even a little longer path exists under similar conditions. More
precisely, there is a fault-free path in Qn of length at least 2n − 2fv between every two fault-free
vertices if fv ≤ n − 2 (fe = 0) and at least one vertex from each bipartite class is faulty.

Recently, the bound of Fu was improved by Kueng, Liang, Hsu, and Tan [10] to fv ≤ 2n − 5
(and fe = 0), but with an additional (strong) condition that every vertex has at least two fault-free
neighbors. We show for fv ≤ 2n− 4 (and fe = 0) that a much weaker condition is both necessary
and sufficient (up to one exception in Q4). We also show that our bound is tight.

Let us also mention related results on bipancyclicity and bipanconnectivity. Tsai [13] showed
that every fault-free edge and every fault-free vertex of Qn lies on a fault-free cycle of every even
length from 4 to 2n − 2fv if fv ≤ n − 2 (and fe = 0). Ma, Liu, and Pan [11] showed that if
fv +fe ≤ n−2, then Qn contains a fault-free path of length l between every two fault-free vertices
u and v for every l from d(u, v) + 2 to 2n − 2fv − 1 such that l − d(u, v) is even. There are also
many results on long fault-free cycles and paths in various modifications of hypercubes, which we
do not list here.

2 Main results

A long fault-free path between u and v in Qn with a set F of faulty vertices is shortly called an
(F, u, v)-path. An edge uv ∈ E(Qn) is fault-free if both vertices u and v are fault-free. Note that
for n ≥ 2, every long path has length at least 2 if |F | ≤ 2n − 4. A vertex u is surrounded by F if
F contains all neighbors of u. Furthermore, a triple (F, u, v) is blocked in Qn if

u is surrounded by F ∪ {v} in Qn or v is surrounded by F ∪ {u} in Qn; (1)

otherwise (F, u, v) is free in Qn. The reference to the underlying graph Qn may be omitted if it is
clear from the context. Clearly, if (F, u, v) is blocked, there is no fault-free path between u and v
of length more than 1. Thus, the triple (F, u, v) must be free for the existence of an (F, u, v)-path
if |F | ≤ 2n− 4. The following theorem shows that this necessary condition is also sufficient, up to
one exception in Q4.

Theorem 2.1. Let F be a set of at most 2n− 4 faulty vertices of Qn where n ≥ 2. For every two
fault-free vertices u and v, there exists a long fault-free path between u and v in Qn if and only if
both (1) and (2) does not hold.

On Figure 1 we have the following configuration for n = 4 and |F | = 2n − 4:

there are two vertices a and b with d(a, b) = 4 in Q4 such that

F ∪ {u, v, a, b} are the all 8 vertices of one bipartite class of Q4.
(2)

Observe in this configuration that every fault-free path between u and v has length at most 4
because the graph Q4 \ (F ∪ {u, v}) has two components and no fault-free path between u and v
can visit both components. Hence, there is no (F, u, v)-path although |F | ≤ 2n− 4 and (F, u, v) is
free. Note that there are two non-isomorphic exceptional configurations since d(u, v) can be 2 or 4.

Moreover, observe that the inequality |F | ≤ 2n−4 in Theorem 2.1 is tight for every n ≥ 4. On
Figure 2 we can see three configurations of 2n− 3 faulty vertices and two fault-free vertices u and
v in Qn such that (F, u, v) is free. Clearly, in all these configurations there is only one fault-free
path between u and v of length 1 or 2, which is not long.

We prove Theorem 2.1 by induction on the dimension n. In Section 4 we prove the base of
induction by a tedious case analysis for n ≤ 4. In Section 5 we prove the induction step. In

2



u

a

b

v

Figure 1: The exceptional configuration (2) in Q4. The crossed points represent the faulty vertices
and u, v are the prescribed endvertices for a requested long fault-free path.

u v

u

v

u

v

Figure 2: |F | = 2n − 3, n ≥ 4, and (F, u, v) is free, but there is no (F, u, v)-path.

Section 6 we prove that for a sufficiently large n, we can find a long fault-free cycle in Qn with a
quadratic number of faulty vertices.

Theorem 2.2. Let F be a set of at most n
2

10 + n

2 + 1 faulty vertices of Qn where n ≥ 15. Then
Qn contains a long fault-free cycle.

On the other hand, Koubek [9] and independently Castañeda and Gotchev [2] noticed that
for n ≥ 4 there is a set F of

(

n

2

)

− 1 faulty vertices such that Qn has no long fault-free cycle, so
Theorem 2.2 is asymptotically optimal. Such a set F can be, for example, a set consisting of all
but one vertex at distance 2 from the vertex (0, . . . , 0).

It remains an open question whether the bound given by Theorem 2.2 can be improved to meet
the upper bound of

(

n

2

)

− 2 vertices, as Castañeda and Gotchev [2] conjectured.

3 Preliminaries

The main obstacle in the proof of Theorem 2.1 are vertices surrounded by faulty vertices. In the
following auxiliary propositions we mainly show that there are only few such obstacles.

Proposition 3.1. Let F be a set of at most 2n − 3 faulty vertices in Qn where n ≥ 2. Then, at
most one vertex of Qn is surrounded by F .

Proof. Suppose on the contrary that two vertices u and v of Qn are surrounded by F . Since each
of them has n faulty neighbors, and they have at most 2 faulty neighbors in common, it follows
that |F | ≥ 2n − 2, a contradiction.

In the following proposition we show that at most one triple (F, u, v) is blocked when |F | ≤
2n − 4 and the vertex u is fixed and not surrounded by F itself.

Proposition 3.2. Let F be a set of at most 2n − 4 faulty vertices in Qn where n ≥ 2, and let
u ∈ V (Qn) be not surrounded by F . Then, (F, u, v) is blocked for at most one vertex v ∈ V (Qn).
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Proof. First, assume that u has exactly one fault-free neighbor v. Thus, u is surrounded by F ∪{v}
and not surrounded by F ∪ {w} for any other vertex w. By Proposition 3.1, no other vertex than
u is surrounded by F ∪ {v}. It follows that no vertex is surrounded by F ∪ {u}, so v is the only
vertex such that (F, u, v) is blocked.

Now assume that u has at least 2 fault-free neighbors. Thus, u is not surrounded by F ∪ {w}
for any vertex w. By Proposition 3.1, at most one vertex v is surrounded by F ∪ {u}. Therefore,
(F, u, v) is blocked for at most one vertex v.

Next, we show that at most one triple (F, u, v) is blocked when |F | ≤ 2n−5 and uv is required
to be a fault-free edge.

Proposition 3.3. Let F be a set of at most 2n − 5 faulty vertices in Qn where n ≥ 3. Then,
(F, u, v) is blocked for at most one fault-free edge uv ∈ E(Qn).

Proof. Suppose on the contrary that triples (F, u, v) and (F, u′, v′) are blocked for two fault-free
edges uv, u′v′ ∈ E(Qn). Assume that u is surrounded by F ∪{v}, and u′ is surrounded by F ∪{v′}.
Observe that u 6= u′ since v and v′ are fault-free. But then, both u and u′ are surrounded by
F ∪ {v, v′}, which contradicts Proposition 3.1.

The following proposition is useful in situations when we have a long fault-free path P in QL

and we need to find an edge aLbL on P such that there is a long fault-free path between a and b
in QR.

Proposition 3.4. Let F be a set of at most 2n − 4 faulty vertices in Qn where n ≥ 2. For every
path P in Qn, if P contains at least three fault-free edges uv such that (F, u, v) is blocked, then it
contains a fault-free edge ab such that (F, a, b) is free.

Proof. Let uv be a fault-free edge of P such that (F, u, v) is blocked, and both u and v are inner
vertices of P . Such edge exists since only two edges of P can contain an endvertex. Assume that
u is surrounded by F ∪{v}, and let w be the other neighbor of v on P . Furthermore, assume that
u′ is surrounded by F ∪ {v′} for some other fault-free edge u′v′ of P . We show that the edge vw
of P is fault-free and (F, v, w) is free.

Since both u and u′ have exactly n− 1 faulty neighbors and |F | ≤ 2n− 4, they must have two
faulty neighbors in common. Thus d(u, u′) = 2 and all faulty vertices together with v (and v′)
belong to the same bipartite class of Qn. Hence w is fault-free and moreover, v is not surrounded
by F ∪ {w}. Since u is surrounded by F ∪ {v}, it follows from Proposition 3.1 that w is not
surrounded by F ∪ {v}. Therefore, (F, v, w) is free for a fault-free edge vw of P .

In order to apply induction, we need to split the hypercube Qn with up to 2n−4 faulty vertices
into two (n − 1)-dimensional subcubes QL and QR so that both QL and QR contain at most
2n − 6 faulty vertices. This is obtained by fixing some coordinate i ∈ [n] where [n] = {1, . . . , n}.
Formally, we define the subcube Qi

L
as the subgraph of Qn induced by vertices that have 0 on the

i-th coordinate. Similarly, the subcube Qi
R

is the subgraph of Qn induced by vertices that have 1
on the i-th coordinate. The index i in Qi

L
and Qi

R
is omitted when it is clear or irrelevant. For

x ∈ V (QL), let xR be the (only) neighbor of x in QR. Similarly for x ∈ V (QR), let xL be the
(only) neighbor of x in QL.

Proposition 3.5. Let F be a set of at most 2n − 4 vertices in Qn where n ≥ 5. Then Qn can be
split into QL and QR such that both subcubes contain at most 2n− 6 faulty vertices, unless n = 5,
|F | = 6, and F consists of some vertex w ∈ V (Qn) and all his neighbors.

Proof. If |F | ≤ 1, we may split Qn arbitrarily. If 2 ≤ |F | ≤ 2n − 5, we choose two faulty vertices
and split Qn so that they are in different subcubes. Clearly, in both these cases both QL and QR

contain at most 2n − 6 faulty vertices. Now we assume that |F | = 2n − 4.
Let A be the binary |F | × n matrix with faulty vertices in its rows. Assume that Qn cannot

be split into QL and QR such that both subcubes contain at most 2n− 6 faulty vertices. That is,
each column of A contains at most one 1, or at most one 0. Without loss of generality we may
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assume that each column contains at most one 1. Thus A contains at most n 1’s. Hence A has at
most n + 1 rows as all rows are different. Since n + 1 < 2n− 4 for n ≥ 6, it follows that n = 5 and
F consists of the vertex (0, 0, . . . , 0) and all his neighbors.

Let us recall that a path between u and v is long if it has length at least 2n − 2|F | − 2.
We represent paths by sequences of vertices, i.e. (u1, u2, . . . , uk) is a path P between u1 and uk

of length |E(P )| = k − 1 if all vertices u1, . . . , uk are distinct and uiui+1 is an edge for every
i ∈ [k − 1]. This allows us to define concatenation of paths as concatenation of their sequences.
For example, if P1 is a path between u1 and v1 and P2 is a path between u2 and v2 such that P1

and P2 are vertex-disjoint and v1u2 is an edge, then (P1, P2) is a path between u1 and v2 of length
|E(P1)| + |E(P2)| + 1.

4 Long fault-free paths - small dimension

In this section we present the base of induction for Theorem 2.1. The case n = 2 is obvious since
|F | ≤ 2n− 4 = 0. For n = 3 we even prove a stronger statement with one additional faulty vertex
than in Theorem 2.1. Namely, for |F | ≤ 2n − 3 = 3 and every two fault-vertices u and v there
exists an (F, u, v)-path if (F, u, v) is free. Note that the opposite implication does not hold since
the edge uv itself (if it exists) is an (F, u, v)-path when |F | = 3.

Lemma 4.1. Let F be a set of at most 3 vertices of Q3, and let u and v be two fault-free vertices.
If (F, u, v) is free, then there exists an (F, u, v)-path.

Proof. Case 1: |F | = 3.

w

(a) (b) (c)

Figure 3: All configurations (up to isomorphism) of 3 faulty vertices in Q3.

We want to find a path of length at least 23 − 3 · 2− 2 = 0, so it suffices to show that u and v
belong to the same component of Q3 \ F if (F, u, v) is free. There are tree configurations (up to
isomorphism) of F with |F | = 3; see Figure 3. Observe that Q3 \F on Figure 3(a,b) is connected.
Also Q3 \ (F ∪ {w}) on Figure 3(c) is connected and w is surrounded by F . Hence the statement
holds.

Case 2: |F | = 2.
The graph Q3 \ F is connected because Q3 is 3-connected, so there exists a path P between u

and v in Q3\F . We want to find a fault-free path between u and v of length at least 23−2·2−2 = 2.
If d(u, v) ≥ 2, then P has this length.

Now assume that d(u, v) = 1. There exist two disjoint edges xiyi such that uxi and yiv are
edges of Q3 for i ∈ {1, 2}. If xi, yi /∈ F for some i ∈ {1, 2}, then (u, xi, yi, v) is a requested path.
If x1, x2 ∈ F or y1, y2 ∈ F , then (F, u, v) is blocked. It remains to find an (F, u, v)-path for the
case where F = {x1, y2} (or isomorphically F = {x2, y1}). See Figure 4 for such path.

Case 3: |F | ≤ 1.
This case follows from the previous result by Fu [6] for at most n − 2 faulty vertices.

Assume that Qn is split into QL and QR. The sets of faulty vertices in QL and QR are denoted
by FL and FR, respectively.
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u v

x1 y1

x2 y2

Figure 4: The (F, u, v)-path in Case 2 of Lemma 4.1.

In Q4 we are often in a situation when Q4 is split into QL and QR so that u ∈ V (QL) and
v ∈ v(QR). We would like to find a vertex x in QL such that there exist an (FL, u, x)-path PL

and an (FR, xR, v)-path PR and their concatenation P = (PL, PR) is an (F, u, v)-path. Now, we
present sufficient conditions on the vertex x to apply such construction.

Lemma 4.2. Let Q4 be split into QL and QR so that u ∈ V (QL), v ∈ V (QR), |FL| ≤ 3, |FR| ≤ 3
and there exists a fault-free vertex x in QL such that xR /∈ FR, (FR, v, xR) is free in QR and at
least one of the following conditions holds.

(a) (FL, u, x) is free in QL, and d(u, x) or d(v, xR) is odd.

(b) There exists a fault-free path PL between u and x in QL of length at least 23 − 2|FL| − 1.

(c) d(u, v) is even, |FL| = 3, and x = u.

Then there exists an (F, u, v)-path in Q4.

Proof. There exists an (FR, xR, v)-path PR in QR by Lemma 4.1. In the first case, there exists an
(FL, u, x)-path PL by Lemma 4.1. In the third case, let PL be the trivial path between u and x.
We show that the path P = (PL, PR) has sufficient length in all three cases.

(a) Without lost of generality we assume that d(u, x) is odd. Then the length of P is |E(P )| =
|E(PL)| + 1 + |E(PR)| ≥ 23 − 2|FL| − 1 + 1 + 23 − 2|FR| − 2 = 24 − 2|F | − 2.

(b) |E(P )| = |E(PL)| + 1 + |E(PR)| ≥ 23 − 2|FL| − 1 + 1 + 23 − 2|FR| − 2 = 24 − 2|F | − 2.

(c) Since d(xR, v) is odd we have |E(P )| ≥ 1 + 23 − 2|FR| − 1 ≥ 24 − 2|F | − 2.

Note that if d(u, v) is even, then one of d(u, x) and d(v, xR) is odd for every vertex x in QL.
Let N(u), NL(u) and NR(u) be the sets of neighbors of u in Qn, QL and QR, respectively. We
conclude this section with the following lemma that serves as the basis for induction in the proof
of Theorem 2.1 for n = 4.

Lemma 4.3. Let F be a set of at most 4 faulty vertices in Q4. For every two fault-free vertices
u and v, there is an (F, u, v)-path if and only if (F, u, v) is free and (2) does not hold.

Proof. The necessity was discussed in Section 2.

Case 1: We can split Q4 so that |FL| = 4 or |FR| = 4.
Assume that |FL| = 4. Let u′ = u if u ∈ V (QR), otherwise u′ = uR. Similarly, let v′ = v if

v ∈ V (QR), otherwise v′ = vR. Clearly, there is an (FR, u′, v′)-path in QR which is a long path in
Q4. We prolong this path by the edge uuR if u ∈ V (QL) and vvR if v ∈ V (QL) and we obtain an
(F, u, v)-path in Q4.

For the rest of the proof, we assume that |FL| ≤ 3 and |FR| ≤ 3 for every splitting of Q4 into QL

and QR, which is one of the conditions of Lemma 4.2. Furthermore, we assume that u ∈ V (QL)
for every splitting of Q4, otherwise we exchange the roles of QL and QR. We distinguish the
following cases.
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Case 2: We can split Q4 so that v ∈ V (QR), |FL| = 3 or |FR| = 3, and moreover, if d(u, v) is
odd, then u is not surrounded by FL in QL and v is not surrounded by FR in QR.

Without lost of generality we assume that |FL| = 3. Since |FR| ≤ 1, (FR, z, v) is free in QR

for every vertex z in QR. If u is surrounded by FL in QL, then d(u, v) is even and uR /∈ FR.
This configuration satisfies conditions of Lemma 4.2(c) for x = u. So we assume that u is not
surrounded by FL in QL.

Observe on Figure 3 that there are at least 3 vertices different from u in the component of
QL\FL containing u. Since |FR ∪ {v}| ≤ 2, there is a vertex x ∈ V (QL) satisfying the requirements
of Lemma 4.2(b).

Case 3: We can split Q4 so that u, v ∈ V (QL), |FL| = 0 and |FR| ≤ 3.
Observe that for every edge ab in QL such that {a, b} 6= {u, v} there exists an (FL, u, v)-

path containing ab. Assume that |FR| = 3. There exists fault-free edge ab in QR such that
{a, b} 6= {uR, vR} because Q3 has 12 edges and one faulty vertex makes only 3 edges faulty. Let
PL be an (FL, u, v)-path in QL containing the edge aLbL. We obtain an (F, u, v)-path from PL by
replacing the edge aLbL with the path (aL, a, b, bL).

Now assume that |FR| ≤ 2. There exist at least 5 fault-free edges in QR different from uRvR

because Q3 has 12 edges and one faulty vertex makes only 3 edges faulty. If (FR, x, y) is blocked
in QR for some fault-free edge xy in QR, then there are 2 faulty vertices in QR in distance 2
and there is only another one fault-free edge x′y′ such that (FR, x′, y′) is blocked in QR. Hence,
there exists a fault-free edge ab in QR different from uRvR such that (FR, a, b) is free in QR.
Let PR be an (FR, a, b)-path in QR and PL be an (FL, u, v)-path in QL containing aLbL. Let
P be obtained from PL by replacing the edge aLbL with the path PR. Since the length of P is
|E(PL)| − 1 + 2 + |E(PR)| ≥ 24 − 2|F | − 1, it follows that P is an (F, u, v)-path.

Case 4: d(u, v) is even.
We split Q4 so that u ∈ V (QL) and v ∈ V (QR). If there exists splitting such that moreover

uR ∈ F or vL ∈ F , then we apply it. If |FR| = 3 or |FL| = 3, then this configuration satisfies the
requirements of Case 2. So, we assume that |FR| ≤ 2 and |FL| ≤ 2.

By Proposition 3.2, there exists at most one vertex l in QL such that (FL, l, u) is blocked in
QL and at most one vertex r of QR such that (FR, r, v) is blocked in QR. If there exists a vertex
x ∈ V (QL) such that x, xR /∈ F ∪ {u, v, l, r}, then there exists an (F, u, v)-path by Lemma 4.2(a).
When there is no such vertex x?

Note that |F ∪ {u, v, r, l}| ≤ 8 and QL has 8 vertices. There is no requested vertex x if and
only if

for every vertex y of QL exactly one of y and yR belongs to F ∪ {u, v, l, r}. (3)

Our aim is to show that we have the exceptional configuration (2) if (3) holds. So we assume
for the rest of this case that (3) holds. Hence |FL| = |FR| = 2 and vertices l and r exist.

We know that u is surrounded by FL∪{l} in QL or l is surrounded by FL∪{u} in QL. Now, we
show that u is not surrounded by FL ∪ {l} in QL. Suppose on the contrary that u is surrounded
by FL ∪ {l} in QL. If d(u, v) = 2, then vL ∈ NL(u) = FL ∪ {l} which contradicts (3). Now,
d(u, v) = 4. Let f be some faulty neighbor of u. It follows from (3) that uR /∈ F and vL /∈ F
which contradicts our requirements on splitting because it is possible to split Q4 by the dimension
in which f and u differ. Similarly, r is not surrounded by FR ∪ {v}.

Since l is surrounded by FL ∪ {u}, vertices of FL ∪ {u} belong to the same bipartite class A of
Q4 and l belongs to the other bipartite class B of Q4. Let a be the only vertex of QL in A that
does not belong to FL ∪{u}. Similarly, the three vertices of FR ∪{v} belong to the same bipartite
class and let b be the fourth vertex of that bipartite class in QR. Since u and v are in the same
bipartite class A, the vertices of F ∪{u, v, a, b} form the bipartite class A. It follows from (3) that
aR = r and bL = l. See Figure 5 for an illustration.

We have d(a, b) ≥ 3 because a ∈ V (QL), b ∈ V (QR), aR = r, NR(r) = FR ∪ {v} and
b /∈ FR ∪ {v}. Since a and b belong to the same bipartite class, it follows that d(a, b) = 4. Hence,
we conclude that if (3) holds, then we have the exceptional configuration (2).

Case 5: d(u, v) is odd.
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u

v

QRQL

l b

a r

Figure 5: Case 4 in Lemma 4.3: the exceptional configuration (2).

First, we show that we can split Q4 so that u ∈ V (QL), v ∈ V (QR), u is not surrounded by
FL in QL, v is not surrounded by FR in QR and uR ∈ FR ∪ {v}.

If d(u, v) = 1 then we split Q4 by the dimension in which u and v differs. Then, uR = v and
the vertex u is not surrounded by FL in QL and v is not surrounded by FR in QR, otherwise
(F, u, v) would be blocked.

Now, we assume that d(u, v) = 3. Let QA be the smallest subcube of Q4 containing u and v.
Since d(u, v) = 3, the dimension of QA is 3 and let QB be the complementary subcube. If there
is no faulty vertex in QA, then we have the configuration of Case 3. If there exists a faulty vertex
f in QA, then f is a neighbor of u or v, say u, so we split Q4 by the dimension in which f and
u differs so u ∈ V (QL) and v ∈ V (QR). Furthermore, u is not surrounded by FL in QL, because
(F, u, v) is free and uR = f . If v is surrounded by FR in QR, then uR = f is in NR(v) = FR as
|FR| ≤ 3 which contradicts the assumption that d(u, v) = 3.

Now, Q4 is split so that u ∈ V (QL), v ∈ V (QR), u is not surrounded by FL in QL, v is not
surrounded by FR in QR and uR ∈ FR ∪{v}. If |FR| = 3 or |FL| = 3, then we have Case 2. So we
assume that |FR| ≤ 2 and |FL| ≤ 2.

First, we assume that u has only one fault-free neighbor u′ in QL. The triple (F, u′, v) is free
and all neighbors of u are in F ∪{u′, v}. Observe on Figure 2 that in the exceptional configuration
(2) there is no vertex surrounded by faulty vertices and end-vertices. Hence, the triple (F, u′, v)
does not form the exceptional configuration (2). There exists an (F, u′, v)-path by Case 4 which
we prolong by the edge uu′ to obtain an (F, u, v)-path.

Next, we assume that v has only one fault-free neighbor in QR. Observe that d(u, v) = 1,
otherwise uR /∈ FR ∪ {v}. Thus, vL = u and by exchanging the roles of QL and QR and the roles
of u and v, we may proceed as in the previous paragraph. Now, both u and v have at least two
fault-free neighbors in their subcubes.

Note that there is at most one faulty vertex in NL(u) and at most one faulty vertex in NR(uR)
because uR ∈ F ∪ {v}. By Proposition 3.2, there exists at most one vertex l in QL such that
(FL, u, l) is blocked in QL. If a vertex l exists, then there is no faulty vertex in NL(u). Hence,
there is at most one vertex x in NL(u) such that x ∈ F or (FL, u, x) is blocked. Similarly, there is
at most one vertex x in NL(u) such that xR ∈ F or (FR, v, xR) is blocked. Therefore, there exists
a vertex x in NL(u) satisfying the condition of Lemma 4.2(a).

5 Long fault-free paths - general dimension

In this section we present the proof of our main result on long fault-free paths.

Theorem 2.1. Let F be a set of at most 2n− 4 faulty vertices of Qn where n ≥ 2. For every two
fault-free vertices u and v, there exists an (F, u, v)-path in Qn if and only if (F, u, v) is free and
we do not have the exceptional configuration (2).

Proof. The necessity was discussed in Section 2. We proceed by induction on n. The statement
holds for n ≤ 4 by the previous section. Now we assume that n ≥ 5 and we have two fault-free
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vertices u and v in Qn such that (F, u, v) is free.
First, we consider the case when u or v has exactly one neighbor uncovered by F ∪ {u, v}.

Assume that u has the only neighbor u′ uncovered by F ∪ {v}. Clearly, the vertex v is not
surrounded by F ∪ {u′}. Let v′ be the vertex v if v has at least two neighbors uncovered by
F ∪ {u′}, otherwise let v′ be the only neighbor of v uncovered by F ∪ {u′}. Since |F | ≤ 2n − 4,
the vertex u′ has at least two neighbors uncovered by F ∪ {v}. Moreover, if u′ has exactly two
such neighbors, then all faulty vertices and the vertex v are neighbors of u or u′, so v has at most
3 vertices covered by F ∪ {u′}, and thus v′ = v. Hence, u′ and v′ have at least two neighbors
uncovered by F ∪ {u′, v′}. Furthermore, every (F, u′, v′)-path avoids u (and v if v′ 6= v), so it can
be prolonged to an (F, u, v)-path. Therefore, in the following we assume that both u and v have
at least two neighbors uncovered by F ∪ {u, v}.

Our aim is to split Qn into QL and QR such that |FL| ≤ 2n − 6 and |FR| ≤ 2n − 6 where
FL = F ∩ V (QL) and FR = F ∩ V (QR). By Proposition 3.5, this can be done with the only
exception when n = 5, |F | = 6, and F consists of some vertex w and all his neighbors. But when
this exception happens, we may remove the vertex w from F since it cannot be visited by any
path that is fault-free with respect to F \ {w}, so we may assume that the requested split exists.

In what follows, note that whenever we apply induction for a free triple (F ′, a, b) in QL or in
QR, the configuration (2) cannot occur since d(a, b) is odd or |F ′| < 2n − 6. We assume that
u ∈ V (QL) and we distinguish the following cases.

Case 1: v ∈ V (QR).
We may assume that |FL| ≥ |FR|. Thus |FR| ≤ n − 2. See Figure 6 for an illustration.

w

u

wR

v
QRQL

(1.1)

u

v
QRQL

(1.2)

v′

u′

P

R

Figure 6: The construction of an (F, u, v)-path in Case 1 of Theorem 2.1.

Subcase 1.1: Both vertices u and v have at least 2 fault-free neighbors in their subcubes.
It follows for every w ∈ V (QL) that if (FL, u, w) is blocked in QL, then w is surrounded by

FL ∪ {u} in QL. Similarly for every wR ∈ V (QR), if (FR, v, wR) is blocked in QR, then wR is
surrounded by FR ∪ {v} in QR.

We claim that there is a vertex w ∈ V (QL) such that d(u,w) is odd, wR 6= v, both w and
wR are fault-free, (FL, u, w) is free in QL, and (FR, v, wR) is free in QR. Let A = {w ∈ V (QL) |
d(u,w) is odd}. We say that a vertex x ∈ V (Qn) eliminates a vertex w ∈ A if w = x, or wR = x,
or w is surrounded by FL ∪ {u} and x is a neighbor of w, or wR is surrounded by FR ∪ {v} and x
is a neighbor of wR. Thus, every vertex w ∈ A that is not eliminated by any vertex from F ∪ {v}
satisfies the claim. By Proposition 3.1, at most one vertex in A is surrounded by FL ∪ {u} in QL,
and at most one vertex w ∈ A has the neighbor wR surrounded by FR ∪ {v} in QR. Hence, every
vertex from F ∪ {v} eliminates at most one vertex from A. Therefore the claim holds as

|A| − |F | − 1 ≥ 2n−2 − 2n + 3 ≥ 1 for n ≥ 5.

Let w ∈ V (QL) be a vertex satisfying the claim above. By induction, there is an (FL, u, w)-
path P in QL of length at least 2n−1 − 2|FL| − 1, and an (FR, wR, v)-path R in QR. Therefore,
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by adding the edge wwR we obtain an (F, u, v)-path (P,R) of length at least 2n−1 − 2|FL| − 1 +
2n−1 − 2|FR| − 2 + 1 = 2n − 2|F | − 2.

Subcase 1.2: Vertex u or v has only 1 fault-free neighbor in its subcube.
Assume that u has the only fault-free neighbor u′ in QL. Let v′ be the vertex v if v has at

least two fault-free neighbors in QR, otherwise let v′ be the only fault-free neighbor of v in QR.
Clearly, both u′ and v′ have at least two fault-free neighbors in their subcubes. By the previous
case, there is an (F, u′, v′)-path P . Then, (u, P ) if v′ = v, or (u, P, v) if v′ 6= v, is an (F, u, v)-path.

Case 2: v ∈ V (QL).
Since both u and v have at least two neighbors uncovered by F ∪{u, v}, it follows that (FL, u, v)

is free in QL. See Figure 7 for an illustration.

w
a

b
QRQL

(2.1)

u

v
QRQL

(2.2)

w′
u

v

wR

w′

R

R
P1

P2

a

b

aR

bR

P1

P2

R

u

v

QRQL

(2.3)

wRw

uR

R
P

Figure 7: The construction of an (F, u, v)-path in Case 2 of Theorem 2.1.

Subcase 2.1: We have the exceptional configuration (2) in QL.
Assume that a, b ∈ V (QL) are the vertices in the exceptional configuration (2). Let w and w′

be some neighbors of a and b, respectively, such that wR and w′
R

are fault-free. Since |FR| ≤ 2,
the triple (FR, wR, w′

R
) is free in QR. Thus, by induction, there is (FR, wR, w′

R
) path R in QR.

Furthermore, there are disjoint fault-free paths P1 between u and w, and P2 between w′ and v,
both of length 3. Therefore, by adding the edges wwR and w′

R
w′ we obtain an (F, u, v)-path

(P1, R, P2) of length at least 2n−1 − 2|FR| − 2 + 2 · 3 + 2 = 2n − 2|F | − 2.

Subcase 2.2: We do not have the exceptional configuration (2) in QL. Moreover, at least one
of uR and vR is faulty, or |FR| ≤ 2n − 7, or d(u, v) is odd.

Applying induction we obtain an (FL, u, v)-path P in QL. We claim that there is an edge ab on
P so that the edge aRbR ∈ E(QR) is fault-free and also (FR, aR, bR) is free. At most 2|FR| edges
aRbR ∈ E(QR) with ab on P are faulty. However, if at least one of uR and vR is faulty, it is less
than 2|FR| edges. Furthermore, by Proposition 3.4, we may assume that (FR, aR, bR) is blocked
for at most 2 fault-free edges aRbR ∈ E(QR) with ab on P , otherwise we are done. However, if
|FR| ≤ 2n − 7, then by Proposition 3.3, (FR, aR, bR) is blocked only for at most 1 fault-free edge
aRbR ∈ E(QR) with ab ∈ E(P ). Thus, some edge ab on P satisfying the claim exists as

E(P ) − 2|FR| − 1 for d(u, v) even

E(P ) − 2|FR| − 2 for d(u, v) odd

}

≥ 2n−1 − 2|F | − 3 ≥ 2n−1 − 4n + 5 ≥ 1 for n ≥ 5.

Hence by induction, there is an (FR, aR, bR)-path R in QR of length at least 2n−1 − 2|FR| − 1.
Therefore, by removing the edge ab and adding the edges aaL, and bLb we obtain an (F, u, v)-path
(P1, R, P2) of length at least 2n−1 − 2|FL| − 2 + 2n−1 − 2|FR| − 1 − 1 + 2 = 2n − 2|F | − 2 where
P1 and P2 are the subpaths of P \ {ab}.

Subcase 2.3: Both uR and vR are fault-free, |FR| = 2n − 6, and d(u, v) is even.
By Proposition 3.1, at most one of uR and vR is surrounded by FR in QR. Assume that uR is

not surrounded by FR in QR. We put F ′
L

= FL ∪ {u}, so |F ′
L
| ≤ 3 < 2n − 6. Note that v has at
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least two neighbors in QL that are not in F ′
L

since d(u, v) is even. It follows for every w ∈ V (QL)
that if (F ′

L
, v, w) is blocked, then w is surrounded by F ′

L
∪ {v}.

We claim that there is a vertex w ∈ V (QL) such that d(v, w) is odd, both w and wR are
fault-free, (F ′

L
, v, w) is free in QL, and (FR, uR, wR) is free in QR. Let A = {w ∈ V (QL) |

d(u,w) is odd}. By Proposition 3.2, (FR, uR, w′
R
) is blocked for at most one vertex w′ ∈ A. If

that happens for some w′ ∈ A, let A′ = A \ {w′}, otherwise let A′ = A.
We say that a vertex x ∈ V (Qn) eliminates a vertex w ∈ A′ if w = x, or wR = x, or w is

surrounded by F ′
L
∪{v} and x is a neighbor of w. Thus, every vertex w ∈ A′ that is not eliminated

by any vertex from F satisfies the claim. By Proposition 3.1, at most one vertex in A is surrounded
by F ′

L
∪ {v}. Hence every vertex from F eliminates at most one vertex from A. Therefore the

claim holds as
|A′| − |F | ≥ 2n−2 − 2n − 3 ≥ 1 for n ≥ 5.

Hence by induction, there is an (FR, uR, wR)-path P in QR of length at least 2n−1 − 2|FR|− 1.
Furthermore, there is an (F ′

L
, w, v)-path R in QL that avoids u and has length at least 2n−1 −

2(|FL|+1)−1. Therefore, by adding the edges uuR and wRw, we obtain an (F, u, v)-path (u, P,R)
of length at least 2n−1 − 2|FR| − 1 + 2n−1 − 2|FL| − 1 − 2 + 2 = 2n − 2|F | − 2.

6 Long fault-free cycles

Let D ⊆ [n] be a set of d = |D| coordinates of Qn. We can consider every vertex x of Qn as a
pair x = (u, v)D where u ∈ {0, 1}n−d and v ∈ {0, 1}d are projections of x on the coordinates of
[n] \ D and D, respectively. For u ∈ {0, 1}n−d we denote by QD(u) the d-dimensional subcube of
Qn induced by vertices VD(u) = {(u, v)D | v ∈ {0, 1}d}. In other words, QD(u) is the subcube of
Qn with coordinates [n] \ D fixed by u. The index D in (u, v)D is omitted whenever clear from
the context.

Let F be a set of faulty vertices of Qn. Recall that a cycle in Qn is long if it has length at
least 2n − 2|F |. For a set D ⊆ [n] and u ∈ {0, 1}n−d we define FD(u) = F ∩ VD(u). Assume that
we want to find a long fault-free cycle in Qn.

Our approach is based on subcube partitioning similar as in the work of Bruck et al. [1]
where the hypercube is partitioned into subcubes so that each subcube contains a large fault-free
component. However, instead of using the same partitioning as in [1], we apply recent results by
Wiener [15] on edge multiplicity of traces in set systems which gives better bounds. We proceed
as follows.

First, we find a set D ⊆ [n] such that |FD(u)| ≤ 2d− 4 for every u ∈ {0, 1}n−d where d = |D|.

Then, for some Hamiltonian cycle (u1, u2, . . . , u2n−d

, u2n−d+1 = u1) of Qn−d we choose in each
subcube QD(ui) two appropriate vertices ai and bi such that aibi+1 ∈ E(Qn) for every i ∈ [2n−d].
Next, applying Theorem 2.1 we find long fault-free paths between ai and bi in each subcube
QD(ui). Finally, we glue these paths together and obtain a desired long fault-free cycle in Qn.
See Figure 8 for an illustration.

The crucial step is the determination of the set D. Although the following theorem by Wiener
[15] was originally formulated for set systems, here we take the liberty to formulate it for vertices
of the hypercube.

Theorem 6.1 (Wiener [15]). Let F be a set of at least 2n vertices of Qn, and let d =
⌈

n
2

2|F |−n−2

⌉

.

Then, there exists a set D ⊆ [n], |D| = d such that |FD(u)| ≤ d + 1 for every u ∈ {0, 1}n−d.

For the choice of vertices ai and bi we employ the following separate lemma. Recall that a
triple (F, u, v) is blocked for F ⊆ V (Qn) and u, v ∈ V (Qn) if u is surrounded by F ∪ {v} or v is
surrounded by F ∪ {u}, otherwise (F, u, v) is free.

Lemma 6.2. Let F be a set of faulty vertices of Qn where n ≥ 5, and let D ⊆ [n] be such that

d = |D| = 5 and |FD(u)| ≤ 6 for every u ∈ {0, 1}n−d. Let (u1, u2, . . . , u2n−d

, u2n−d+1 = u1) be a
Hamiltonian cycle of Qn−d. Then, there are fault-free vertices ai and bi in each QD(ui) such that
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Figure 8: The construction of a long fault-free cycle in Theorem 2.2.

• d(ai, bi) is odd,

• (FD(ui), ai, bi) is free in QD(ui),

• aibi+1 ∈ E(Qn) where b2n−d+1 = b1,

for every i ∈ [2n−d].

Proof. We determine vertices ai and bi in this order: a1, b2, a2, . . . , b2n−d

, a2n−d

, b2n−d+1 = b1.
Since ui and ui+1 are neighbors in Qn−d, every vertex in QD(ui) has one neighbor in QD(ui+1).
Let A and B be the bipartite classes of Qn. We will choose ai = (ui, vi) from A ∩ VD(ui) and
obtain bi+1 = (ui+1, vi) from B ∩ VD(ui+1). Thus d(ai, bi) is odd and aibi+1 ∈ E(Qn).

There are 16 vertices in Ai = A∩VD(ui) since QD(ui) is isomorphic to Q5. At most 6 of them
are faulty since |FD(ui)| ≤ 6. Furthermore, at most 6 of them have faulty neighbor in QD(ui+1)
since |FD(ui+1)| ≤ 6.

In each of the cases i = 1, 1 < i < 2n−d, and i = 2n−d, we show that amongst the 4 remaining
vertices of Ai, there are at most two vertices, denoted by xi and yi, that are not eligible for the
choice of ai.

Case i = 1. By Proposition 3.1, at most one vertex x1 ∈ A1 is surrounded by FD(u1) in
QD(u1). Furthermore, at most one vertex y1 ∈ A1 has the neighbor in QD(u2) surrounded by
FD(u2) in QD(u2).

Case 1 < i < 2n−d. By Proposition 3.2, (FD(ui), xi, bi) is blocked in QD(ui) for at most one
vertex xi ∈ Ai. By Proposition 3.1, at most one vertex yi ∈ Ai has the neighbor in QD(ui+1)
surrounded by FD(ui+1) in QD(ui+1).

Case i = 2n−d. By Proposition 3.2, (FD(ui), xi, bi) is blocked in QD(ui) for at most one
vertex xi ∈ Ai. Furthermore, at most one vertex yi ∈ Ai has the neighbor z in QD(u1) such that
(FD(u1), a1, z) is blocked in QD(u1).

Hence, by choosing vertices ai and bi for every i ∈ [2n−d] such that

ai = (ui, vi) ∈ Ai \ ({xi, yi} ∪ FD(ui) ∪ F ∗
D(ui+1)) for some vi ∈ {0, 1}d,

bi+1 = (ui+1, vi) and b1 = b2n−d+1,

where F ∗
D

(ui+1) is the set of vertices of QD(ui) that have a faulty neighbor in QD(ui+1), we obtain
that both ai and bi are fault-free, and (FD(ui), ai, bi) is free in QD(ui) for every i ∈ [2n−d].
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Now we are ready to prove Theorem 2.2.

Theorem 2.2. Let F be a set of at most n
2

10 + n

2 + 1 faulty vertices of Qn where n ≥ 15. Then
Qn contains a long fault-free cycle.

Proof. Let F ′ ⊇ F be some set of exactly
⌊

n
2

10 + n

2 + 1
⌋

vertices of Qn. Thus |F ′| ≥ 2n as n ≥ 15

and by Theorem 6.1, there is a set D ⊆ [n] such that d = |D| = 5 and |FD(u)| ≤ |F ′
D

(u)| ≤ 6 for

every u ∈ {0, 1}n−d. Let (u1, u2, . . . , u2n−d

, u2n−d+1 = u1) be some Hamiltonian cycle of Qn−d.
By Lemma 6.2, there are fault-free vertices ai and bi in each QD(ui) such that d(ai, bi) is odd,

(FD(ui), ai, bi) is free in QD(ui), and aibi+1 ∈ E(Qn) for every i ∈ [2n−d] where b2n−d+1 = b1.
Hence by Theorem 2.1, in each QD(ui) there is a fault-free path Pi between bi and ai of length

at least 2d − 2|FD(ui)| − 1. Concatenating these paths with edges aibi+1 ∈ E(Qn) we obtain a
fault-free cycle (P1, P2, . . . , P2n−d , b1) of length at least

2n−d · 2d −
∑

i∈[2n−d]

2|FD(ui)| − 2n−d + 2n−d = 2n − 2|F |.
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[2] N. Castañeda, I. Gotchev, and V. Gotchev. One more graph theory conjecture. 11th Annual
Faculty Research Conference, Eastern Connecticut State University, 2008.
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