
Univerzita Karlova v Praze
Matematicko-fyzikálńı fakulta
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CONTENTS 2

Contents

1 Introduction 4

1.1 Graph theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 A random join . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 T-join 7

2.1 The Eulerian graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Weighted T-join . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Unicity of a minimal T-join . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Mathematical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 The Gaussian distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Random join 15

3.1 A path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 The distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Random join in a circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Algorithm 26

4.1 Known algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Basic idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Simple operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4 The triangle-star transfiguration . . . . . . . . . . . . . . . . . . . . . . . . 29
4.5 Complex operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.6 Implementation notices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Bibliography 33



CONTENTS 3
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Abstract:

One of the basic streams of modern statistics physics is an effort to understand the
frustration and chaos. The basic model to study these phenomena is the finite dimensional
Edwards-Anderson Ising model. In discrete optimisation this corresponds to the minimal
T-joins in a finite lattice with random weights of edges.

This thesis studies a random join which is a random path between two given vertices.
The original definition of the random join is very complex, and we have managed to find
an equivalent one which is more natural. We use our definition to exactly compute the
random join on circles. We also propose an algorithm which finds the shortest path in a
large lattice with given weights of edges. This algorithm can be used for an experimental
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Chapter 1

Introduction

1.1 Graph theory

Let M and K be finite sets and n be a natural number. We will use the following five
symbols for special sets:

2M = {K |K ⊂M } the family of all subsets.
(

M

n

)

= {K |K ⊂M, |K| = n} the family of subsets of size n;
(

M

even

)

= {K |K ⊂M, |K| is even} the family of subsets of an even size;

M ×K = {(x, y) | x ∈M, y ∈ K } the Cartesian product;

M △K = (M \K) ∩ (K \M) the symmetric difference.

We will very often talk about a family of subsets of an even size of a finite set. We
write even subset instead of subset of even size to make notation simple.

A graph is an ordered pair of disjoint sets (V,E) such that E is a subset of the set
(

V

2

)

of unordered pairs of V . Unless it is explicitly stated otherwise, we consider only finite
graphs, that is, V and E are always finite. The set V = V (G) is the set of vertices, and
E = E(G) is the set of edges. An edge {x, y} is said to join the vertices x and y and is
denoted by xy. Thus xy and yx mean exactly the same edge; the vertices x and y are
the end-vertices of this edge. If xy ∈ E(G), then x and y are adjacent vertices of G, and
the vertices x and y are incident with the edge xy. Two edges are adjacent if they have
exactly one common end-vertex. The degree of a vertex v is the number of the vertices
which are adjacent to v; we denote it by deg(v).

By definition a graph does not contain a loop, an edge joining a vertex to itself; neither
does it contain multiple edges, that is, several edges joining the same two vertices. In a
multigraph both multiple edges and multiple loops are allowed. A loop is a special edge.

A weighted graph (V,E, ω) is a graph (V,E) whose each edge e has a weight ω(e). It
is useful to extend the weight function ω to sets of edges. We define ω(J) where J ⊂ E
as
∑

e∈J ω(e).
We say that G′ = (V ′, E ′) is a subgraph of G = (V,E) if V ′ ⊂ V and E ′ ⊂ E. In this

case we write G′ ⊂ G . If G′ contains all edges of G that join two vertices in V ′, then G′

is said to be the subgraph induced by V ′ and is denoted by G[V ′].
A path of length l is a graph

Pl = ({v0, v1, . . . , vl} , {v0v1, v1v2, . . . , vl−1vl}).
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This path Pl is usually denoted by v0v1 · · · vl. The vertices v0 and vl are the end-vertices
of Pl. We say that Pl is a path from v0 to vl, or an v0 − vl path. A circle of length l ≥ 3
is a graph

Cl = ({v1, v2, . . . , vl} , {v1v2, v2v3, . . . , vl−1vl, vlv1}).
For simplicity, this circle is denoted by v1v2 · · · vn. Vertices are pairwise different in the
path and in the circle.

A graph is connected if for every pair {x, y} of distinct vertices there is a path from x
to y. A maximal connected subgraph is a component of the graph. A cut-vertex is a vertex
whose deletion increases the number of components. Similarly, an edge is a bridge if its
deletion increases the number of components. A connected graph without any cut-vertex
is called 2-connected. A graph without any circles is a forest; a tree is a connected forest.

Let G = (V,E) be a graph and let T be a subset of an even number of vertices of G.
We say that a set J of edges of G is a T -join if each vertex v of G is incident with an
even number of edges of J if, and only if, v /∈ T .

1.2 Probability

The Gaussian distribution N (µ, σ) of mean µ and variance σ2 is given by density function

φµ,σ2(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 .

We will mostly use the standard Gaussian distribution N of mean µ = 0 and variance
σ2 = 1 and we denote its density function by φ. The positive Gaussian distribution N+

is given by density function

φ+(x) =

{

√

2
π
e−

1
2
x2

if x ≥ 0

0 otherwise.

It is the distribution of absolute value of random variable chosen from the standard
Gaussian distribution. Sometimes it is useful to extend those functions for a real vector
x = (x1, . . . , xn) and denote φ(x) =

∏n

i=1 φ(xi). We can observe that

φ+(x) =

{

2n φ(x) if x ≥ 0

0 otherwise.
(1.1)

1.3 A random join

A random join between vertices vu and vl in a graph G = (V,E) is chosen in the following
way: The weights of the edges of G are independently chosen from the positive Gaussian
distribution. A subset of vertices T1 is chosen uniformly from

(

V

even

)

, which denotes the
family of even subsets of vertices. The second subset of vertices is T2 = T1 △ {vu, vl}. Let
Ji be the minimal-weight Ti-join, for i = 1, 2. The symmetric difference of J1 and J2 is
the random join.

The main problems addressed in this thesis are the properties of the random joins
in a finite 2-dimensional lattice. A finite 2-dimensional lattice C(n, k) is a graph which
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vertices have two coordinates. The horizontal coordinates run through integers from −k
to k and the vertical coordinates run through integers from −n to n. Two vertices of the
graph are connected by an edge if their distance is 1. If not written otherwise a lattice
means a finite 2-dimensional lattice C(n, k). Let us denote by vu and vl the vertices in
the middle of the upper and the lower horizontal border of C(n, k).

If it is not written otherwise, a graph G = (V,E) is a connected graph in this thesis.
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Chapter 2

T-join

In this chapter we explain the background for main theorems. We present some condition
for a T-join to be minimal, and we talk about unique minimal T-join. We also write
some known theorems about the Eulerian graphs and the Gaussian distribution and the
Lebesgue integral and measure.

2.1 The Eulerian graph

In this section we study connections between T-joins and the Eulerian set of edges.
Let us recall definition of T-join. Let T be an even subset of vertices of G. We say

that a set J of edges is a T -join if each vertex v of G is incident with an even number of
edges of J if, and only if, v /∈ T . We have to say first when a T -join exists.

Proposition 1. Let G = (V,E) be an arbitrary graph and T ∈
(

V

even

)

. Graph G has a
T -join if, and only if, every component of G has even number of vertices in T .

As we wrote at the end of the first chapter, we consider that graph G is connected.
Hence the graph G has a T -join for every set T of even size. Later in this section, we
show how many T -joins the graph G has.

We said that T is an even subset of vertices. A natural question is how many even
subsets a finite and non-empty set V has. We can find the answer in a very nice book
[14] written by Matoušek and Nešetřil.

Proposition 2. Let M be a finite and non-empty set. Number of even subsets of M is
2|M |−1.

We often speak about parity, especially about even numbers. We know that the
symmetric difference of two sets A and B has an even size if, and only if, sets A and B
have the sizes of the same parity. This fact is used in a proof of the following observation
about T-joins.

Proposition 3. Let J1, J2 ⊂ E and T1, T2 ∈
(

V

even

)

. Let J1 be a T1-join of G. Then J2 is
a T2 of G if, and only if, J1 △ J2 is a (T1 △T2)-join of G.

This proposition is proved in Cook’s book [4]. It is used in most observations and
theorems of this thesis and we use it without explicit reference.
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We continue to the Eulerian graph. We say that a graph is Eulerian if every vertex
has an even degree. A subset J of edges E is Eulerian if a graph (V, J) is Eulerian. It
is easy to see that every circle in a graph G is an Eulerian subset. We will use following
theorem noticed by Veblen in 1912. Readers can find a proof of the theorem in Bollobas’s
book [2].

Proposition 4. The edge set of a graph G can be partitioned into circles if, and only if,
the graph G is Eulerian.

A family of Eulerian subset of given graph G, denoted by KG, is an interesting vector
space which is studied in Matoušek’s and Nešetřil’s book [14]. We will need a corollary,
which says how large the family is.

Proposition 5. Number of Eulerian subset of graph G = (V,E) which has k components
is 2|E|−|V |+k.

From this proposition follows that a connected graph G has 2|E|−|V |+1 Eulerian subsets.
It follows from propositions 2 and 5 that the number of possible sets T multiplied by

the number of Eulerian subset is 2|E|, which is number of all subsets of edges. Is it a
coincidence?

Let us fix a T ∈
(

V

even

)

. By proposition 1 there exists a T -join J . If C is an Eulerian

subset, then J△C is still a T -join. And we have 2|E|−|V |+1 Eulerian subsets by proposition
5. Hence, there exist 2|E|−|V |+1 T -joins for every T ∈

(

V

even

)

.
When a set J ⊂ E is given, we easily find such unique set T ⊂ V that J is a T -join

by counting parity of degree in a graph (V, J). We denote such set T as TJ .
Let us fix a representative T -join JT for every T ∈

(

V

even

)

and consider a set J ⊂ E. We

can find such unique TJ ∈
(

V

even

)

that J is a TJ -join. Moreover, we have a representative

TJ -join JTJ
and a unique Eulerian subset J△ JTJ

. Hence there exist a unique TJ ∈
(

V

even

)

and an unique Eulerian subset for every subset of edges J .
This discussion proves the following theorem.

Theorem 1. There is one-to-one correspondence between
(

V

even

)

×KG and 2E.

2.2 Weighted T-join

In this section we study the minimal-weight T-join and the weights of edges without a
negative circle. We show necessary and sufficient condition for a T-join to be minimal.

We consider a weight functions of edges ω : E → R in this section. We say that the
weight has no negative circle if there is no Eulerian subset of edges J so that sum of the
weights of the edges in J is negative.

Proposition 6. The weighted graph G = (V,E, ω) has no negative circle if, and only if,
it has no negative Eulerian subset.

Proof. One implication is trivial because every circle is an Eulerian subset. By proposition
4 an Eulerian graph can be partitioned into disjoin circles and sum of non-negative weights
of those circles cannot be a negative Eulerian subset.
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In the introduction we talked about minimal-weight T-join. We will often talk about it
so we will for short use term minimal T-join instead of minimal-weight T-join. Sometime
we will work with more weight functions on edges, so we will write that J is a minimal
T -join with respect to ω to emphasise the weight we consider.

It is known that each minimal T-join is a forest when the weights of all the edges are
positive. But we work with the weights which have no negative circle so we must be more
careful.

Proposition 7. If the weight function ω has no negative circle and J is the unique
minimal T -join for a set T ∈

(

V

even

)

, then a graph (V, J) is a forest.

Proof. For contradiction we suppose that the graph (V, J) contains a circle C ⊂ J . Then

ω(J△C) = ω(J \ C) = ω(J) − ω(C).

Hence, C is a negative circle or ω(J△C) ≤ ω(C) where J△C is a T -join, which is a
contradiction.

When we attentively read the proof of the last observation, we observe that there
always exists a minimal T -join which is a forest. Hence, when minimal T-join is not
unique, we consider an arbitrary minimal T-join, which is a forest.

We will often need to change the sign of the weight of the edges which belong into a
minimal T-join. Let us define this formally.

Definition 1. Let J be a subset of edges of a weighted graph G = (V,E, ω). A function
ωJ : E → R is defined by

ωJ(e) =

{

ω(e) if e /∈ J

−ω(e) otherwise

for all edges e ∈ E. If J is a minimal T -join with respect to ω, we denote ωJ by ωT .1

We need a simple, but useful, observation.

Lemma 1. Let J and K be arbitrary subsets of E. Then ωJ(K△ J) = ω(K) − ω(J).

Proof.

ωJ(K△ J) = ωJ((K \ J) ∪ (J \K))

= ωJ(K \ J) + ωJ(J \K)

= ω(K \ J) − ω(J \K)

= (ω(K \ J) + ω(K ∩ J)) − (ω(J \K) + ω(K ∩ J))

= ω(K) − ω(J).

When ω and J satisfy the conditions of proposition 7, then it is not surprising that
ωJ has no negative circle. But the condition to ω is not necessary! Moreover we can
formulate the proposition as an equivalence.

1If a minimal T -join is not unique, we consider an arbitrary minimal T -join which is a forest.
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Theorem 2. Let J be a T -join where T ∈
(

V

even

)

. Then J is a minimal T -join if, and
only if, ωJ has no negative circle.

Proof. If ωJ contains a negative circle C, then

0 > ωJ(C) = ωJ((J△C)△ J) = ω(J△C) − ω(J).

Hence ω(J△C) < ω(J) and J is not a minimal T -join.
If J is not a minimal T -join, then there exists a T -join J ′ of smaller weight. Then

ωJ(J△ J ′) = ω(J ′) − ω(J) < 0.

Since J△ J ′ is a Eulerian subset, ωJ must contains a negative circle by proposition 6.

2.3 Unicity of a minimal T-join

As we discuss below proposition 7, a minimal T-join does not need no be unique for every
set T and every weight function. In this section we present a sufficient condition for the
distribution function of the weight function so that ambiguous minimal T-joins do not
occur too often.

We denote it by X ∼ U [M ], a random variable X uniformly chosen from a finite set
M .

Lemma 2. If J ∼ U
[

2E
]

, then TJ ∼ U
[(

V

even

)]

.

Proof. Let us consider a fixed T ∈
(

V

even

)

. By theorem 1 there exist such 2|E|−|V |+1 subsets
J ⊂ E that J is a T -join. Every J ⊂ E has probability 1

2|E| to be chosen. Hence the

probability, that J is a T -join where J ∼ U
[

2E
]

, is 1
2|V |−1 .

The last lemma is not exactly what we need. We are studying T-join having no
negative circle. We would like to show that if J ∼ U

[

2E
]

has no negative circle, then

TJ ∼ U
[(

V

even

)]

. It holds under the condition that the considered weight function ω has

a unique minimal T -join for all T ∈
(

V

even

)

because there exists one set J ⊂ E, such that
J has no negative circle and J is a T -join. But we have not a fixed weight but a random
one in the random join. Hence, we need to show that we have not two or more minimal
T-joins too often.

Let us denote by R
E the |E| dimensional real space in which the coordinates are

labelled by edges of the graph G. Similarly, we denote by N
E the set of integer vectors of

length |E|.

Definition 2. We say that a distribution function of a weight function ω is unique if
the probability, then there exists a nonzero integer linear combination n ∈ N

E satisfying
∑

e∈E neω(e) = 0 is zero.

We will later prove that the Gaussian distribution is unique.

Proposition 8. If T ∈
(

V

even

)

and distribution function of a weight function ω is unique
than a minimal T -join is unique with probability one.
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Proof. Let us consider two different T -joins J1 and J2 having the same weight, i.e. ω(J1) =
ω(J2). We define two integer linear combinations k and l by

ke =

{

1 if e ∈ J1

0 otherwise

for all e ∈ E and l, is a similar combination for J2. We define n as difference of k and l,
i.e. ne = ke − le for all e ∈ E. We compute that

∑

e∈E

neω(e) =
∑

e∈E

keω(e) −
∑

e∈E

leω(e) = ω(J1) − ω(J2) = 0

but it happens with probability zero. Hence we proved that there exist two T -joins having
the same weight with probability zero.

2.4 Mathematical analysis

We will also need some terminology and theorems from mathematical analysis but we will
not explain it in such detail. We only say theorems which are directly used is this thesis.
Theorems from this section were found in the book by Billingsley [16] and in our lecture
notes.

In this thesis we use only the Lebesgue integral and the Lebesgue measure. We denote
measure of a set M by λ(M). We write f ∈ L(M) where f : M → R if the set M ⊂ R

n is
measurable and the Lebesgue integral

∫

M
f exists. There are two well-known theorems.

Theorem 3 (Fubini). If M ⊂ R
m+k and f ∈ L(M), then

• function F (x) =
∫

Mx
f(x, y) dy is defined for almost every x ∈ R

m

• F (x) ∈ L(Rm)

•
∫

M
f =

∫

Rm F (x) dx

where Mx =
{

y ∈ R
k | (x, y) ∈M

}

.

Theorem 4 (substitution). Let function ψ : U → R
n be a regular bijection where U ⊂ R

n

is an open set. Let B ⊂ ψ(U) be a measurable set. If Lebesgue integral
∫

B
f exists, then

an equation
∫

B

f(y) dy =

∫

ψ−1(B)

f(ψ(x))
∣

∣detJψ(x)

∣

∣ dx

holds.

A symbol Jψ(x) means the Jacobian matrix. We will mostly use a two-dimensional
ellipse substitution ψ(r, α) = (ar cos(α), br sin(α)) where a and b are positive real numbers.
A determinant of the Jacobian matrix of this substitution is abr.

As we discuss in proposition 8, we will work with probability zero. Hence, we will
need some theorems about sets of measure zero.

Proposition 9. Every countable subset of real numbers has measure zero. Every countable
union of sets of measure zero has again measure zero.

Proposition 10. Let us consider a function f ∈ L(M). If λ(M) = 0, then
∫

M
f = 0.

Moreover if f is a positive function on the set M and
∫

M
f = 0, then λ(M) = 0.
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2.5 The Gaussian distribution

In this section we prove that the Gaussian distribution is unique and we present a theorem
about a combination of the Gaussian and the uniform distribution.

The following interesting and important observation about the Gaussian distribution
is proven in book [15].

Proposition 11. The sum of two random variables chosen independently from the Gaus-
sian distributions with means µ1 and µ2 and variances σ2

1 and σ2
2 is again a random

variable chosen from the Gaussian distribution with mean µ1 + µ2 and variance σ2
1 + σ2

2.

From that observation it is easy to prove by induction another useful fact.

Proposition 12. The sum of n random variables chosen (mutually) independently from
the standard Gaussian distribution is a random variable chosen from the Gaussian distri-
bution with zero mean and variance n.

It is not difficult to prove a general version of those propositions.

Proposition 13. A nonzero integer linear combination of random variables chosen (mu-
tually) independently from the Gaussian distribution is again a random variable chosen
from the Gaussian distribution.

We denote by ω ∼ NG and ω ∼ N+
G random weight function ω where ω(e) are

independently chosen from the standard Gaussian distribution and the positive Gaussian
distribution for all e ∈ E(G), respectively.

In previous sections we discussed minimal T-joins which are not unique. We said that
a distribution function of a weight function ω is unique if the probability that there exists
a nonzero integer linear combination n ∈ N

E satisfying
∑

e∈E neω(e) = 0 is zero. Then we

proved in proposition 8 that minimal T -join is unique with probability one if T ∈
(

V

even

)

and the distribution function of a weight function ω is unique. Now we prove that the
Gaussian distribution is unique.

Theorem 5. The Gaussian distribution of a weight function ω is unique.

Proof. We start by a simple observation: probability that random variable X chosen from
the Gaussian distribution is equal to zero is zero. Measure of a set containing only number
zero is zero by proposition 9 and P (X = 0) =

∫

{0}
Φµ,σ2 = 0 by proposition 10.

Now we prove that theorem holds for a fix nonzero integer linear combination, i.e.
probability that

∑

e∈E neω(e) = 0 is zero where n ∈ N
E is a fix nonzero integer linear

combination and weights ω are chosen from the Gaussian distribution. By proposition 13
the sum is a random variable X chosen from the Gaussian distribution. Then by previous
paragraph

P

(

∑

e∈E

neω(e) = 0

)

= P (X = 0) = 0.

Using proposition 10 we know that measure of a set
{

ω ∈ R
E
∣

∣

∑

e∈E neω(e) = 0
}

is zero. There exist only countably many integer linear combinations so a union over
all nonzero integer linear combinations of those sets has measure zero by proposition 9.
Hence probability that there exists a nonzero integer linear combination satisfying the
formula is an integral over a set of zero measure which is equal to zero by proposition
10.
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We will often combine the Gaussian and the uniform distribution. An example of this
combination is following observation from [5].

Proposition 14. If U ∼ U [{±1}] and X ∼ N , then XU ∼ N .
If U ∼ U [{±1}] and X ∼ N+, then XU ∼ N .

We will sometimes have a sign Ue and weight ω(e) for every edge e where signs are
uniformly chosen from {±1} and weight function is chosen from N+

G . Those random
variables are mutually independent. We denote a vector labelled by edges which has
value Ueω(e) on index e by Uω. We would like to compute the probability that the
product Uω has some property, e.g. it belongs into a measurable set M ⊂ R

E. Then
we show that this probability is equal to P (x ∈M) where x is chosen from N . Hence,
distribution functions of Uω and x are the same.

Before we start any integration, we show what is our probability space and the dis-
tribution function. The random vector (U, ω) belongs into space {±1}E × R

E. The
distribution function d : {±1}E × R

E → R of (U, ω) is d(u, ω) = 1
2|E|Φ

+(ω). And we can
start the integration.

P (Uω ∈M) =
∑

U∈{±1}E

∫

Uω∈M

d(u, ω) dω =
∑

U∈{±1}E

∫

ω≥0
Uω∈M

Φ(ω) dω

We used equation 1.1 in the last step. Let us express probability P (x ∈M).

P (x ∈M) =

∫

x∈M

Φ(x) dx

Now, we need to prove that last two expressions are equal. Instead of proving exactly
this equality we prove somewhat general version.

We say that a function f : R
n → R is even if for every x ∈ R

n and every u ∈ {±1}n
hold f(ux) = f(x).

Lemma 3. Let n be a natural number. Let M ⊂ R
n be a measurable set and f ∈ L(M)

be a function. Then
∫

x∈M

f(x) dx =
∑

U∈{±1}n

∫

ω≥0
Uω∈M

f(Uω) dω.

Moreover if the function is even, then
∫

x∈M

f(x) dx =
∑

U∈{±1}n

∫

ω≥0
Uω∈M

f(ω) dω.

Proof. Using substitution y = Uω, we reach

∑

U∈{±1}n

∫

ω≥0
Uω∈M

f(Uω) dω =
∑

U∈{±1}n

∫

Uy≥0
y∈M

f(y) dy.

We need to prove
∫

x∈M

f(x) dx =
∑

U∈{±1}n

∫

Uy≥0
y∈M

f(y) dy.
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If we carefully view the internal integral in the sum, we can see that it integrates over
intersection of one octant and the set M . The sum summarises all octane so the left side
integrate of whole M .

If the function is even, then f(Uω) = f(ω) for all U ∈ {±1}n and ω ∈ R
+n

.

This discussion proves the following theorem:

Theorem 6. Let U ∼ U
[

{±1}E
]

and ω ∼ N+
G and x ∼ NG. Then P (Uω ∈M) =

P (x ∈M) for all measurable set M ⊂ R
E.



CHAPTER 3. RANDOM JOIN 15

Chapter 3

Random join

In this chapter we study the random join on a connected graph G = (V,E). We prove
that the random join between vertices vu and vl is a vu − vl path. We present simpler
way to generate the random join and we compute probabilities of both random joins on
circles.

3.1 A path

In this section we prove a theorem which shows us that it may possible to simplify the
original definition of the random join. We use it to prove that the random join is a path.
We will discuss a significance of the theorem in next section.

The important theorem is:

Theorem 7. Let T1, T2 ∈
(

V

even

)

and ω : E → R be a weight function and J1 and J2 be
arbitrary T1-join and T2-join, respectively. Then J2 is a minimal T2-join with respect to
ω if, and only if, J1 △ J2 is a minimal (T1 △T2)-join with respect to ωJ1.

Proof. Let us start the proof by the left-to-right implication. For contradiction we suppose
that J1 △ J2 is not a minimal (T1 △T2)-join with respect to ωJ1 so there exists a (T1 △T2)-
join J such that ωJ1(J) < ωJ1(J1 △ J2). Using lemma 1 we have

ωJ1(J) < ωJ1(J1 △ J2)

ωJ1((J△ J1)△ J1) < ωJ1(J2 △ J1)

ω(J△ J1) − ω(J1) < ω(J2) − ω(J1)

ω(J△ J1) < ω(J2)

where J△ J1 is a T2-join. It is a contradiction to minimality of the T2-join J2.
The other implication is also proven by contradiction. We suppose that J2 is not a

minimal T2-join with respect to ω. Then there exists a T2-join J of a smaller weight. We
use lemma 1 again

ω(J) < ω(J2)

ω(J) − ω(J1) < ω(J2) − ω(J1)

ωJ1(J△ J1) < ωJ1(J2 △ J1),

but J△ J1 is a (T1 △T2)-join.
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From this theorem it follows that a random join is already a vu − vl path. Let us
introduce notation first. A set T1 ∈

(

V

even

)

and a non-negative weight function ω and
vertices vu and vl are given. We denote T1 △ {vu, vl} by T2 and a minimal Ti-join by Ji,
for i = 1, 2. The random join between vertices vu and vl is J1 △ J2.

Corollary 1. The random join between vertices vu and vl is a vu− vl path for all possible
T1 and ω.

Proof. By theorem 2 we know that ωJ1 has no negative circle since J1 is a minimal T1-join.
By the theorem 7 the random join J1 △ J2 is a minimal (T1 △T2)-join with respect to ωJ1

so the random join is a minimal {vu, vl}-join with respect to ωJ1 . By proposition 7 the
random join is a forest. A forest having exactly two vertices of odd degree must be a
path.

We should write that there exists a minimal (T1 △T2)-join which is a forest as we
discuss bellow the proof of proposition 7. But the probability that a minimal T1-join or
a minimal (T1 △T2)-join are not unique is zero by proposition 8.

3.2 The distribution

In this section we show a simpler way to generate the random join in theorem 8, which is
the most important theorem in this thesis.

Let us consider a weight function ω and a T1-join J1. If we find the shortest vu−vl path
P with respect to ωJ1 , then P is a minimal {vu, vl}-join with respect to ωJ1 . Let us denote
J2 = J1 △P and T2 = T1 △ {vu, vl}. We can see that J1 △ J2 is a minimal (T1 △T2)-join
with respect to ωJ1 , so J2 is a minimal T2-join with respect to ω by theorem 7. Moreover,
if J1 is a minimal T2-join, then P is a random join.

In short, if we find a minimal T1-join J1 with respect to ω and the shortest vu−vl path
P with respect to ωJ1 , then P is a random join. Hence, if we know the weight function
ωJ1 we do not need random variables T and ω to find the random join! It is possible to
generate the random join as the shortest path with respect to weight function ωJ1 . But
what is the distribution function of the weight function ωJ1?

Let us denote by N T
G a distribution function of the weight function ωJ1 which is a

minimal T1-join with respect to ω, where a distribution function of ω is chosen from N+
G ,

and T1 is uniformly chosen from
(

V

even

)

.
The distribution function N T

G is only a formal definition of distribution function ωJ1 .
This original way for generating the random join is too complex and we tried to find a
simpler one. We asked a question: Is it sufficient to find a distribution function of weights
of edges for every edge in the graph G, and choose the weights independently likewise at
the distribution N+

G , or do we need one distribution function for whole graph?
A weight of each edge can be negative in the distribution N T

G , so independently chosen
weights can contains a negative circle. Hence, we need a distribution function which allows
negative weights and forbids negative circles. A direct option is a choice weight function
from NG but omits selections having a negative circle. At first we checked that this option
generates the same weight functions as the original distribution N T

G .
Too often we will need a statement “weight function without a negative circle” in

mathematical formulas. Let us define a predicate NNC (ω) which is true if, and only if, a
weighted graph (V,E, ω) has no negative circle.



CHAPTER 3. RANDOM JOIN 17

Proposition 15. Let us consider

Ω1 =

{

ωT
∣

∣

∣

∣

ω : E → R
+
0 , T ∈

(

V

even

)}

and
Ω2 = {υ : E → R | NNC (υ)} .

Then Ω1 = Ω2.

Proof. Ω1 ⊂ Ω2 follows from theorem 2. Let us consider υ ∈ Ω2. Let us denote J =
{e ∈ E | υ(e) < 0} and TJ =

{

v ∈ V
∣

∣ deg(V,J)(v) is odd
}

and ω(e) = |υ(e)| for all e ∈ E.
It is obvious that J is a TJ -join and ωJ(e) = υ(e) for all e ∈ E.

We prove that J is a minimal TJ -join. For contradiction, let us suppose that J ′ is a
TJ -join such that ω(J ′) < ω(J). Using lemma 1 we have

υ(J△ J ′) = ωJ(J△ J ′) = ω(J ′) − ω(J) < 0.

But J△ J ′ is an Eulerian subset and υ does not contain a negative circle.

We see that our option generates the same weight functions as the original distribution
N T
G . But we do not know whether they have the same distribution functions. We are

going to prove that they do.
We need to define formally a distribution function where weights of edges are cho-

sen from the standard Gaussian distribution but selections having a negative circle are
omitted.

Definition 3. Let G = (V,E, ω) be a weighted connected graph where ω ∼ NG. Let us
denote by PNNC (G) the probability that a weighted graph (V,E, ω) has no negative circle.
We define a distribution function

ΦG(ω) =

{

Φ(ω)
PNNC(G)

if NNC (ω)

0 otherwise

for ω ∈ R
E. We denote a probability space (RE,ΦG) by NNNC

G .

We need to compute a value of PNNC (G), which we will use later.

Proposition 16.

PNNC (G) =
1

2|E|−|V |+1
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Proof. Let us denote a set M =
{

ω ∈ R
E | NNC (ω))

}

.

PNNC (G) =

∫

x∈M

Φ(x) dx

by lemma 3

=
∑

U∈{±1}n

∫

ω≥0
Uω∈M

Φ(ω) dω

by equation 1.1

=

∫

ω≥0

∑

U∈{±1}n

Uω∈M

1

2|E|
Φ+(ω) dω

=
1

2|E|

∫

ω≥0

Φ+(ω)
∣

∣

∣

{

U ∈ {±1}E | NNC (Uω)
}∣

∣

∣
dω

We have to compute a size of
{

U ∈ {±1}E | NNC (Uω)
}

. By definition of ωJ the size

is equal to a size of {J ⊂ E | NNC (ωJ)}. We know that a minimal T -join is unique with
the probability one for all T ∈

(

V

even

)

by proposition 8, and the size is equal to a number
of minimal T-joins by theorem 2. Finally, using proposition 2, we have

PNNC (G) =
1

2|E|

∫

ω≥0

2|V |−1Φ+(ω) dω =
1

2|E|−|V |+1
.

Theorem 8. Probability spaces N T
G and NNNC

G have the same distribution functions for
every connected graph G.

Proof. At first we found a proof of the theorem only for circles. Later we discovered other
observations, which enable us to prove this theorem generally. We would like to show
both proofs. We show a proof for circles at first then a general proof which does not use
the special proof for circles.

We start by proving the theorem for a circle Cn of length n. Let e1 . . . en be edges of
the circle Cn. Let us consider a fixed edge e ∈ E(Cn) and ωT ∼ N T

Cn
and ωNNC ∼ NNNC

Cn
.

The proof for circles does not show that distribution functions of ωT and ωNNC are
the same, but it only shows that distribution functions of ωT (e) and ωNNC(e) are the
same. Distribution functions of weights of edges in the circle Cn are the same because of
symmetry. Hence we will compute distribution functions only for an edge e1.

Let us denote by Z a random variable ωT (e1) where ωT ∼ N T
Cn

. Probability that Z is
less than α is P (Z < α) by definition where α is an arbitrary real number. Let us consider
a random vector (A1, . . . , An) chosen from NNNC

Cn
. What is the probability that A1 is less

than α? It is the conditional probability that A1 < α in the condition that there is no
negative circle. In our case we have only one circle Cn so the condition is

∑n

i=1Ai > 0.
Therefore the probability that A1 is less than α is P (A1 < α |∑n

i=1Ai > 0).1 We need
to prove that for all real number α holds P (Z < α) = P (A1 < α |∑n

i=1Ai > 0).
At first, we express the random variable Z using a set T chosen uniformly from

(

V

even

)

and a weight function chosen from N+
Cn

. Let us consider a fix T ∈
(

V

even

)

. Edges of the

1We should write
∑

n

i=1
Ai ≥ 0, but omission the equality do not change the probability.
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circle Cn are partitioned into two disjoint T -joins J1 and J2. Without lost of generality
we can suppose that J1 contains the edge e1. So we can easily find a minimal T -join for
given weight function. We consider a sign for every edge

Ui =

{

+1 if ei ∈ J1

−1 otherwise.

We can conversely find T for given U1, . . . , Un: a vertex vi ∈ V (Cn), which is adjacent
to edges ei and ei+1, belongs into the set T if, and only if, Ui 6= Ui+1

2. Moreover when
U1 = +1 and we choose Ui ∼ U [{±1}], for i = 2, . . . , n, independently, then appropriate
T is chosen from U

[(

V

even

)]

. So we consider U1, . . . , Un instead of T .
Let X1, . . . , Xn be random variables chosen independently from the positive Gaussian

distribution. Now we express the random variable Z using X1, . . . , Xn and U1, . . . , Un.
From previous paragraph we know that we have exactly two possible T-joins J1 and J2

of weights
∑

i=1,...,n
Ui=1

Xi and
∑

i=1,...,n
Ui=−1

Xi,

respectively. Hence J1 is the minimal T-join if, and only if,
∑n

i=1 UiXi < 0. Because
e1 ∈ J1 we express the random variable Z as

Z =

{

−X1 if
∑n

i=1 UiXi < 0

+X1 otherwise.

Now we compute the probability P (Z < α) using U1, . . . , Un and X1, . . . , Xn. What
is a probability space and a distribution function of those random variables? We know
that U1 = 1 and U2, . . . , Un ∼ U [{±1}] and X1, . . . , Xn ∼ N+. We can omit the random
variable U1 because it is a fixed number. Hence the probability space is {±1}n−1 × R

n.
Random variables are mutually independent so the distribution function which we denote
by f is

f(u2, . . . , un, x1, . . . , xn) =
1

2n−1

n
∏

i=1

φ+(xi).

We denote by x a vector (x1, . . . , xn) and by u a vector (u2, . . . , un) to make notation
simple. We can shortly write f(u, x) = 1

2n−1φ
+(x).

Let us consider that α is a negative real number. The random variable Z is less than

2A vertex vn is adjacent to edges en and e1. Likewise Ui+1 for i = n means U1.
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α when x1 > −α and
∑n

i=1 uixi < 0. Hence the probability P (Z < α) is

P (Z < α) =
∑

u∈{±1}n−1

∫

x1>−α
Pn

i=1 uixi<0

f(u, x) dx

=
∑

u∈{±1}n−1

∫

x1>−α, x>0
Pn

i=1 uixi<0

1

2n−1
φ+(x) dx

using equation 1.1 we have

= 2
∑

u∈{±1}n−1

∫

x1>−α, x>0
Pn

i=1 uixi<0

φ(x) dx

= 2
∑

u∈{±1}n−1

∫

x1<α
x2,...,xn>0

Pn
i=1 uixi>0

φ(x) dx.

We substituted x1 by −x1 and ui by −ui, for i = 2, . . . , n.
Let us consider that α is a non-negative real number. The random variable Z is

between zero and α when x1 < α and
∑n

i=1 uixi > 0.

P (0 < Z < α) =
∑

u∈{±1}n−1

∫

x1<α
Pn

i=1 uixi>0

f(u, x) dx

We are using similar operations.

= 2
∑

u∈{±1}n−1

∫

0<x1<α
x2,...,xn>0

Pn
i=1 uixi>0

φ(x) dx

We can compute the probability P (Z < α) for the non-negative number α by summing
P (Z < 0) and P (0 < Z < α)3:

P (Z < α) = 2
∑

u∈{±1}n−1

∫

x1<α
x2,...,xn>0

Pn
i=1 uixi>0

φ(x) dx.

So we have the same probability in both cases, i.e. for α ∈ R holds

P (Z < α) = 2
∑

u∈{±1}n−1

∫

x1<α
x2,...,xn>0

Pn
i=1 uixi>0

φ(x) dx.

We remember that we must prove the equality P (Z < α) = P (A1 < α |∑n

i=1Ai > 0),
where A1, . . . , An ∼ N . We expressed the left side of the equality. Now, it is time for
the right one. By proposition 12 we known that

∑n

i=1Ai ∼ N (0, n) which imply that
P (
∑n

i=1Ai > 0) = 1
2
. We have

P

(

A1 < α

∣

∣

∣

∣

∣

n
∑

i=1

Ai > 0

)

= 2 P

(

A1 < α&
n
∑

i=1

Ai > 0

)

= 2

∫

a1<α
Pn

i=1 ai>0

φ(a) da.

3The probability that Z is equal to zero is zero.
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When we prove that an equation

∑

u∈{±1}n−1

∫

x1<α
x2,...,xn>0

Pn
i=1 uixi>β

φ(x) dx =

∫

a1<α
Pn

i=1 ai>β

φ(a) da

holds for all natural number n and real numbers α and β, then from the case β = 0 the
theorem follows for all circles Cn. We prove the last equation by induction on n. For
n = 1 the equation has no use for our problem but it obviously holds.

We make an induction step from n to n+ 1.

∑

u2,...,un+1∈{±1}

∫

x1<α
x2,...,xn+1>0
Pn+1

i=1 uixi>β

φ(x) dx

by Fubini theorem

=
∑

un+1∈{±1}

∫

xn+1>0

φ(xn+1)
∑

u2,...,un∈{±1}

∫

x1<α
x2,...,xn>0
Pn

i=1 uixi>
β−un+1xx+1

φ(x1, . . . , xn) dx1 . . . xn dxn+1

using induction

=
∑

un+1∈{±1}

∫

xn+1>0

φ(xn+1)

∫

a1<α
Pn

i=1 ai>β−un+1xx+1

φ(a1, . . . , an) da1 . . . an dxn+1

again Fubini theorem

=
∑

un+1∈{±1}

∫

xn+1>0
a1<α

Pn
i=1 ai>β−un+1xx+1

φ(xn+1)φ(a1, . . . , an) da1 . . . an, xn+1

we substitite xn+1 by un+1an+1

=
∑

un+1∈{±1}

∫

un+1an+1>0
a1<α

Pn
i=1 ai>β−an+1

φ(a) da

=

∫

an+1>0
a1<α

Pn
i=1 ai+an+1>β

φ(a) da+

∫

an+1<0
a1<α

Pn
i=1 ai+an+1>β

φ(a) da

=

∫

a1<α
Pn+1

i=1 ai>β

φ(a) da

Let us prove the theorem for a connected graph G = (V,E). Let us consider a
random set T ∼ U

[(

V

even

)]

and random weight functions ω ∼ N+
G and Z ∼ NNNC

G . It is
sufficient to prove that an equality P

(

ωT ∈M
)

= P (Z ∈M) holds for every measurable
set M ⊂ R

E.
In the beginning of the proof for the circle Cn we showed that we can consider signs Ui

instead of T . We prove a general version of that observation. Let us consider a random

vector of signs U ∼ U
[

{±1}E
]

and a random subset J ∼ U
[

2E
]

.

Lemma. P
(

ωT ∈M
)

= P (ωJ ∈M |NNC (ωJ)) = P (Uω ∈M |NNC (Uω))

Proof. We compute a probability P (NNC (Uω)) at first. The probability is equal to a
probability P (NNC (x)) where x ∼ NG by theorem 6. And this probability is equal to
PNNC (G), which is equal to 1

|E|−|V |+1
by observation 16.
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There is only a formal difference between Uω and ωJ . The weight function ωJ has op-
posite signs on edges which belongs into J , and Uω has opposite sign on edges e whenever
Ue = −1. Random variables U a J have the same distribution functions. Hence, equalities
P (NNC (Uω)) = P (NNC (ωJ)) and P (ωJ ∈M |NNC (ωJ)) = P (Uω ∈M |NNC (Uω))
hold.

Now, we have to prove the following equality.

P
(

ωT ∈M
)

= P (ωJ ∈M |NNC (ωJ))

1

2|V |−1

∫

ω≥0

∑

T∈( V
even)

ωT∈M

Φ+(ω) dω =
1

2|E| P (NNC (ωJ))

∫

ω≥0

∑

NNC(ωJ )
ωJ∈M

Φ+(ω) dω

∫

ω≥0

∑

T∈( V
even)

ωT∈M

Φ+(ω) dω =

∫

ω≥0

∑

NNC(ωJ )
ωJ∈M

Φ+(ω) dω

By theorem 2 the weight function ωJ has no negative circle if, and only if, there exists
T ∈

(

V

even

)

such that J is a minimal T -join. Minimal T-join is unique with probability
one by proposition 8. Hence, a set of all ω for which internal sums are different has zero
measure.

Now, we have to prove that an equality P (Uω ∈M |NNC (Uω)) = P (Z ∈M) holds.
Let us work with the left side of the equality

P (Uω ∈M |NNC (Uω)) =
P (Uω ∈M, NNC (Uω))

P (NNC (Uω))
=

P (Uω ∈M ′)

P (NNC (Uω))

We denote a set {ω ∈M | NNC (M)} by M ′. As we discussed in the proof of the last
lemma, the probability P (NNC (Uω)) is equal to 2|V |−|E|−1.

P (Uω ∈M |NNC (Uω)) = 2|E|+1−|V | P (Uω ∈M ′)

= 2|E|+1−|V |
∑

U∈{±1}E

∫

ω∈R
E

Uω∈M ′

1

2|E|
Φ+(ω) dω

using equation 1.1

= 2|E|+1−|V |
∑

U∈{±1}E

∫

ω≥0
Uω∈M ′

Φ(ω) dω

Let us express the right size of the equality P (Uω ∈M |NNC (Uω)) = P (Z ∈M).

P (Z ∈M) =

∫

z∈M

ΦG(z) dz

=

∫

z∈M ′

Φ(z)

PNNC (G)
dz

= 2|E|+1−|V |

∫

z∈M ′

Φ(z) dz
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Now, it is sufficient to prove

∑

U∈{±1}E

∫

ω≥0
Uω∈M ′

Φ(ω) dω =

∫

z∈M ′

Φ(z) dz

which follows from lemma 3.

3.3 Random join in a circle

In this section we show one example where our simpler way to generate the random join
helps to compute the random join. The example is a circle v1, . . . , va, va+1, . . . , va+b which
we shortly denote by Ca+b. We compute the probabilities of random joins between vertices
va and va+b.

There are only two va − va+b paths in the circle Ca+b. We denote the probability that
the random join use a path va+b, v1, . . . , va−1, va and va+b, va+b−1, . . . , va+1, va by Pa and
Pb, respectively.

Let us compute the probability Pa. By theorem 8 we must compute

Pa = P

(

a
∑

i=1

Ai <

b
∑

i=1

Bi

∣

∣

∣

∣

∣

a
∑

i=1

Ai +
b
∑

i=1

Bi > 0

)

where A1, . . . , Aa and B1, . . . , Bb are independently chosen from the standard Gaussian
distribution. By lemma 12 we know that

∑a

i=1Ai ∼ N (0, a) and
∑b

i=1Bi ∼ N (0, b).
Hence, it is sufficient to compute

Pa = P (x < y |x+ y > 0)

where x ∼ N (0, a) and y ∼ N (0, b).
Now, it is time for integration.

Pa = P (x < y |x+ y > 0)

= 2

∫

x<y
x+y>0

φ0,a(x)φ0,b(y) dxy

= 2

∫

x<y
x+y>0

1

2π
√
ab
e
− 1

2

„

x2

a
+ y2

b

«

dxy

We use the ellipse substitution ψ(r, α) = (r cos(α)
√
a, r sin(α)

√
b). The integration

after substitution is an integral over a set

ψ−1(
{

(x, y) ∈ R
2 | x < y, x+ y > 0

}

) =
{

(r, α) ∈ R
+ ×M

}

where M =
{

α ∈ (−π, π)
∣

∣

∣
cos(α)

√
a < sin(α)

√
b, cos(α)

√
a+ sin(α)

√
b > 0

}

.
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We can use the Fubini theorem after substitution.

Pa =

∫

R+×M

1

π
r e−

1
2
r2 drα

=
1

π

∫

M

∫

R+

r e−
1
2
r2 dr dα

=
1

π

∫

M

1 dα

=
1

π
λ(M)

Now, we compute the measure of the set M . We need to express its two inequalities.
Let us start by the first one.

cos(α)
√
a < sin(α)

√
b

√

a

a+ b
cos(α) <

√

b

a+ b
sin(α)

sin(β) cos(α) < cos(β) sin(α)

sin(α− β) > 0

α ∈ (β, π + β)

We denoted
√

a
a+b

by sin(β). Readers can deduce that the equality cos(β) =
√

b
a+b

holds.

Then we used well-know equality

sin(p± q) = sin(p) cos(q) ± cos(p) sin(q).

We express the second inequality in the definition of the set M . The computing is
similar so we shorten it.

cos(α)
√
a+ sin(α)

√
b > 0

sin(α+ β) > 0

α ∈ (−β, π − β)

If we get those conditions together, we get that M = (β, π − β). Hence,

Pa =
1

π
λ(M) =

π − 2β

π
= 1 − 2

π
arcsin

√

a

a+ b

and

Pb =
2

π
arcsin

√

a

a+ b
.

From symmetry

Pa =
2

π
arcsin

√

b

a+ b
.

We can accept the expressions as a result, but an arcsine of a square root of a fraction
is too ugly for us. We do not know how we can get rid of the arcsine, but we can remove
the square root from our expressions. We use an equality

arcsin(p) ± arcsin(q) = arcsin
(

p
√

1 − q2 ± q
√

1 − p2
)

,
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which we found in Bartsch [17].
Using this equation we get that Pa + Pb = 1, which is not a discovery for us but

computing the difference is interesting.

Pa − Pb =
2

π
arcsin

b− a

a+ b

When we sum up the last two equalities, we reach better formulas.

Pa =
1

2π

(

π + 2 arcsin
b− a

a+ b

)

Pb =
1

2π

(

π − 2 arcsin
b− a

a+ b

)

Those formulas depend only on quotient of a and b. Let us denote p = a
a+b

. If we
substitute p into last two formulas we get

Pa =
1

2π
(π + 2 arcsin(1 − 2p))

Pb =
1

2π
(π − 2 arcsin(1 − 2p)) .
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Chapter 4

Algorithm

In this chapter we propose a special algorithm which finds the random join for a given
weighted lattice and an even subset T of vertices.

We consider a connected weighted graph G = (V,E, ω) where ω is a non-negative
weight function and an even set of vertices T in this chapter. The algorithm is optimised
for the weighted lattice where a weight function is chosen from N+

G but it works for a
general connected graph.

4.1 Known algorithm

In this section we explain the known reduction a minimum T-join problem into a minimum
weight perfect matching problem, and we show a list of known algorithms for the minimum
weight perfect matching problem.

Let us describe the minimum weight perfect matching problem, which is significant for
our T-join problem. A matching in a graph G = (V,E) is a set M of such edges that
no vertex of G is incident with more than one edge in M . Given a matching M , we say
that M covers a vertex v (or that v is M -covered) if some edge of M is incident with
V . Otherwise, v is M-exposed. A maximum matching is one of maximum cardinality. A
perfect matching is one that covers all the vertices. Finally, we want a perfect matching
having minimum weight with respect to some given edge-weights. The first problem is
to decide whether a graph has a perfect matching. But we will solve this problem for a
complete graph on even number of vertices, which always has a perfect matching.

In 1965, Edmonds [9] invented the famous blossom-shrinking algorithm, which solves
the weighted perfect matching problem in polynomial time. A straightforward implemen-
tation of the blossom-shrinking algorithm, as originally proposed by Edmonds himself,
requires time O(n2m), where n and m are the numbers of vertices and edges of G, re-
spectively. Since then, the worst-case complexity of the blossom-shrinking algorithm has
been improved successively: both Lawler [10] and Gabow [11] achieved a running time of
O(n3). Galil, Micali and Gabow [13] improved the running time to O(nm log n) and fi-
nally Gabow [12] achieved a running time O(n(m+n log n)). Somewhat better asymptotic
running times are known for integral edge weights.

The minimum weight perfect matching problem is very deep and we will not study it.
Our problem is how to reduce given minimum T-join problem into the minimum weight
perfect matching problem. The well-known reduction is written in Cook’s book [4]:
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Step 1: Find the shortest u− v-path Puv with respect to a weight function ω for
each pair u, v of vertices from T . Let d(u, v) be the weight of Puv.

Step 2: Form a complete graph G′ = (T,E ′) with uv heaving weight d(u, v) for
each uv ∈ E ′. Find a minimum-weight perfect matching M in G′.

Step 3: The symmetric difference of the edge-sets of paths Puv, for uv ∈ M , is
the minimum T-join.

4.2 Basic idea

Let us suppose that we would like to find the random join in a finite lattice which has at
least 1000 rows and 100 columns for some experiments. If we use the classical reduction
from the minimum T-join problem into the minimum weight perfect matching problem in
a complete graph, we reach a graph which has approximately 105 vertices and 1010 edges.
But this way is too time- and memory-consuming.

Fortunately, the weighted lattice has special properties. For example, for the most
real-life problems the weights of edges satisfy the triangle non-equality. But every face
but the external one in our lattice has 33% chance that one edge is heavier than the sum
of weights of other edges of the face. It is easy to see that the heavier edge must not be a
member of a minimal T-join so it can be removed from the lattice. The main idea of the
algorithm consists in simplification of the lattice.

The algorithm is able to find the random join only in a small lattice, i.e. approxi-
mately 20 × 20 vertices. It is still necessary to find a minimal T-join in a graph which is
much smaller. We recommend to use a reduction into minimum weight perfect matching
proposed by Berman and Kahng and Vidhani and Zelikovsky [3] instead of the classical
reduction described in previous section.

There are three useful operations on a graph G = (V,E) which we use in the algorithm.

Deleting an edge e: G \ e = (V,E \ {e}) We simply remove the edge e.

Deleting a vertex v: G \ v = G[V \ {v}] We remove the vertex v and all edges incident
with v.

Contracting an edge e = {u, v}: We identify the vertices u and v and remove all re-
sulting loops and duplicate edges. We denote the new graph by G.e.

4.3 Simple operations

We will describe several operations which simplify a given graph. Each operation modifies
the weighted graph G = (V,E, ω) and the even set of vertices T into a weighted graph
G′ = (V ′, E ′, ω′) and an even set of vertices T ′. We say that an operation decreases
weights of T-joins by x if there exists such one-to-one correspondence between T -joins in
G and T ′-joins in G′ that for every T -join J in G and for the corresponding T ′-join J ′ in
G′ holds ω(J)−x = ω′(J ′). If x = 0, we say that the operation retains weights of T-joins.

In the previous section we mentioned the operation of removing a heavy edge. This
operation does not retain all T-joins, but only minimal T-joins, which is sufficient for
us. Formally, we say that an operation decreases weights of minimum T-joins by x if the
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one-to-one correspondence is only between minimal T -joins in G and minimal T ′-joins
in G′. The following definition and theorem explain what removing heavy edge exactly
means.

Definition 4. Edge e is called heavy edge of a circle C if ω(e) > ω(C \ {e}). Edge e is
called heavy if there exists such circle C that edge e is a heavy edge of the circle C.

Theorem 9. Let edge e be a heavy edge of circle C. Then the edge e cannot be used in a
minimal T -join, i.e. removing heavy edge retains weights of minimal T-joins.

Proof. For contradiction we suppose that a minimal T -join J contains a heavy edge e of
circle C. Let us denote J ′ = J△C. J ′ is a T -join of weight

ω(J ′) = ω(J△C) = ω(J \ C) + ω(C \ J) ≤ ω(J \ {e}) + ω(C \ {e})
= ω(J) − ω(e) + ω(C \ {e}) < ω(J).

Which is contradiction to minimality of J .

We could define that an edge e is a heavy edge of a circle C if ω(e) ≥ ω(C \ {e}).
When the equality holds and a minimal T -join J use the edge e, then J△C is also a
minimal T -join. When we delete the edge e by theorem 9, then we omit the minimal
T -join J . It is not a problem when we are looking for an arbitrary minimal T -join, but
we could not say that removing heavy edge retains weight of minimal T-joins.

In our lattice we have four vertices of degree two and some vertices of degree three
and a lot of vertices of degree four. When we remove all heavy edges from the lattice the
number of vertices of small degree increases. We can easily remove vertices of degree one
and two by following observations.

Let us start by removing vertices of degree one.

Theorem 10. Let v be a vertex of degree one and e = {v, u} be the unique edge. Denote
G′ = G \ v and

T ′ =

{

T if v /∈ T

T △ {v, u} otherwise.

If v ∈ T and v /∈ T , then this operation decreases weights of T-joins by ω(e) and zero,
respectively.

Proof. If v /∈ T , then the edge e cannot be used in any T -join so we can use trivial one-
to-one correspondence between T-joins to prove this theorem. If v ∈ T , then the edge e
must be used in every T -join and the correspondence removes only the edge e from every
T -join.

Now, we let us see how we remove vertices of degree two. The removing depends on
whether the vertex belongs into T or not.

Theorem 11. Let us consider a vertex v of degree two which does not belong into T and
the incident edges e1 = {v, u1} and e2 = {v, u2}. Let G′ be a graph (V \{v} , E ′\{e1, e2}∪
{e}) where a new edge e = {u1, u2} has weight ω(e1) +ω(e2). Then this operation retains
weights of T-joins.
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Figure 4.1: The triangle-star transfiguration in electronic

Proof. We know that both edges e1 and e2 or neither is used in every T -join. For given
T ′-join J ′ in G′ we define a corresponding T -join J in G by formula

J =

{

J ′ if e /∈ J ′

J ′ ∪ {e1, e2} \ {e} otherwise.

Actually, the last operation does not remove vertex v but it only contracts one of the
edges incident to v. The following operation for a vertex which belongs to T is similar,
but the weight of the new edge is different.

Theorem 12. Let us consider vertex v of degree two which belongs to T and the incident
edges e1 = {v, u1} and e2 = {v, u2} such that ω(e1) ≥ ω(e2). Let G′ be a graph (V \
{v} , E ′ \ {e1, e2} ∪ {e}) where a new edge e = {u1, u2} has a weight ω(e1) − ω(e2) and
T ′ = T △ {v, v1}. Then this operation decreases weights of T-joins by ω(e2).

Proof. We know that exactly one of the edges e1 and e2 is used in every T -join. For given
T ′-join J ′ in G′ we define a corresponding T -join J in G by formula

J =

{

J ′ ∪ {e2} if e /∈ J ′

J ′ ∪ {e1} \ {e} otherwise.

It is possible that graph G already had edge {u1, u2} and thus we get a multiple edge.
One of the multiple edges must be heavy and we can remove it. But we have another
way which is more useful in practice: A multiple edge can be created only by contracting
an edge in a triangle, but we forbid any triangle. How we can forbid it? We change a
triangle into a vertex of degree three by the following triangle-star transfiguration.

4.4 The triangle-star transfiguration

A theorem which is inspired with the triangle-star transfiguration from electronic (see
figure 4.1) can be sometimes useful. We do not need any knowledge from physics. In this
section we show how we can exchange a triangle and a star.
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u

v1 v1

v2 v2v3 v3

e1

e3e2

e13

e23

e12

Figure 4.2: The triangle-star transfiguration

Theorem 13. Let u /∈ T be a vertex of degree 3 and its adjacent edges ei = {u, vi}, for i
= 1, 2, 3, having positive weights (see figure 4.2). Operation star-triangle transfiguration
creates graph G′ from graph G by removing vertex u and adding edges eij = {vi, vj} of
weight ω′(eij) = ω(ei) + ω(ej), for 1 ≤ i < j ≤ 3. This operation retains weights of
minimal T-joins.

Proof. We know that exactly two of the star’s edges, or none, belong into T -joins. If
no edge of the star is in the T -join, then the corresponding T ′-join does not contain any
of triangle’s edges. When exactly two edges ei and ej belong into the T -join, then the
corresponding T ′-join uses edge eij. The corresponding T-joins have the same weights.

We should also discuss that there is no other minimal T ′-join in the graph G′. The
graph G′ have T ′-joins J ′ which contain more than one triangle’s edges. But ω′(J ′ △C3) <
ω′(J ′), where C3 denotes the triangle because the triangle-inequality holds for the triangle.
Hence, J ′ is not a minimal T ′-join.

This transfiguration can be done in reverse.

Theorem 14. We consider a triangle on vertices v1 and v2 and v3. Let G′ be a graph G
after the triangle-star transfiguration which is reverse to the star-triangle transfiguration
described in previous theorem. The weights of the star’s edges are

ω′(ei) =
ω(eij) + ω(eik) − ω(ejk)

2
,

for {i, j, k} = {1, 2, 3}. If the triangle inequality holds for weights of triangle’s edges, then
this operation also retains weights of minimal T-joins.

Proof. At the most one triangle’s edge belongs into minimal T -join because the triangle
inequality holds. If no edge belong into the T -join, then the corresponding T ′-join has
no star’s edge. If edge eij is used in the T -join, then edges ei and ej belong into the
corresponding T ′-join. From equality

ω′(ei) + ω′(ej) =
ω(eij) + ω(eik) − ω(ejk)

2
+
ω(eij) + ω(ejk) − ω(eik)

2
= ω(eij)

it follows that the corresponding minimal T-joins have the same weights.
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There is a condition that “the triangle inequality holds for weights of triangle’s edges”
in the last theorem. But this condition does not bother us because if it does not hold,
then one of the triangle’s edges is heavy and we can remove it.

If we transfigure a triangle into a star and the new star into a triangle, then we reach
the same graph as we had before.

It is better store a graph with stars instead of triangles because our operations mostly
prefer vertices of a smaller degree. As you will see in the following section, it is sometimes
better to imagine that we have a triangle instead of a star.

4.5 Complex operations

In this section we show the operations on vertices of a degree three.
We say that a couple of edges e and f is heavy if there exists a circle C containing both

edges e and f , and ω(e)+ω(f) > ω(C \{e, f}). Our lattice is created by tetragons. Every
tetragon has six couples of edges - three pairs of complementary couples. Therefore, there
exist three heavy couples of edges. That is the reason to study them.

Let us start with a vertex u of degree three such that u /∈ T . Let us suppose that
the couple of edges ei = {u, vi} and ej = {u, vj} is heavy on circle C, see figure 4.2.
When we transfigure this star into a triangle, then an edge eij is heavy on the circle
C \ {ei, ej} ∪ {eij}. Hence, we may transfigure this star into a triangle and remove the
edge eij.

What we can say about a similar situation in which the vertex u belongs into T? We
cannot triangulate this star. We only know that both edges ei and ej, which create the
heavy couple, cannot be used in minimal T-joins. But this fact is important as explained
by the following lemma.

Lemma 4. Let a vertex u ∈ T of degree 3 be incident to edges e1 and e2 and e3 and
edges e1 and e2 belong into a circle C. Let x be a real number, which satisfies 0 < x ≤
min {ω(e1), ω(e2), ω(e3)} and

ω(e1) + ω(e2) > ω(C \ {e1, e2}) + 2x.

Let us denote ω′(ei) = ω(ei) − x, for i = 1, 2, 3. Then this operation decreases minimal
T-joins by x.

Proof. Because u ∈ T , exactly one or three edges, which are incident with the vertex u,
belong into a T -join. The couple of edges e1 and e2 is heavy in both graphs G and G′

so this couple cannot be used in a minimal T -join in those graphs. Hence, exactly one
edge belongs into a minimal T -join in both graphs and the trivial correspondence between
minimal T-joins decreases their weights by x.

Increasing version of last lemma also holds when we change condition “a couple of edges
e1 and e2 is heavy after decreasing” to “a couple of edges is heavy before increasing”. But
we did not find any situation where it was useful.

The last lemma is very useful when it holds for x = min {ω(e1), ω(e2), ω(e3)}. When
the edge e3 has the smallest weight, then we can decrease weights by x = ω(e3) and the
edge e3 gets a zero weight and it can be contracted by the following lemma.
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Lemma 5. Let the edge e = {u, v} have a zero weight. Let G′ = G.e and

T ′ =

{

T \ {u, v} if u ∈ T ⇔ v ∈ T

T \ {u, v} ∪ {z} otherwise

where z /∈ V (G) means a vertex created by contracting the edge e. This operation retains
weights of T-joins.

Proof. For given T -join J in the graph G a corresponding T ′-join J ′ in the graph G′ does
not contain edge e and every edge in J which is adjacent with vertices u or v is replaced
by a corresponding edge in the graph G′.

But happens if the edge e1 has the smallest weight among edges incident with the
vertex u? From the inequality

ω(e2) = ω(e1) +ω(e2)− x > ω(C \ {e1, e2}) + 2x− x = ω(C \ e2)−ω(e1) + x = ω(C \ e2).

It follows that the edge e1 is a heavy on the circle C. Similarly, if edge e2 is the smallest,
then the edge e1 is heavy. Hence, this case is not interesting because theorem 9 covers it.

Corollary 2. Let a vertex u ∈ T of degree 3 be incident to edges e1 and e2 and e3 and
edges e1 and e2 belong into a circle C. Suppose that ω(e3) ≤ ω(e1) and ω(e3) ≤ ω(e2) and

2(ω(e1) + ω(e2) − ω(e3)) > ω(C).

If we decrease weights of edges e1 and e2 by ω(e1) and we contract the edge e3, then we
decrease minimal T-joins by ω(e3).

4.6 Implementation notices

There is a natural question whether the main theorem 8 is useful in experiments, i.e.
whether it is possible to generate the random join so that we choose the weight function
ω from NNNC

G and we find the shortest path with respect to ω.
There are two important problems: How do we generate the weight function and how

do we find the shortest path.
Generating the weight function by the definition of NNNC

G is too time-consuming. The

probability that a weight function chosen from NG has no negative circle is 2
1

|E|−|V |+1 by
proposition 16.

We cannot use Dijkstra’s algorithm to find the shortest path because Dijkstra’s al-
gorithm requests non-negative weights. Fortunately, the weight function has no negative
circle otherwise the shortest path problem is NP-complete. The Bellman-Ford algorithm
is suitable for our problem. It is described in Wikipedia [18] and in a book [19]. The time
complexity of the Bellman-Ford algorithm is |V ||E|.

Another question is whether it is necessary to find two minimal T-join, as requested
by the definition of the random join. It is possible to find both minimal T-joins at once
by our algorithm! We can save both T1 and T2 as bit-mask in each vertex. We have at
most two vertices which belong into exactly one of sets T1 and T2. We cannot do some
operations on those vertices because the results of those operations depend on T. But it
does not worry so much because our operations make only local changes.
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