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Abstract. The d-dimensional hypercube graph Qd has as vertices all subsets of {1, . . . , d},
and an edge between any two sets that differ in a single element. The Ruskey-Savage conjecture
asserts that every matching of Qd, d ≥ 2, can be extended to a Hamilton cycle, i.e., to a cycle
that visits every vertex exactly once. We prove that every matching of Qd, d ≥ 2, can be
extended to a cycle that visits at least a 2/3-fraction of all vertices.

1. Introduction

Cycles and matchings in graphs are structures of fundamental interest. In this paper, we
consider these structures in hypercubes, a family of graphs that has been studied widely in
computer science and mathematics. Specifically, the d-dimensional hypercube Qd is the graph
whose vertices are all subsets of [d] := {1, . . . , d} and whose edges connect sets that differ in a
single element; see Figure 1 (a). It is well-known and easy to show that Qd, d ≥ 2, admits a
Hamilton cycle, i.e., a cycle that visits every vertex exactly once. Clearly, any Hamilton cycle
in Qd is the union of two perfect matchings. A matching in a graph is a set of edges that are
pairwise disjoint, and a matching is perfect if it includes every vertex of the graph.

30 years ago, Ruskey and Savage [RS93] asked whether every matching of Qd can be extended
to a Hamilton cycle. This became known as the Ruskey-Savage conjecture.
Conjecture 1 ([RS93]). Every matching of Qd, d ≥ 2, can be extended to a Hamilton cycle.

This problem received considerable attention, and several natural relaxations have been proved.
In particular, Fink [Fin07] settled the conjecture affirmatively for the case when the prescribed
matching is perfect, thereby answering a problem due to Kreweras [Kre96]; see Figure 1 (b). In
fact, Fink established a considerable strengthening, obtained by considering the graph K(Qd),
which is the complete graph on the vertex set of Qd. In this context, we say that a matching M
of K(Qd) extends to a Hamilton cycle C (or some other structure) if all edges in C \ M belong
to Qd. Put differently, while the matching M may use arbitrary edges of K(Qd), including
edges not present in Qd, the edges C \ M used for the extension are required to be edges of the
hypercube Qd (otherwise C would trivially be present in the complete graph).
Theorem 2 ([Fin07]). Every perfect matching of K(Qd), d ≥ 2, can be extended to a Hamilton
cycle.

In fact, the strengthening to consider K(Qd) instead of Qd is the key idea to Fink’s proof,
as it makes the induction hypothesis stronger and thus more flexible. This construction
actually shows that every perfect matching of K(Qd) can be extended to at least 22d−4 distinct

(Jiří Fink) Department of Theoretical Computer Science and Mathematical Logic, Charles
University, Prague, Czech Republic

(Torsten Mütze) Department of Computer Science, University of Warwick, United Kingdom
& Department of Theoretical Computer Science and Mathematical Logic, Charles University,
Prague, Czech Republic

E-mail addresses: fink@ktiml.mff.cuni.cz, torsten.mutze@warwick.ac.uk.
An extended abstract of this paper appeared in the Proceedings of IWOCA 2024 [FM24].
This work was supported by Czech Science Foundation grant GA 22-15272S. Both authors participated in

the workshop ‘Combinatorics, Algorithms and Geometry’ in March 2024, which was funded by German Science
Foundation grant 522790373.

1



2 MATCHINGS IN HYPERCUBES EXTEND TO LONG CYCLES

M ′

(d)

M ′

(e)

M ′

(f)

M ′

(c)

(a)

Q4

∅

2

3

12

23 123

4

124

1234

34

M

(b)

13 134

141

24

234

Figure 1. Cycles and matchings in the hypercube Q4: (a) a Hamilton cycle, where the
vertex labels omit curly brackets and commas for conciseness; (b) a perfect matching M
and an extension of M to a Hamilton cycle; (c) a maximal, but not perfect matching M ′;
(d) an extension of M ′ to a cycle factor with two cycles; (e) an extension of M ′ to a
(non-Hamilton) cycle; (f) an extension of M ′ to a Hamilton cycle, obtained by joining the
two cycles in (d).

Hamilton cycles. This proof technique has been exploited in several subsequent papers (see
e.g. [Gre09, GNŠ18, AAA+15]), and we will also use it heavily in our arguments.

Clearly, not every matching in Qd is perfect or extends to a perfect matching. In other words,
there are (inclusion-)maximal matchings in Qd that are not perfect; see Figure 1 (c). Therefore,
Theorem 2 leaves open the question whether every (not necessarily perfect) matching extends to
a Hamilton cycle; see Figure 1 (f). Dvořák and Fink [DF19] obtained some positive evidence for
small matchings.

Theorem 3 ([DF19]). Every matching of Qd, d ≥ 2, with at most d2/16 + d/4 edges can be
extended to a Hamilton cycle.

Another relaxation of the Ruskey-Savage conjecture, proposed by Vandenbussche and West [VW13],
is to consider extensions to a cycle factor , i.e., a collection of disjoint cycles that together visit
all vertices of the graph; see Figure 1 (d). This variant of the problem was also settled by
Fink [Fin19].

Theorem 4 ([Fin19]). Every matching of Qd, d ≥ 2, can be extended to a cycle factor.
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1.1. Our results. In this paper we prove that every matching of Qd extends to a single cycle C.
However, C possibly omits some vertices of Qd, i.e., C is not necessarily a Hamilton cycle; see
Figure 1 (e). Our theorem also holds in the stronger setting of the complete graph K(Qd).

Theorem 5. Every matching of K(Qd), d ≥ 2, can be extended to a cycle.

Furthermore, we can give some guarantee about the length of the cycle obtained from our
construction, namely that it visits a constant fraction of the vertex set V (Qd). This follows by
using that any matching can be extended to a matching that contains a constant fraction of all
vertices.

Theorem 6. Every matching of Qd, d ≥ 2, can be extended to a cycle of length at least 2
3 |V (Qd)| =

2d+1/3.

Theorem 7. Every matching of K(Qd), d ≥ 2, can be extended to a cycle of length at
least 1

2 |V (Qd)| = 2d−1.

Our results are another step towards the Ruskey-Savage conjecture, and we want to point out
an analogy to the middle levels conjecture, which asserts that the subgraph of Q2d+1 induced
by all sets of size d or d + 1 admits a Hamilton cycle. Historically, Felsner and Trotter [FT95],
Savage and Winkler [SW95], and Johnson [Joh04] first established the existence of long cycles in
this graph, and their work subsequently led to a proof of the middle levels conjecture [Müt16].

We also note that not every matching of K(Qd) can be extended to a Hamilton cycle, or a
cycle factor. In fact, any matching in K(Qd) between all vertices of the same parity has the
property that any cycle extending it includes only half of the vertices from the other parity, so it
has only length 3

4 |V (Qd)|. The parity of a vertex u of Qn is the parity of |u|, i.e., of the size
of the set u. In particular, in K(Q2), the matching with the single edge (∅, {1, 2}) can only be
extended to a cycle of length 3.

Clearly, if a matching M of K(Qd) is extendable to a Hamilton cycle, then M has the same
number of vertices of each parity. Note that every matching of B(Qd) satisfies this condition,
where B(Qd) is the complete bipartite graph obtained from Qd by adding all edges between
vertices of opposite parity. However, Dvořák and Fink [DF19] showed that this condition is
not sufficient, by constructing a matching of B(Qd) for d ≥ 9 which cannot be extended to a
Hamilton cycle, or a cycle factor.

To prove Theorem 5 inductively, we use the following auxiliary theorem, which yields a
cycle that extends a given matching but also avoids one ‘forbidden’ vertex z, i.e., avoiding z
is an additional constraint imposed on the cycle. Using that Qd is vertex-transitive, we may
assume w.l.o.g. that the forbidden vertex is z = ∅. The following theorem requires some
additional conditions, and to state them we need to introduce some notation: We split Qd in
a direction i ∈ [d] into subgraphs Qi

0 and Qi
1, where Qi

1 is the subgraph induced by vertices
of Qd containing i and Qi

0 is the subgraph induced by vertices of Qd not containing i. Note
that z ∈ V (Qi

0) for every i ∈ [d]. The set of edges of Qd that have one end vertex in Qi
0 and

the other in Qi
1 is called a layer in direction i. This set splits into two equal-sized sets of edges,

depending on the parity of their end vertices in Qi
0, and we refer to each of these two sets of

edges as a half-layer . In this way, all d2d−1 edges of Qd are partitioned into d many layers, each
of cardinality 2d−1, or 2d many half-layers, each of cardinality 2d−2.

Theorem 8. Let d ≥ 5. A matching M of K(Qd) that avoids z = ∅ can be extended to a cycle
that avoids z if and only if it satisfies the following condition:
(H) for every i ∈ [d], if M contains a half-layer in direction i, then there is a vertex u ∈ V (Qi

0)\{z}
that is avoided by M .

We remark that the statement of Theorem 8 is true for d = 2 and d = 3, but false for d = 4,
and all counterexamples can be seen in [GNŠ18, Figs. 7–9].
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In the following we will repeatedly refer to the condition on M stated in Theorem 8 as
property (H). Note that this property depends on Qd, M and z, but for simplicity we do not
make this dependence explicit, as the context should always be clear later when we apply the
theorem to subcubes Qi

0 and Qi
1 for some i ∈ [d], certain matchings in those subcubes, and

certain vertices to avoid in them. Note that the vertex u must have the same (even) parity as z,
as all vertices in Qi

0 of the opposite (odd) parity are covered by the half-layer.
We show that Theorem 5 follows from Theorem 8 for any fixed dimension d ≥ 5, and we prove

Theorem 8 by induction on d. The base case d = 5 for Theorem 8 is settled with computer help.

1.2. Applications to Hamilton-laceability. The hypercube Qd is Hamilton-laceable, i.e., it
admits a Hamilton path between any two prescribed end vertices of opposite parity [Sim78].
Gregor, Novotný, and Škrekovski [GNŠ18] considered laceability combined with matching
extensions. Specifically, they considered the problem of extending a perfect matching of Qd to a
Hamilton path between two prescribed end vertices with opposite parity. Their proof works in
the more general setting of the complete bipartite graph B(Qd). For a matching M of Qd and
one of its vertices x, we write xM for the other end vertex of the edge of M incident with x.

Theorem 9 ([GNŠ18, Thm. 2]). Let d ≥ 5, and let x, y be two vertices of opposite parity in Qd.
A perfect matching M of B(Qd) with xy /∈ M can be extended to a Hamilton path with end
vertices x and y if and only if (M \ {xxM , yyM }) ∪ {xM yM } contains no half-layers.

The following is an equivalent reformulation of this theorem.

Theorem 10 ([GNŠ18, Thm. 3]). Let d ≥ 5, and let x, y be two vertices of opposite parity
in Qd. A perfect matching M of B(Qd \ {x, y}) can be extended to a cycle that avoids x and y
if and only if M contains no half-layers.

In this theorem, Qd \ {x, y} represents the graph obtained from Qd by removing the two
vertices x and y.

The authors also conjectured the strengthenings of Theorems 9 and 10 obtained by replacing
B(Qd) and B(Qd \ {x, y}) by K(Qd) and K(Qd \ {x, y}), respectively. In fact, these stronger
versions follow easily from our Theorem 8, settling the conjecture raised by Gregor, Novotný,
and Škrekovski.

Theorem 11. Let d ≥ 5, and let x, y be two vertices of opposite parity in Qd. A perfect
matching M of K(Qd) with xy /∈ M can be extended to a Hamilton path with end vertices x
and y if and only if (M \ {xxM , yyM }) ∪ {xM yM } contains no half-layers.

We prove the following equivalent reformulation of this theorem.

Theorem 12. Let d ≥ 5, and let x, y be two vertices of opposite parity in Qd. A perfect
matching M of K(Qd \ {x, y}) can be extended to a cycle that avoids x and y if and only if M
contains no half-layers.

1.3. Avoiding and including other structures. In the literature, there has also been
substantial work on extending sets of edges E other than matchings to Hamilton cycles. In
addition, there is interest in avoiding certain sets F of ‘forbidden’ edges. These questions are
motivated by applications in computer networks, where the hypercube is frequently used as a
network topology with a number of desirable properties, such as small degree and diameter. In
this context, including or avoiding certain edges corresponds to prescribed connections or faulty
connections, respectively.

Dvořák [Dvo05] showed that for any set E of at most 2d − 3 edges in Qd, d ≥ 2, that form
disjoint paths, there is a Hamilton cycle that contains all of E; see Figure 2 (a). Dvořák and
Gregor [DG07] proved that for any set E of at most 2d − 4 edges in Qd, d ≥ 5, that form disjoint
paths and two vertices x and y of opposite parity that are neither internal vertices of the paths
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Figure 2. Illustration of Hamilton cycles in Qd, d = 4, subject to various constraints:
(a) a set E of 2d − 3 = 5 edges and a Hamilton cycle extending it; (b) a set F of 2d − 5 = 3
edges and a Hamilton cycle avoiding it; (c) a perfect matching M and a Hamilton cycle
avoiding it; (d) a set F of

(d
2
)

− 2 = 4 vertices and a cycle of length 2d − 2|F | = 8 avoiding
it.

nor end vertices of the same path, there is a Hamilton path with end vertices x and y that
contains all of E.

We now consider the problem of avoiding a set F of ‘forbidden’ edges. In this direction,
Latifi, Zheng and Bagherzadeh [LZB92] showed that for any set F of at most d − 2 edges in Qd,
there is a Hamilton cycle that avoids F . Chan and Lee [CL91] proved that for any set F of at
most 2d − 5 edges in Qd, d ≥ 3, such that every vertex of Qd is incident to at least two edges not
in F , there is a Hamilton cycle that avoids F (see also [LW14]); see Figure 2 (b). With regards
to perfect matchings, Dimitrov, Dvořák, Gregor and Škrekovski [DDGŠ09] proved that for a
given perfect matching M of Qd, there is a Hamilton cycle that avoids M if and only if Qd \ M
is a connected graph; see Figure 2 (c).

Interestingly, the bounds 2d−3, 2d−4, d−2, 2d−5 in the aforementioned results on extending
or avoiding certain sets of edges are all best possible, i.e., prescribing or forbidding more edges
sometimes leads to situations where the desired Hamilton cycle or path does not exist.

Instead of forbidding edges, one may also consider the problem of forbidding certain vertices.
To this end, Fink and Gregor [FG12] proved that for any set F of at most

(d
2
)

− 2 vertices of Qd,
d ≥ 3, there is a cycle of length at least 2d − 2|F | that avoids all vertices in F ; see Figure 2 (d).
Their result answers a conjecture by Castañeda and Gotchev [CG10], and the bound

(d
2
)

− 2
is best possible. Note that if we forbid some number of vertices of the same parity, then any
extending cycle will also skip the same number of vertices of the opposite parity. This explains
that we need to allow skipping 2|F | many vertices instead of only |F |.

1.4. Other restricted Gray codes. Hamilton cycles and paths in the hypercube are often
referred to as Gray codes [Müt23, Sav97]. In this setting, we view the vertices of the hypercube
as bitstrings of length n, given by the indicator vectors of the corresponding subsets. The
well-known binary reflected Gray code, named after the Bell Labs researcher Frank Gray, is
a particularly elegant construction of such a cycle that lends itself well to fast algorithmic
computation, optimally so that each bit flipped is computed in constant time. In addition to
the work discussed in the preceding section about Gray codes that include or avoid certain
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substructures, there has been a large amount of work on Gray codes that satisfy various other
kinds of constraints, motivated by different applications:

• balanced Gray codes [BS96], where each bit is flipped equally often;
• non-local Gray codes [Ram90], where any 2t consecutive bitstrings flip more than t distinct

bits, for every 2 ≤ t ≤ n − 1;
• run-length restricted Gray codes [GG03], where any two consecutive flips of the same bit are

almost n steps apart;
• antipodal Gray codes [KS04], where the complement of any bitstring x is visited exactly n

steps before or after x;
• monotone Gray codes [SW95], where the Hamming weight of the bitstrings never decreases

by more than 2 from what it was before along the code;
• transition restricted Gray codes [BR96, DDGŠ13], where the pairs of consecutively flipped

bits are edges of a certain transition graph;
• Beckett-Gray codes [SW07], where on each transition 1 → 0 the least recently entered 1-bit

has to be flipped;
• single-track Gray codes [Etz07, GMM24], where each bit follows the same cyclically shifted

flipping pattern along the code.

1.5. Outline of this paper. In Section 2 we present some notations and terminology used
throughout this paper, as well as some auxiliary lemmas needed later. In Sections 3 and 4 we
present the proofs of Theorems 5 and 8, respectively. Section 5 contains the proofs of Theorems 6,
7, and 12. We conclude with some open problems in Section 6.

2. Preliminaries

We need the following definitions and auxiliary lemmas.

2.1. Notation and definitions. For a graph G, the sets of vertices and edges of G are denoted
by V (G) and E(G), respectively. Furthermore, we write K(G) for the complete graph on the
vertex set of G. If G is connected and bipartite, then there is a unique bipartition of its vertices,
and we write B(G) for the complete bipartite graph with that bipartition. In other words, K(G)
is obtained from G by adding all missing edges to G, and B(G) is obtained from G by adding
all possible edges to G, while preserving the property that the graph remains bipartite.

For two sets A and B, the symmetric difference of A and B is denoted by A 4 B. Note that
Qd has an edge between any two vertices u and v with |u 4 v| = 1. For a vertex u of Qd and
i ∈ [d], we define ui := u 4 {i}, and we refer to i as the direction of the edge uui. We say that u
is even or odd, if |u| is even or odd, respectively.

A linear forest is collection of vertex-disjoint paths. The terminals of a linear forest are its
vertices of degree 1, i.e., the end vertices of the paths. A shortcut of a linear forest in a graph G
is the set of edges of K(G) that connect the two terminals of every path to each other.

For a graph G and a subset of edges M of G, we say that a vertex u of G is covered by M , if
u is an end vertex of one of the edges of M . We write V (M) for the set of all vertices covered
by M . If u is not covered by M we say that it is avoided by M . Recall that for a vertex u
covered by an edge of a matching M , we write uM for the other end vertex of that edge of M .
Furthermore, for i ∈ [d] we use the abbreviation uiM := (ui)M .

For a set of edges F ⊆ E(K(Qd)) and a direction i ∈ [d] we define F i
0 := F ∩ E(K(Qi

0)) and
F i

1 := F ∩ E(K(Qi
1)), and we write F i

− for the edges of F joining vertices of Qi
0 and Qi

1. This
partitions F into three disjoint sets F i

0, F i
1 and F i

−.
The following definitions are illustrated in Figure 3. Recall the definition of half-layers given

in Section 1.1. Given some direction i ∈ [d], a half-layer in Qi
0 or in Qi

1 is referred to as a
quad-layer in Qd. Clearly, a half-layer has 2d−2 edges, and a quad-layer has 2d−3 edges. A near
half-layer (near quad-layer) is a half-layer (quad-layer) minus one edge. We refer to the two
end vertices of the removed edge, which are not part of the near half-layer (near quad-layer), as
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Figure 3. The red edges in Q4 form a (a) half-layer, (b) near half-layer with extension
vertices v1 and v2, or (c) matching that includes the covered near half-layer {e1, e2, e3}.
The subset of red edges incident with a vertex in Qi

1 form a (a) quad-layer, (b) near
quad-layer, or (c) matching that includes the covered near quad-layer {e3}. Every vertex x
in (a) and (b) colored blue is one for which the (near) quad-layer contained in Qi

1 is
x-dangerous. The dashed vertical line separates Qi

0 and Qi
1.

extension vertices of the near half-layer (near quad-layer). A 2-near half-layer is a half-layer
minus two edges. We refer to the four end vertices of the removed edges, which are not part of
the 2-near half-layer, as extension vertices of the 2-near half layer. Given a matching M that
includes a near half-layer (near quad-layer), we say that this near half-layer (near quad-layer) is
covered if both of its extension vertices are covered by two distinct edges of M .

A half-layer of Qd is x-dangerous for every vertex x not incident with any edge from the
half-layer. An x-dangerous near half-layer is an x-dangerous half-layer minus one edge. Note
that x cannot be one of the extension vertices of the near half-layer. For a vertex x of Qd, a
quad-layer is x-dangerous if x is not incident with any edge from the quad-layer and x belongs to
the same (d − 1)-dimensional subcube as the quad-layer. Furthermore, we define an x-dangerous
near quad-layer as an x-dangerous quad-layer minus one edge. Similarly to before, x cannot be
one of the extension vertices of the near quad-layer.

2.2. A cycle that avoids two vertices. The first lemma asserts that a cycle that extends an
almost perfect matching of K(Qd) and avoids a particular vertex x is forced to also avoid another
vertex y, provided that x and y have the correct parity. This is useful when applying induction
in the proof of Theorem 8, because it prevents that the invariant ‘cycle avoids one prescribed
vertex’ blows up to ‘cycle avoids two prescribed vertices’, ‘cycle avoids three prescribed vertices’,
etc., which would be undesirable.

Lemma 13. Let x, y be two vertices of Qd and let M be a perfect matching of K(Qd \ {x, y}).
Let C be a cycle that extends M and avoids x. Then, C avoids y if and only if x and y have
opposite parity.

Proof. If C avoids y, then C \ M is a set of pairwise disjoint edges whose end vertices have
opposite parity (i.e., a matching), covering all vertices of K(Qd \ {x, y}). Since Qd has the same
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number of even and odd vertices, it follows that the avoided vertices x and y also have opposite
parity. On the other hand, if C contains y, then C \ M is a set of pairwise disjoint edges whose
end vertices have opposite parity, plus a path of length 2 whose two end vertices have opposite
parity to the middle vertex y. It follows that x must have the same parity as y. �

2.3. Properties of half-layers and quad-layers. Our first lemma describes the union of two
or more half-layers in Qd.

Lemma 14. Half-layers in Qd satisfy the following properties:
(i) The union of two half-layers L and L′ in different directions is a collection of paths of

length 2, i.e., every edge of L is incident with exactly one edge of L′ and vice versa, and
they share exactly 2d−2 vertices.

(ii) The union of k half-layers in k different directions avoids exactly 2d−k vertices of Qd.

Proof. To prove (i), let i and j be the directions of L and L′, respectively, and consider the
partition of Qd into disjoint 4-cycles of the form C = (u, ui, (ui)j , uj) for some u ∈ V (Qd). From
the two pairs of opposite edges in directions i and j in C, exactly one edge belongs to L and one
edge to L′, respectively.

To prove (ii), note that the vertices x of Qd that are avoided by a half-layer in direction j
are exactly those that satisfy the equation

∑
i∈[d]\{j} xi = a (mod 2) for some a ∈ {0, 1}.

Consequently, the vertices that are avoided simultaneously by k half-layers in k different
directions satisfy k linearly independent equations of this form (over Z2), so the number of
solutions is 2d−k. �

The next lemma asserts that a matching cannot contain half-layers and quad-layers in several
different directions.

Lemma 15. Let M be a matching of K(Qd) and let z = ∅.
(i) If d ≥ 4, then M contains a (near) half-layer in at most one direction.

(ii) If d ≥ 6, then M contains a z-dangerous (near) quad-layer in at most one direction.
(iii) If d ≥ 5, then M contains a 2-near half-layer in at most one direction.

We remark that the lower bounds on the dimension d stated in Lemma 15 are all best possible.

Proof. The first two statements are proved in [GNŠ18], specifically in Lemma 6 (i) and
Lemma 7 (vi).

To prove (iii) we argue as follows. By Lemma 14 (i), two half-layers in different directions
share 2d−2 vertices. Having two 2-near half-layers in different directions, each one uses 2d−2 − 2
of the shared vertices to be matched in its direction (and not the other direction). However,
2(2d−2 − 2) > 2d−2 for d ≥ 5, so two 2-near half-layers in different directions cannot exist for
d ≥ 5. �

Lemma 16. Let d = 5, and let M be a matching of K(Qd) that avoids z = ∅ and contains a
z-dangerous (near) quad-layer. Then there is a direction i ∈ [d] such that |M i

−| ≥ 3 and M i
0

contains no (near) half-layers of Qi
0.

Proof. Let i1 be the direction of a z-dangerous (near) quad-layer, implying that |M i1
− | ≥

2d−3 − 1 = 3. If M i1
0 contains no (near) half-layers, then we are done. Otherwise, let i2 be

the direction of a (near) half-layer of Qi1
0 , implying that |M i2

− | ≥ 3. If M i2
0 contains no (near)

half-layers, then we are done. Otherwise, let i3 be the direction of a (near) half-layer of Qi2
0 ,

implying that |M i3
− | ≥ 3 etc. If this process terminates, then we are done. Otherwise, it loops

in a cycle of length ` ≥ 2. As each of these ` many z-dangerous (near) quad-layers of Qd in
direction ij , j ∈ {1, . . . , `}, covers at least d − 3 = 2 neighbors of z with an edge in direction ij ,
we conclude that ` = 2. For ` = 2, we have a (near) half-layer of Qi1

0 in direction i2 and a (near)
half-layer of Qi2

0 in direction i1, and each of them covers at least d − 3 = 2 neighbors of z in the
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subcube (Qi1
0 )i2

0 with an edge in direction i2 and i1, respectively. However, the vertex z has only
three neighbors in the 3-dimensional subcube (Qi1

0 )i2
0 . �

The next lemma allows us to complete partial matchings of K(Qd) to perfect matchings
without creating half-layers.

Lemma 17. Let d ≥ 4, let M be a matching of K(Qd) that contains no half-layers, and let
A ⊆ V (Qd) \ V (M) such that |A| ≥ 4 and even. Then there is a perfect matching P on K(A)
such that M ∪ P contains no half-layers. The same statement holds for near half-layers.

Proof. We first prove the statement for half-layers. We repeatedly match pairs of vertices in A,
adding the matched pairs to P , thus decreasing the size of A in each round, as follows: If |A| ≥ 6,
we match any two vertices of A having the same parity, which does not create half-layers, and
repeat. If |A| = 4 we distinguish three cases. If all vertices in A have the same parity, we match
them arbitrarily, which does not create half-layers. If A has two vertices of each parity, we
match them in those pairs, and we are done as well. Otherwise we have one even and three
odd vertices in A or vice versa, and by symmetry it suffices to consider the first case. Let a be
the unique even vertex in A. If one of the three odd vertices in A is not a neighbor of a in Qd,
then we match a to this vertex and the remaining two vertices to each other, which does not
create half-layers. On the other hand, if all three odd vertices in A are neighbors of a, then for
at most two of them adding an edge to a may create a half-layer. Indeed, if for all three of them
adding an edge to a would create a half-layer, then this would imply |M | ≥ 3(2d−2 − 1) =: `,
so M contains ` odd vertices, which together with A are ` + 3 ≥ 3 · 2d−2 > 2d−1 odd vertices,
but Qd has only 2d−1 odd vertices in total. It follows that we can add an edge from a to one of
the vertices in A without creating a half-layer, and then the remaining two vertices in A can be
matched to each other.

The same proof works for near half-layers instead of half-layers, the only difference being the
inequalities |M | ≥ 3(2d−2 − 2) =: ` and ` + 3 ≥ 3(2d−2 − 1) > 2d−1 in the last step that are valid
for d ≥ 4. �

2.4. Large cuts through maximal matchings. For any edge e = uv of K(Qd) we define the
length of e to be the quantity `(uv) := |u 4 v|. If `(e) ≥ 2 then we say that e is long. In other
words, long edges are edges of K(Qd) that are not present in Qd.

For a set of edges F ⊆ E(K(Qd)) we define

`(F ) :=
∑
e∈F

`(e) =
∑
i∈[d]

|F i
−|. (1)

We say that a matching M of K(Qd) is maximal if M covers at least one end vertex of every
edge of Qd.

Lemma 18. For every maximal matching M of K(Qd) there is a maximal matching M ′ of Qd

such that `(M) ≥ `(M ′).

Proof. Suppose that M contains a long edge uv, i.e., `(uv) ≥ 2. We define M ′ := M \ {uv}.
Furthermore, if there is a neighbor u′ of u in Qd that is not covered by M ′, then we redefine
M ′ := M ′ ∪ {uu′}. Similarly, if there is a neighbor v′ of v in Qd that is not covered by M ′, then
we redefine M ′ := M ′ ∪ {vv′}. As an edge of length `(uv) ≥ 2 is removed from M and at most
two length 1 edges are added instead, we have `(M) ≥ `(M ′). Furthermore, note that M ′ is
again a maximal matching of K(Qd) with one fewer long edge than M . Consequently, repeating
this replacement process terminates with a maximal matching of Qd. This completes the proof
of the lemma. �

The next two lemmas establish lower bounds for the size of maximal matchings of Qd

and K(Qd), respectively.
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Lemma 19 ([For73, Lemma 3]). Every maximal matching of Qd has at least f(d) := d
3d−1 |V (Qd)| =

d2d

3d−1 edges.

The function f(d) defined in Lemma 19 will be used in several computations in the rest of
this section. For dimension d = 6, Havel and Křivánek [HK82] improved the lower bound of
df(6)e = 23 guaranteed by Lemma 19 to 24, but we do not need this strengthening for our
arguments.

Lemma 20. Every maximal matching of K(Qd) has at least 1
4 |V (Qd)| = 2d−2 edges.

Note that this lower bound is attained by any matching that covers all vertices of the same
parity, and none of the opposite parity.

Proof. Let M be a maximal matching of K(Qd), and consider the layer L in direction 1, which
satisfies |L| = 1

2 |V (Qd)| = 2d−1. M covers at least one of the end vertices of every edge of L, so
we have |M | ≥ |L|/2 = 1

4 |V (Qd)| = 2d−2. �

Lemma 21. For every maximal matching M of K(Qd) there is a direction i ∈ [d] such that
|M i

−| ≥ 3 for d = 5 and |M i
−| ≥ 4 for d ≥ 6.

Proof. Let M be a maximal matching of K(Qd). By Lemma 18 there is a maximal matching M ′

of Qd with `(M) ≥ `(M ′) = |M ′|. Furthermore, Lemma 19 yields that |M ′| ≥ f(d). Combining
these two observations proves `(M) ≥ f(d). From (1) we obtain that there is a direction i ∈ [d]
with |M i

−| ≥ df(d)/de. For d = 5 and d ≥ 6 the function df(d)/de evaluates to 3 and ≥ 4,
respectively. �

The next lemma describes how adding an edge to a matching of K(Qd) can violate property (H).

Lemma 22. Let d ≥ 5, and let M be a matching of K(Qd) that avoids z = ∅ and satisfies
property (H) in Theorem 8. Furthermore, let i ∈ [d] and u, ui with u ∈ V (Qi

0) \ {z} be two
vertices avoided by M . Then M ∪ {uui} violates property (H) if and only if one of the following
two conditions holds:

(i) M contains a half-layer in direction i and all vertices of Qi
0 except z and u are covered

by M ;
(ii) M contains a near half-layer in direction i with extension vertices u and ui, and all vertices

of Qi
0 except z and u are covered by M .

In both cases |M i
−| is even. Furthermore, we have |M i

−| ≥ 1
4 |V (Qd)| = 2d−2 and |M | ≥

3
8 |V (Qd)| − 1 = 3 · 2d−3 − 1.

Proof. Statements (i) and (ii) follow directly from the definition of property (H). The next claim
follows from the fact that V (Qi

0) \ {z, u} has even cardinality, and every edge in M i
− covers

exactly one of the vertices from this set, whereas every edge in M i
0 covers two of them. To prove

the last part we argue as follows: If (i) holds, then M contains 2d−2 edges in the half-layer in
direction i, which all belong to M i

−, plus at least (2d−2 − 2)/2 = 2d−3 − 1 edges that cover all
remaining vertices in Qi

0 except z and u, which in total gives at least 3 · 2d−3 − 1 edges in M . If
(ii) holds, then M contains 2d−2 − 1 edges in the near half-layer in direction i, which all belong
to M i

−, plus at least d(2d−2 − 1)/2e = 2d−3 edges that cover all remaining vertices in Qi
0 except z

and u, at least one of which belongs to M i
−, which in total gives at least 2d−2 edges in M i

− and
at least 3 · 2d−3 − 1 edges in M . �

We say that a matching M of K(Qd) that avoids z = ∅ and satisfies property (H) is (H)-
maximal if for any two vertices u, ui for some i ∈ [d] that are avoided by M and different from z
the matching M ∪ {uui} violates property (H). Note that any maximal matching that avoids z is
also (H)-maximal.
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The next lemma guarantees us a direction such that many edges of an (H)-maximal matching
belong to the layer in this direction. In the proof of Theorem 8 we will choose this direction for
splitting the cube into two subcubes and applying induction.
Lemma 23. For every (H)-maximal matching M of K(Qd) there is a direction i ∈ [d] such
that |M i

−| ≥ 3 for d = 5 and |M i
−| ≥ 4 for d ≥ 6.

Proof. There are three cases to consider.
The first case is that there are vertices u, ui with i ∈ [d] that are avoided by M and different

from z. In this case M ∪{uui} violates property (H), and applying Lemma 22 yields |M i
−| ≥ 2d−2.

For d = 5 and d ≥ 6 this lower bound evaluates to 8 and at least 16, respectively.
The second case is that M is maximal, and then the claim follows from Lemma 21.
The third case is that one of the neighbors u of z in Qd is avoided by M and M ∪ {uz} is

maximal. In this case, by Lemmas 18 and 19, we obtain `(M) ≥ f(d)−1, and consequently there
is a direction i ∈ [d] with |M i

−| ≥ d(f(d)−1)/de. For d = 5 and d ≥ 6 the function d(f(d)−1)/de
evaluates to 3 and at least 4, respectively.

The claimed lower bounds hold in all three cases, which proves the lemma. �

3. Proof of Theorem 5

In this section, we prove Theorem 5.

Proof of Theorem 5. For 2 ≤ d ≤ 4, we verified the theorem with computer help; see [git] for
details.

For d ≥ 5, we prove Theorem 5 assuming that Theorem 8 holds for dimension d.
If M is perfect, we apply Theorem 2. Otherwise, if M has no half-layers in any direction, then

we choose a vertex u avoided by M . Otherwise, if M contains a half-layer in a direction i ∈ [d]
such that M avoids at least two vertices of Qi

0 or Qi
1, then we choose a vertex u avoided by M

in Qi
0 or Qi

1, respectively. By Lemma 15 (i) and the fact that M is not perfect, M contains no
other half-layer. Consequently, in the latter two cases, M and u satisfy property (H) (where u
plays the role of z = ∅). We may thus apply Theorem 8 to obtain a cycle that extends M and
avoids u.

In the remaining case, M contains a half-layer L in a direction i ∈ [d] and avoids exactly one
vertex u in Qi

0 and one vertex v in Qi
1. If v = ui, we apply Theorem 2 to the perfect matching

M ∪ {uv}. Otherwise consider the modified matching N := (M \ {uiuiM }) ∪ {uuiM }, which
avoids two vertices in Qi

1, namely ui and v. By Lemma 15 (i) and the fact that N is not perfect,
N contains no half-layer other than L. Consequently, N and ui satisfy property (H) (where ui

plays the role of z = ∅), so applying Theorem 8 gives a cycle C that extends N and avoids ui.
Then, the cycle (C \ {uuiM }) ∪ {uui, uiuiM } extends M . �

4. Proof of Theorem 8

The statement in Theorem 8 is an equivalence, and we prove both directions of the implication
in the following subsections. We first consider the forward implication, then the reverse
implication for d ≥ 6, and then the reverse implication for d = 5 (settled with computer help),
followed by some remarks about implementation details for the computer verification.

4.1. Forward implication.
Proof of Theorem 8 (⇒). For the sake of contradiction suppose that M violates property (H)
and that there is a cycle C that extends M and avoids z. Then for some i ∈ [d] there is a
half-layer in direction i and all vertices of Qi

0 except z are covered by M . Every odd vertex
of Qi

0 is an end vertex of an edge of the half-layer, and is therefore connected in C \ M to an
even vertex of Qi

0. As every vertex of Qi
0 except z is covered by M , no two of these even vertices

are the same. It follows that C visits all odd vertices of Qi
0 and at least as many even vertices,

but at the same time it avoids the even vertex z, a contradiction. �
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4.2. Reverse implication (induction step d − 1 → d for d ≥ 6). Our proof for the reverse
implication in Theorem 8 uses induction on the dimension d, and it follows a similar strategy as
Fink’s proof of Theorem 2, namely to choose a direction i ∈ [d] and to split Qd into subcubes Qi

0
and Qi

1, to which we apply induction. However, the requirement for the extending cycle to avoid
a prescribed vertex causes substantial additional technical complications. In particular, we need
to deal with the case that an odd number of edges is present in M i

−, a case that never occurs if
the matching M is perfect. In that case, we need to add one additional edge in direction i to be
included in the extending cycle (as the cycle has to cross between Qi

0 and Qi
1 an even number

of times). We thus need to choose the direction i and the added edge so that no obstacles for
applying induction in the subcubes, namely half-layers of Qi

0 or Qi
1, are created.

We first present the induction step d − 1 → d for d ≥ 6, whereas the base case d = 5 is settled
in the next section.

Proof of Theorem 8 (⇐) for d ≥ 6. We prove Theorem 8 inductively for d ≥ 6, assuming that
Theorems 5 and 8 hold for dimension d − 1.

Let M be a matching of K(Qd) that avoids z and satisfies property (H). We assume w.l.o.g.
that M is (H)-maximal (recall the definition from before Lemma 23).

We select a direction i ∈ [d] according to the following rules applied in this order:
(1) If M contains a z-dangerous (covered near) quad-layer, we choose i to be its direction;
(2) otherwise, if M contains a quad-layer, we choose i to be its direction;
(3) otherwise, we choose a direction i ∈ [d] that maximizes the quantity |M i

−|.
These rules guarantee the following properties:

(i) M i
0 contains no (covered near) half-layers of Qi

0.
(ii) If M i

1 contains a half-layer of Qi
1, then M i

− contains a (covered near) quad-layer of Qd.
(iii) If rule (1) or (2) applies we have |M i

−| ≥ 7, and if rule (3) applies we have |M i
−| ≥ 4.

Proof of (i): If M i
0 did contain a (covered near) half-layer of Qi

0, then there would be a
z-dangerous (covered near) quad-layer of Qd contained in M , and by Lemma 15 (ii) these can
occur in at most one direction, which would have been selected by rule (1) with the highest
priority.

Proof of (ii): This situation is illustrated in Figure 6. Suppose that M i
1 contains a half-layer L

of Qi
1. The direction i was chosen differently from the direction of L, which means that rule (1)

or (2) was applied, and this proves the claim.
Proof of (iii): The first part follows as a near quad-layer of Qd, d ≥ 6, has 2d−3 − 1 ≥ 7 edges.

The second part follows from Lemma 23, using the assumption that M is (H)-maximal.
Let A0 := V (Qi

0) ∩ V (M i
−). From (iii) we obtain |A0| ≥ 4.

Case 1: |M i
−| ≥ 4 is even. By (i), we can apply Lemma 17 and obtain a perfect matching P0

on K(A0) such that M i
0 ∪ P0 contains no half-layers. Applying Theorem 8 inductively to K(Qi

0),
we obtain that M i

0 ∪ P0 can be extended to a cycle C0 that avoids z. Let P1 be the shortcut
edges of the linear forest (C0 \ P0) ∪ M i

−, which all belong to K(Qi
1) and form a perfect matching

on K(A1), where A1 := V (Qi
1) ∩ V (M i

−). Applying Theorem 5 inductively to K(Qi
1), we obtain

that M i
1 ∪ P1 can be extended to a cycle C1. Observe that C := (C0 \ P0) ∪ M i

− ∪ (C1 \ P1) is a
single cycle in K(Qd) that extends M and avoids z, as desired. Indeed, C is obtained from C1
by replacing each edge of P1 by the path between the same end vertices starting and ending
with an edge from M i

− plus edges of C0 \ P0 in between.
Case 2: |M i

−| ≥ 5 is odd. We first give an outline of the construction steps in this case.
Several details are filled in subsequently, and we also later verify that all assumptions needed
to apply the various theorems are indeed satisfied. The points with missing information in the
outline are labeled 1 – 5 .

The cycle we construct that extends M uses one additional edge between Qi
0 and Qi

1 in
addition to the edges M i

−. For this purpose we carefully choose a vertex u in Qi
0 different from z
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u /∈ V (M) uM ∈ V (Qi
0) uM ∈ V (Qi

1)
u

i
/∈

V
(M

)
u

iM
∈

V
(Q

i 1)
u

iM
∈

V
(Q

i 0)

does not occur u ui

uM

Qi
0 Qi

1
i

u ui

uM

u ui

uiM

u ui

uiM

uM

u ui

uiM

uM

u ui

uiM

u ui

uiM

uM

u ui

uiM

uM

Figure 4. Illustration of the definition of the matching N obtained by modifying M ,
depending on whether u /∈ V (M), uM ∈ V (Qi

0) or uM ∈ V (Qi
1) (three columns) and

similarly for ui (three rows). The dotted black line is the non-edge uui /∈ M . The red
edges from M are removed, and the green edge is added to N . Blue vertices have to be
avoided by the cycles C0 and C1 that extend N i

0 ∪ P0 and N i
1 ∪ P1, respectively.

such that uui /∈ M 1 , and we take uui as the edge to be included in the cycle. Depending on
whether and how its end vertices u and ui are covered by M , this creates different conditions
in Qi

0 and Qi
1 for the induction step. Specifically, there are three possible cases for u, namely

u /∈ V (M), uM ∈ V (Qi
0), or uM ∈ V (Qi

1), and similarly three cases for ui; see Figure 4. Because
of our assumption that M is (H)-maximal, the case u, ui /∈ V (M) cannot occur, as Lemma 22
would yield that |M i

−| is even. Consequently, for every u ∈ V (Qi
0) with u 6= z we have that

u /∈ V (M) implies that ui ∈ V (M).
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We create a modified matching N from M as follows; see Figure 4: If u ∈ V (M) we remove
the edge uuM , and if ui ∈ V (M) we remove the edge uiuiM . Furthermore, we add the edge vw
where

v :=
{

u u /∈ V (M),
uM u ∈ V (M),

and w :=
{

ui ui /∈ V (M),
uiM ui ∈ V (M).

We will construct a cycle C that extends N and avoids z and u if u ∈ V (M) as well as ui if
ui ∈ V (M). Written compactly, the cycle C avoids z and {u, ui} \ {v, w}. From C, the desired
cycle that extends M and avoids z can be obtained by straightforward modifications. Specifically,
we remove the edge vw from C, add the edge uui and the edge uuM if u ∈ V (M) as well as
uiuiM if ui ∈ V (M).

The construction of C proceeds as follows: We carefully choose a perfect matching P0 on K(B0),
where B0 := V (Qi

0) ∩ V (N i
−) 2 . Having chosen u and P0, we apply Theorem 8 inductively

to K(Qi
0) and obtain that N i

0 ∪P0 can be extended to a cycle C0 that avoids z. If u ∈ V (M), then
we argue that C0 also avoids u 3 . Let P1 be the shortcut edges of the linear forest (C0 \P0)∪N i

−.
If ui /∈ V (M), then we apply Theorem 5 and obtain that N i

1 ∪ P1 can be extended to a cycle C1.
Otherwise, we apply Theorem 8 and obtain that N i

1 ∪ P1 can be extended to a cycle C1 that
avoids ui. As mentioned before, we need to argue that the assumptions of those theorems are
met in the subcubes Qi

0 and Qi
1 for the matchings N i

0 ∪ P0 and N i
1 ∪ P1, and this is where our

choices of u and P0 become crucial; these verifications are done below under the labels 4 and 5
separately for the 0- and 1-subcube, respectively. Observe that C := (C0 \ P0) ∪ N i

− ∪ (C1 \ P1)
is a single cycle that extends N and avoids z and u if u ∈ V (M) as well as ui if ui ∈ V (M).

After giving this outline, we now provide the missing details for the points 1 – 5 . Each of the
two steps 1 (choosing u) and 2 (choosing P0) splits into two cases. The argument for 3 (C0
avoids u) is straightforward and is presented after step 1 , as it requires the definition of u. The
verifications 4 and 5 are done after step 1 and again after step 2 via some auxiliary claims
(in each of the two respective cases), as these two steps are sequential and depend on each other.

1 Choosing u.
Let X0 := {x ∈ V (Qi

0) | x 6= z and x /∈ V (M)}, i.e., these are vertices in V (Qi
0) different

from z that are avoided by M . Furthermore, let X1 := {x ∈ V (Qi
1) | x /∈ V (M)}, i.e., these are

vertices in V (Qi
1) avoided by M . As |M i

−| is odd, we have that |X0| is even and |X1| is odd (in
particular, X1 is nonempty).

Case a: X0 6= ∅. We partition X0 into the sets X01 := {x ∈ X0 | xiM ∈ V (Qi
1)} and

X00 := {x ∈ X0 | xiM ∈ V (Qi
0)} and we distinguish two cases.

Case ai: If X01 6= ∅, then we define u := x for some x ∈ X01. Note that N i
0 = M i

0, and thus
we obtain from (i) that N i

0 contains no (covered near) half-layers of Qi
0.

Case aii: If X01 = ∅, then we have X0 = X00. As this set has even cardinality and is nonempty,
we have |X00| ≥ 2, i.e., there are at least two distinct vertices x, y ∈ X0 with xiM , yiM ∈ V (Qi

0).
From (i) we know that M i

0 contains no (covered near) half-layers of Qi
0. We argue that (at

least) one of M i
0 ∪ {xxiM } or M i

0 ∪ {yyiM } contains no (covered near) half-layers of Qi
0, which

implies that we can define u := x or u := y, respectively. Suppose for the sake of contradiction
that this is false, i.e., both M i

0 ∪ {xxiM } and M i
0 ∪ {yyiM } contain a (covered near) half-layer

of Qi
0. As M i

0 ∪ {xxiM } contains a (covered near) half-layer, we obtain that M i
0 contains a

2-near half-layer Lx of Qi
0, where x is one of the extension vertices and the remaining three

extension vertices are covered by M ; see Figure 5. Symmetrically, as M i
0 ∪ {yyiM } contains a

(covered near) half-layer, we obtain that M i
0 contains a 2-near half-layer Ly of Qi

0, where y is
one of the extension vertices and the remaining three extension vertices are covered by M . As
all extension vertices of Lx and Ly except x or y, respectively, are covered by M , we obtain
that Lx ∩ Ly = ∅. On the other hand, by Lemma 15 (iii), Lx and Ly have the same direction.
This implies that there is a direction j ∈ [d]\{i} such that |M j

−| ≥ |Lx|+ |Ly| = 2 ·(2d−3 −2) ≥ 12
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and |M i
−| ≤ 2 · 4 = 8. In fact, as z, x, y /∈ V (M) the latter bound can be improved to |M i

−| ≤ 5.
This however contradicts our rules (1)–(3) for choosing the direction i (see property (iii)).

Qi
0

z

i Qi
1

xi

xiM

z xi

xiM
i

x

x

M i
0

M i
0 ∪ {xxiM}

Qi
0

z x

xiM

i Qi
1

xi

z x xi

xiM

M i
0

M i
0 ∪ {xxiM}

Lx Lx

Figure 5. Illustration of Case aii in the proof of Theorem 8.

4 Claim 4a: N i
0 contains no (covered near) half-layers of Qi

0. This was argued in the two
subcases before.

5 Claim 5a: If N i
1 contains a half-layer of Qi

1, then there is a vertex on ui’s side of the
half-layer that is avoided by M . From this claim it follows in particular that N i

1 and ui satisfy
property (H) in Theorem 8 for Qi

1. To prove the claim, note that we have N i
1 = M i

1 \ {uiuiM }
(in case ai) or N i

1 = M i
1 (in case aii), and therefore N i

1 can only contain a half-layer of Qi
1 if M i

1
contains a half-layer of Qi

1. Let L be such a half-layer of Qi
1 contained in M i

1, and let j ∈ [d] \ {i}
be the direction of L. By (ii), this means that M i

− contains a (covered near) quad-layer of Qd;
see Figure 6. Lemma 15 (i) yields that M i

1 contains no half-layers of Qi
1 in a direction different

from j, and thus L is the only half-layer of Qi
1 in M i

1. If ui ∈ V (L), then N i
1 = M i

1 \ {uiuiM }
contains no half-layers, and there is nothing to show. If ui /∈ V (L), then the vertex ui together
with all vertices in X1 lies in either (Qi

1)j
0 or (Qi

1)j
1. As X1 is nonempty, this proves the claim.

Case b: X0 = ∅. We define Y := {x ∈ V (Qi
0) | x is odd and xxi /∈ M}, i.e., these are odd

vertices in V (Qi
0) for which the incident edge in direction i is not in M . Clearly, we have z /∈ Y

as z = ∅ is even. Furthermore, as X0 = ∅ and M is assumed to satisfy property (H), we know
that Y 6= ∅.

We select u ∈ Y according to the following rules applied in this order:
(1’) If M i

1 contains a near half-layer L′ of Qi
1, then we select u ∈ Y as a vertex such that ui is

an (even) end vertex of one of the edges of L′;
(2’) otherwise, if M i

0 contains a 2-near half-layer L′′ of Qi
0, then we select u ∈ Y as one of the

end vertices of L′′;
(3’) otherwise, we choose u ∈ Y arbitrarily.

4 Claim 4b: N i
0 contains no (covered near) half-layers of Qi

0. Note that if N i
0 = M i

0 or
N i

0 = M i
0 \ {uuM }, then the claim follows directly from (i). It remains to consider the case

N i
0 = (M i

0 \ {uuM }) ∪ {uM uiM }, which occurs if and only if uM , uiM ∈ V (Qi
0). In particular,

rule (1’) does not apply, as it would imply uiM ∈ V (Qi
1). Using (i) again, it can be ruled out

that N i
0 contains a half-layer of Qi

0, and it remains to consider covered near half-layers. If N i
0

contains a covered near half-layer L′, then by (i) uM uiM is one of its edges. Therefore M i
0

contains the 2-near half-layer L′′ := L′ \ {uM uiM }; see Figure 7 (a). Let j ∈ [d] \ {i} be the
direction of L′′, which is also the direction of the edge uM uiM . By Lemma 15 (iii), M i

0 contains
no 2-near half-layers of Qi

0 in a direction different from j, so only L′′ and possibly a second 2-near
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Qi
0

i

z

L
j

X1

u ui

Qi
1

(Qi
1)

j
0

(Qi
1)

j
1

Figure 6. Illustration of the situation when M i
1 contains a half-layer L of Qi

1.

half-layer in direction j qualify for application of rule (2’). However, the edge uuM removed by
rule (2’) also has the direction j. This is a contradiction, however, as the edges uuM and uM uiM

have different directions (as u 6= uiM ), proving the claim.

Qi
0

u

i Qi
1

ui

uM

M i
0

N i
0 = M i

0 \ {uuM} ∪ {uMuiM}

L′′ = L′ \ {uMuiM}

uM

u

Qi
1

ui
iQi

0

L′

(a)

uiM

Qi
0

u

i Qi
1

uiM i
1

N i
1 = M i

1 \ {uiuiM} ∪ {uMuiM}

L′ = L \ {uMuiM}

uiM

u

Qi
1

iQi
0

(b)

u ui

L

uiM

uiM

uM

uM

z

z

Figure 7. Illustration of Case b in the definition of u in the proof of Theorem 8.

5 Claim 5b: If ui ∈ V (M), then N i
1 contains no half-layers of Qi

1. It follows in particular
that N i

1 and ui satisfy property (H) in Theorem 8 for Qi
1 (recall from the proof outline that

this property need not be checked if ui /∈ V (M)). To prove the claim, note that if M i
1 contains

a half-layer L of Qi
1, then by (ii) and Lemma 15 (i), L is the only half-layer in M i

1 and all
near half-layers must be contained in L. By rule (1’), the edge uiuiM is an edge from L, so in
both of the possible cases N i

1 = M i
1 \ {uiuiM } or N i

1 = (M i
1 \ {uiuiM }) ∪ {uM uiM } the resulting



MATCHINGS IN HYPERCUBES EXTEND TO LONG CYCLES 17

set N i
1 contains no half-layers of Qi

1, and we are done. On the other hand, if M i
1 contains no

half-layers, then N i
1 may only contain a half-layer L if N i

1 = (M i
1 \ {uiuiM }) ∪ {uM uiM }, which

occurs if and only if uM , uiM ∈ V (Qi
1), and then L′ := L \ {uM uiM } is a near half-layer in M i

1;
see Figure 7 (b). Let j ∈ [d] \ {i} be the direction of L′, which is also the direction of the
edge uM uiM . By Lemma 15 (i), M i

1 contains no near half-layers of Qi
1 in a direction different

from j, so only L′ and possibly a second near half-layer in direction j qualify for application
of rule (1’). However, the edge uiuiM removed by rule (1’) also has the direction j. This is a
contradiction, however, as the edges uiuiM and uM uiM have different directions (as ui 6= uM ),
proving the claim.

3 C0 avoids u. Note that the cycle C0 obtained from applying Theorem 8 to extend N i
0 ∪ P0

avoids the vertex z by construction. As N i
0 ∪ P0 avoids only one other vertex in Qi

0 apart from z,
namely the vertex u (recall that X0 = ∅), whose parity is opposite to that of z, Lemma 13
implies that C0 must also avoid the vertex u.

2 Choosing P0.
From (iii) and the fact that |M i

−| is odd we obtain that |M i
−| ≥ 5, and consequently |N i

−|
is even and |N i

−| ≥ 4. This assumption is crucial when we will apply Lemma 17 to Qi
0. We

distinguish the cases ui /∈ V (M) and ui ∈ V (M).
Case a: ui /∈ V (M).
4 + 5 We argued before (Claims 4a and 4b) that N i

0 contains no (covered near) half-layers
of Qi

0. We apply Lemma 17 to obtain a perfect matching P0 on K(B0) so that N i
0 ∪ P0 contains

no half-layers of Qi
0. It follows that Theorem 8 applies inductively to K(Qi

0) to obtain a cycle C0
that extends N i

0 ∪P0 and avoids z. Furthermore, Theorem 5 applies inductively to K(Qi
1), which

does not require any assumptions on N i
1 ∪ P1, to obtain a cycle C1 that extends N i

1 ∪ P1.
Case b: ui ∈ V (M).
Let I be the set of all directions j ∈ [d] \ {i} for which there exists a perfect matching P ′

of K(B1), where B1 := V (Qi
1)∩V (N i

−) such that N i
1 ∪P ′ and ui violate property (H), i.e., N i

1 ∪P ′

contains a half-layer in direction j and all vertices on ui’s side of the half-layer other than ui

itself are covered. If j ∈ I, then as ui is not covered by N , there is exactly one half-layer L
of Qi

1 in direction j for which this condition holds. Furthermore, at least one edge of L must
come from the matching P ′ and not from N i

1. This follows from our earlier argument (Claims 5a
and 5b) that if N i

1 contains a half-layer of Qi
1, then there is a vertex on ui’s side of the half-layer

that is avoided by M (because this forces I = ∅).
We distinguish three cases depending on the size of I.
Case bi: |I| = 0.
4 + 5 We argued before (Claims 4a and 4b) that N i

0 contains no (covered near) half-layers
of Qi

0. We apply Lemma 17 to obtain a perfect matching P0 on K(B0) so that N i
0 ∪ P0 contains

no half-layers of Qi
0. It follows that Theorem 8 applies inductively to K(Qi

0) to obtain a cycle C0
that extends N i

0 ∪P0 and avoids z. The definition of I ensures that Theorem 8 applies inductively
to K(Qi

1) (regardless of C0) to obtain a cycle C1 that extends N i
1 ∪ P1 and avoids ui.

Case bii: |I| = 1.
We distinguish the subcases |N i

−| ≥ 6 and |N i
−| = 4.

Case bii’: |N i
−| ≥ 6.

Let xxj /∈ N i
1 be an edge of the unique half-layer of Qi

1 in direction j with I = {j} which is
contained in N i

1 ∪ P ′ for some perfect matching P ′ of K(B1). The key idea that will prevent xxj

from appearing as a shortcut edge of the linear forest (C0 \ P0) ∪ N i
− (regardless of C0) is to

include the edge xN xjN in P0. This ensures that xxj /∈ P1 and therefore N i
1 ∪ P1 contains no

half-layers of Qi
1. This idea was first presented in [GNŠ18] in the proof of their Theorem 3.

4 + 5 We argued before (Claims 4a and 4b) that N i
0 contains no (covered near) half-layers

of Qi
0. Consequently, N i

0 ∪ {xN xjN } contains no half-layers of Qi
0. Thus, we apply Lemma 17 to
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N i
0 ∪{xN xjN } to obtain a perfect matching P0 of K(B0) that includes the edge xN xjN such that

N i
0 ∪ P0 contains no half-layers of Qi

0. It follows that Theorem 8 applies inductively to K(Qi
0)

to obtain a cycle C0 that extends N i
0 ∪ P0 and avoids z. As xN xjN ∈ P0, we have xxj /∈ P1

(regardless of C0), and so Theorem 8 applies inductively to K(Qi
1) to obtain a cycle C1 that

extends N i
1 ∪ P1 and avoids ui.

Case bii”: |N i
−| = 4. In this case we have |M i

−| = 5. From (iii) we obtain that rule (3) was
applied to choose the direction i, and therefore |M j

−| ≤ |M i
−| = 5 for all j ∈ [d] \ {i}. As P1 has

only two edges and a half-layer of Qi
1 has 2d−3 ≥ 8 edges, we observe that a half-layer of Qi

1
can be present in N i

1 ∪ P1 only if d = 6 and N i
1 contains a 2-near half-layer L′′ in direction j

with I = {j} which has 6 edges, one of them being the edge uM uiM , and the four extension
vertices of L′′ are the end vertices of the four edges in N i

−; see Figure 8. Furthermore, in this
case N i

0 contains no 2-near half-layers of Qi
0 (as this would require 6 edges of Qi

0 in the same
direction). We let xxj , yyj /∈ N i

1 be the two edges such that L′′ ∪ {xxj , yyj} is a half-layer of Qi
1,

and we define P0 := {xN xjN , yN yjN }.
4 + 5 As N i

0 contains no 2-near half-layers of Qi
0, we have that N i

0 ∪ P0 contains no half-layers
of Qi

0, so Theorem 8 applies inductively to K(Qi
0) to obtain a cycle C0 that extends N i

0 ∪ P0 and
avoids z. As xN xjN ∈ P0, we have xxj /∈ P1 (regardless of C0), so Theorem 8 applies inductively
to K(Qi

1) to obtain a cycle C1 that extends N i
1 ∪ P1 and avoids ui.

Qi
0

i

z

Qi
1

Qi
0

i

z

Qi
1

ui

uiM
u

uM

ui

uiM

M

N
x
y

L′′

xj
y

yj

xN

yN
xjN

yjN

|N i
−| = 4

|M i
−| = 5

uM

j

j

Figure 8. Illustration of Case bii” in the proof of Theorem 8.

Case biii: |I| ≥ 2.
For any j ∈ I, let Lj be the half-layer of Qi

1 in direction j that is contained in N i
1 ∪ P ′

for some perfect matching P ′ on K(B1) (recall that Lj is unique as ui /∈ Lj). For any two
half-layers Lj , Lk, j, k ∈ I, j 6= k, Lemma 14 (i) yields that the union Lj ∪ Lk is a collection
of paths of length 2. Consequently, if an edge from Lj did belong to N i

1, then its neighboring
edge from Lk would not belong to N i

1, but at the same time their common end vertex would
not be in B1, contradicting the fact that k ∈ I. It follows that V (Lj) ⊆ B1 for all j ∈ I, in
other words, none of the edges in any of the half-layers Lj belongs to N i

1. By Lemma 14 (ii), the
union

⋃
j∈I Lj avoids exactly 2d−1−|I| vertices of Qi

1 and therefore |N i
−| ≥ 2d−1 − 2d−1−|I|, which

implies |N i
0| ≤ (2d−1 − |N i

−|)/2 ≤ 2d−2−|I|. For every ‘dangerous’ direction j ∈ I we will pick an
edge xxj ∈ Lj , and we add the edge xN xjN (which lies in Qi

0 by the arguments from before) to
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the matching P0, which ensures that xxj /∈ P1. Specifically, we define v := ui and we consider
the edge e(j) := vp(j)(vp(j))j ∈ Lj for every j ∈ I, where p(j) := j − 1 (mod d). Note that the
edges e(j), j ∈ I, are independent, i.e., no two of them share an end vertex, so for every j ∈ I

we let xxj := e(j), and we add the edge xN xjN to P0. As |N i
0| + |I| ≤ 2d−2−|I| + |I| < 2d−3, this

does not create half-layers in N i
0 ∪ P0. The matching P0 on K(B0) is completed by applying

Lemma 17, using that |N i
−| − 2|I| ≥ 2d−1 − 2d−1−|I| − 2|I| ≥ 4.

4 + 5 The argument then continues analogously as in case bii’ before.
This completes the proof. �

4.3. Reverse implication (induction basis d = 5). It remains to settle the base case d = 5
in Theorem 8, which we do with computer assistance. In this section we describe the underlying
theoretical considerations. Our verification program in C++ is available for download from
Gitlab [git], and it spans approximately 1400 lines of code. The program is compiled using
GCC 12.2.0 on Debian 12, and it runs as a single thread. The reported running times are
obtained on an AMD Ryzen 9 7900X3D, 4.4 GHz, 64 GB RAM desktop computer.

Note that K(Q5) has 31 · 29 · 27 · · · 3 > 1017 many perfect matchings, considerably more than
what could be handled by a naive exhaustive enumeration approach. This explains the following
theoretical considerations necessary for being able to perform these verifications in reasonable
computing time.

Let M be a matching of K(Q5) that avoids z and satisfies property (H). We assume w.l.o.g.
that M is (H)-maximal. We distinguish two cases, namely if M contains a z-dangerous (near)
half-layer or not.

4.3.1. M contains a z-dangerous (near) half-layer. If M contains a z-dangerous (near) half-layer,
then the computer verification proceeds as follows: We generate all matchings of K(Q5) that
contain a z-dangerous near half-layer in some direction i (w.l.o.g. we can assume i = 1), and for
each of them that satisfies property (H), we verify that it can be extended to a Hamilton cycle
that avoids z. We reduce the number of test cases by considering the group of automorphisms
generated by permutations of all directions except i, and we only consider matchings that are
non-isomorphic under this group action. The running time for completing the verifications in
this case is about 3 minutes.

4.3.2. M does not contain z-dangerous (near) half-layers. We now assume that M does not
contain z-dangerous (near) half-layers. By Lemma 22, M is maximal in the sense that it covers
at least one end vertex of every edge of Q5 \z. This is helpful as testing maximality of a matching
is easier than testing property (H).

We select a direction i ∈ [5] according to the following rules applied in this order:
(1) If M contains a z-dangerous (near) quad-layer, then we choose i according to Lemma 16

(note that Lemma 15 (ii) does not apply for d = 5);
(2) otherwise, we choose a direction i ∈ [5] that maximizes the quantity |M i

−|.
By Lemmas 16 and 23, these rules guarantee that M i

0 contains no (near) half-layers of Qi
0 and

that |M i
−| ≥ 3. We now distinguish two cases depending on the parity of |M i

−|.
Case 1: |M i

−| ≥ 4 is even.
Our program constructs the following sets of matchings:

• M: The set of maximal matchings of K(Qi
0 \ z) that do not contain (near) half-layers of Qi

0.
• M′: The matchings in M that cannot be extended to a cycle of K(Qi

0 \ z).
• M2: The set of pairs (M, A) where M is obtained from some matching in M′ by removing

two of its edges and A are the four end vertices of the removed edges.
• M′

2: The subset of pairs (M, A) from M2 such that M cannot be extended to a linear forest
of K(Qi

0 \ z) with terminals exactly in A.
Our program reports that the set M′

2 is empty, and we now argue that this implies that M
can be extended to a cycle in K(Q5) that avoids z.
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Indeed, we define A0 := V (Qi
0)∩V (M i

−) and apply Lemma 17 to obtain a perfect matching P0
on K(A0) such that N := M i

0 ∪ P0 contains no (near) half-layers of Qi
0. As M and N have the

same set of uncovered vertices in Qi
0, N is a maximal matching of K(Qi

0 \ z), so N ∈ M. If
N /∈ M′, then N can be extended to a cycle of K(Qi

0 \ z), and we can apply Theorem 5 to Qi
1

and combine the two cycles to a cycle of K(Q5) that extends M and avoids z.
It remains to argue about the case N ∈ M′. If |M i

−| = 4, then we have (M i
0, A0) ∈ M2. As

M′
2 = ∅, M i

0 can be extended to a linear forest of K(Qi
0 \ z) with terminals exactly in A0, and

we can apply Theorem 5 to Qi
1 as before. If |M i

−| ≥ 6, then let P ′
0 be the matching obtained

from P0 by removing two of its edges. From the definition, we have (M i
0 ∪ P ′

0, A0 \ V (P ′
0)) ∈ M2,

and so the argument continues similarly to before.
The computations for this case take about 1 second. This is achieved again by removing

isomorphic matchings early on during the computation.
Case 2: |M i

−| ≥ 3 is odd.

Qi
0 i

z

Qi
1

j

|M i
−| ≥ 3 odd

(Qi
0)

j
0 (Qi

1)
j
0

(Qi
0)

j
1 (Qi

1)
j
1 = Q1,1

Q′
1,1

A′
1,1

Qi
0 i

z

Qi
1

j

|M i
−| ≥ 3 odd

(Qi
0)

j
0 (Qi

1)
j
0 = Q1,0

(Qi
0)

j
1 (Qi

1)
j
1

Q′
1,0

A′
1,0

Qj
0

Qj
1

Qj
0

Qj
1M ′

1,0 M ′
1,1

A1

A1

B

C

x

y

xM

Qi
0 i

z

Qi
1

j

(Qi
0)

j
0 (Qi

1)
j
0 = Q1,0

(Qi
0)

j
1 (Qi

1)
j
1

Q′
1,0

Qj
0

Qj
1

B

C

x

y

xi

yi

zzi

yiM

yM

(a) (b)

(c)

yM

M1,0,− M1,1,−

M1,0 = (M i
1)

j
0

M1,1 = (M i
1)

j
1

Figure 9. Illustration of definitions used in Case 2 of Section 4.3.2.

The following arguments are illustrated in Figure 9. We define A1 := V (Qi
1) ∩ V (M i

−). For
some direction j ∈ [5], j 6= i, we define Q1,0 := (Qi

1)j
0 and Q1,1 := (Qi

1)j
1. We also define

Q′
1,0 := Q5 \ Q1,0 and Q′

1,1 := Q5 \ Q1,1. Let M1,0 := (M i
1)j

0 and M1,1 := (M i
1)j

1 be the set of
edges of M having both end vertices in Q1,0 and Q1,1, respectively. Similarly, let M ′

1,0 and M ′
1,1

be the set of edges of M having both end vertices in Q′
1,0 and Q′

1,1, respectively. Furthermore, let
M1,0,− and M1,1,− be the edges of M having exactly one end vertex in Q1,0 and Q1,1, respectively,
and let A′

1,0 and A′
1,1 be the vertices of Q′

1,0 and Q′
1,1 covered by edges of M1,0,− and M1,1,−. We
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write Lj
0i for the half-layer in Qj

0 in direction i for which the end vertices whose ith bit equals 0
are odd. This is precisely the z-dangerous half-layer of Qj

0 in direction i. Similarly, we write Lj
1i

for the half-layer in Qj
1 in direction i for which the end vertices whose ith bit equals 0 are odd.

We define L := {Lj
0i, Lj

1i | j ∈ [d] \ {i}}.
We aim to choose the direction j ∈ [5], j 6= i, so that one of the following two conditions is

satisfied:

(a) |A′
1,0| ≥ 2 is even and there exists a perfect matching P ′

1,0 on K(A′
1,0) such that M ′

1,0 ∪ P ′
1,0

does not contain half-layers of Qi
0 nor the half-layer Lj

1i of Qj
1 (Figure 9 (a)), or

(b) |A′
1,1| ≥ 2 is even and there exists a perfect matching P ′

1,1 on K(A′
1,1) such that M ′

1,1 ∪ P ′
1,1

does not contain half-layers of Qi
0 nor the half-layer Lj

0i of Qj
0 (Figure 9 (b)).

Note that if a matching of K(Q′
1,0) covers all vertices of Qi

0 except z and contains the half-
layer Lj

1i of Qj
1, then it cannot be extended to a cycle. Similarly, if a matching of K(Q′

1,1) covers
all vertices of Qi

0 except z and contains the half-layer Lj
0i of Qj

0, then it cannot be extended to a
cycle. This observation follows along the same lines as the proof of the necessity of property (H)
given in Section 4.1. We thus achieve a considerable reduction in the size of the set M′ defined
below compared to what it would be if the conditions involving Lj

1i and Lj
0i were not present.

Specifically, for choosing j we distinguish two cases.
We first consider the case that M i

− contains no quad-layers of Q5 from the set L. We choose
two vertices x, y ∈ A1 and if possible choose them so that xxi, yyi ∈ M . We then choose the
direction j so that it separates x and y, i.e., one is contained in Qj

0 and the other one in Qj
1,

implying that |A′
1,0| > 0 and |A′

1,1| > 0. Since |A1| = |M i
−| is odd, |A′

1,0| and |A′
1,1| have different

parity, and so one of them is even and at least 2. By symmetry, we assume w.l.o.g. that |A′
1,0| ≥ 2

is even and that x ∈ Q1,0; see Figure 9 (a). We define B := A′
1,0 ∩ V (Qi

0) and C := A′
1,0 \ B.

Note that we have xM ∈ B. The matching P ′
1,0 on K(A′

1,0) is obtained as follows. If |B| ≥ 4,
then we apply Lemma 17 to match all vertices in B, except the vertex xM if B is odd, such that
no near half-layers of Qi

0 are created. If |B| ∈ {2, 3}, then we match one pair of vertices from B,
except the vertex xM if |B| = 3, which does not create half-layers of Qi

0. If |B| = |{xM }| = 1 or
the vertex xM from B is still unmatched from the previous cases, we match it arbitrarily to one
of the vertices in C, and the remaining vertices in C we match arbitrarily among each other.
Note that adding an edge from xM ∈ B to some vertex c ∈ C cannot create the half-layer Lj

1i,
as this would imply (xM )i ∈ C and therefore (xM )i 6= x and xxi /∈ M , but since 3 edges of Lj

1i

are in M i
−, this contradicts the choice of x.

It remains to consider the case that M i
− contains a quad-layer L ∈ L of Q5, which has

2d−3 = 4 edges. As M does not contain z-dangerous (near) half-layers of Q5, there are at least
two edges xxi and yyi with x, y ∈ V (Qi

1) of the z-dangerous half-layer in direction i that are
not contained in M i

−; see Figure 9 (c). We choose the direction j so that it separates x and y.
As before, we obtain that one of |A′

1,0| and |A′
1,1| is even and at least 2, and by symmetry we

may assume w.l.o.g. that |A′
1,0| ≥ 2 is even and that x ∈ Q1,0. As yyi ∈ Lj

1i but yyi /∈ M i
−, the

matching M ′
1,0 does not contain the half-layer Lj

1i of Qj
1. Furthermore, as |L| = 4, at least one

of the edges zzi ∈ L satisfies z ∈ Q1,0. We define B := A′
1,0 ∩ V (Qi

0) and C := A′
1,0 \ B. Note

that we have zi ∈ B. The matching P ′
1,0 on K(A′

1,0) is obtained is follows. If yi ∈ B and y ∈ C,
which happens if yiM , yM ∈ V (Q1,0), then we first match zi to y and define B := B \ {yi}
and C := C \ {y}. If |B| ≥ 4, then we apply Lemma 17 to match all vertices in B, except one if
B is odd, such that no near half-layers of Qi

0 are created. If |B| ∈ {2, 3}, then we match one
pair of vertices from B, except one vertex if |B| = 3, which does not create half-layers of Qi

0. If
|B| = 1 or one vertex from B is still unmatched from the previous cases, we match it arbitrarily
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to one of the vertices in C, and the remaining vertices in C we match arbitrarily among each
other. Note that yyi /∈ P ′

1,0, and therefore M ′
1,0 ∪ P ′

1,0 does not contain the half-layer Lj
1i.

We proceed to explain the further arguments assuming that there is a matching P ′
1,0 on K(A′

1,0)
that satisfies condition (a) stated above. The arguments in case (b) are analogous, but not
completely symmetric (due to z), so our algorithm has to compute both cases separately. As
mentioned before, we can assume that M is maximal in the sense that it covers at least one end
vertex of every edge of Q5 \ z, and therefore M ′

1,0 ∪ P ′
1,0 is maximal in Q′

1,0 \ z.
Our program constructs the following sets of matchings:

• M: The set of maximal matchings of K(Q′
1,0 \ z) with an odd number of covered vertices

in Qi
0 and no half-layers of Qi

0 nor the half-layer Lj
1i of Qj

1.
• M′: The matchings in M that cannot be extended to a cycle of K(Q′

1,0 \ z).
• M1: The set of pairs (M, A) where M is obtained from some matching in M′ by removing

one of its edges and A are the two end vertices of the removed edge.

We also compute the following sets in a loop for k = 1, 2, 3, 4.

• M′
k: The subset of pairs (M, A) from Mk such that M cannot be extended to a linear forest

of K(Q′
1,0 \ z) with terminals exactly in A.

• Mk: The set of matchings M of K(Q5) for which there is a pair (M ′, A′) in M′
k such that M

induced on Q′
1,0 equals M ′ and the set of end vertices of edges in M that leave the set Q′

1,0
is A′.

• M′
k: The matchings in Mk that cannot be extended to a cycle of K(Q5 \ z).

• Mk+1: The set of pairs (M, A) obtained from some pair (M ′, A′) in M′
k by removing one of

the edges from M ′ and adding the two end vertices of the removed edge to the set A.

We note that M1 = M′
1. Our program reports that the sets M′

k for k = 1, 2, 3, 4 are all empty.
This proves that M can be extended to a cycle in K(Q5) that avoids z, as argued in the following.

Recall the assumption from case (a) that |A′
1,0| ≥ 2 is even and there exists a perfect

matching P ′
1,0 on K(A′

1,0) such that M ′
1,0 ∪ P ′

1,0 does not contain half-layers of Qi
0 nor the

half-layer Lj
1i of Qj

1. This means that M ′
1,0 ∪ P ′

1,0 ∈ M.
If M ′

1,0 ∪ P ′
1,0 /∈ M′, then M ′

1,0 ∪ P ′
1,0 can be extended to a cycle C ′ of K(Q′

1,0 \ z). Let P1,0
be the shortcut edges of the linear forest (C ′ \ P ′

1,0) ∪ M1,0,− in Q1,0. By Theorem 5, P1,0 ∪ M1,0
can be extended to a cycle D of K(Q1,0). Therefore, (C ′ \ P ′

1,0) ∪ M1,0,− ∪ (D \ P1,0) is a cycle
in K(Q5) that extends M and avoids z.

If M ′
1,0 ∪ P ′

1,0 ∈ M′, then let N1 be a matching that contains all edges of M ′
1,0 ∪ P ′

1,0 except
one edge of P ′

1,0 and let A1 be the end vertices of the removed edge. By definition, we have
(N1, A1) ∈ M1. If (N1, A1) /∈ M′

1, then N1 can be extended to a linear forest of K(Q′
1,0 \ z)

with terminals exactly in A1. Similarly to the previous paragraph, we then construct shortcut
edges in Q1,0 and use Theorem 5 to obtain a cycle in K(Q1,0) which we combine with the linear
forest to obtain a cycle in K(Q5) that extends M and avoids z. As noted before, M1 = M′

1
and so the case (N1, A1) /∈ M′

1 does not occur, but the steps to be taken will be needed in the
cases k = 2, 3, 4 explained in the following.

If (N1, A1) ∈ M′
1 and |M1,0,−| = 2, then we have M ∈ M1 by definition. Since M′

1 is empty,
M can be extended to a cycle of K(Q5 \ z).

If (N1, A1) ∈ M′
1 and |M1,0,−| ≥ 4, then let N2 be a matching that contains all edges of N1

except another edge of P ′
1,0 and let A2 be the end vertices of both edges of P ′

1,0 excluded
in N2. By definition, we have (N2, A2) ∈ M2. If (N2, A2) /∈ M′

2 or |M1,0,−| = 4, then we
proceed similarly to before. Otherwise, we construct and process N3 and A3 analogously. If
(N3, A3) /∈ M′

3 or |M1,0,−| = 6, then we proceed similarly to before. Otherwise, we construct
and process N4 and A4 analogously. Since Q1,0 has 8 vertices, this is the last possible case, i.e.,
we have (N4, A4) /∈ M′

4 or |M1,0,−| = 8.
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The running time for this part of our program is approximately 10 hours for each of the two
cases (a) and (b).

This completes the proof of Theorem 8 in the case d = 5.

4.4. Implementation details. We now give some details about how the program described in
the previous section generates matchings and tests extendability to a cycle or linear forest.

The program represents a matching or a partial extension of a matching to a cycle or linear
forest as an array M of length 2d; i.e., one value for every vertex. For any vertex u ∈ V (Qd),
the possible values of M [u] are the following:
Vertex v ∈ V (Qd): The matching M has an edge uv. Clearly, it is required that u 6= v and

M [v] = u.
FORBIDDEN: The vertex u is avoided by M and must be avoided by an extending cycle or linear

forest. This allows us to mask out various sets of vertices of Qd that are irrelevant for a
particular test case.

UNCOVERED: The vertex u is avoided by M and can be a part of an extending cycle or linear
forest.

TERMINAL: The vertex u must be a terminal vertex of a linear forest. Clearly, the total number
of terminals must be even.

MATCH: A special intermediate label used for generating matchings, as explained below.

4.4.1. Generating matchings. We now explain how our program generates different matchings
using the data structure M . We build M successively by adding matching edges one after
the other. In the simplest case M has no edges initially, but a set A of vertices of even
cardinality marked as MATCH in M . In other cases, some edges may already be prescribed or some
vertices may be excluded, which is achieved by marking the corresponding vertices as TERMINAL,
UNCOVERED, or FORBIDDEN. We use two approaches for generating all perfect matchings on the
set A. The first one is based on depth-first search (DFS) and the second one on breadth-first
search (BFS). DFS takes M , chooses a vertex u ∈ A, and for every other vertex v ∈ A calls DFS
for the matching obtained from M by adding the edge uv (by setting M [u] := v and M [v] := u).
This approach stores only the current (partial) matching in memory, and tests a matching for
extendability once it is completed to a perfect matching on A. Only the ones that are not
extendable are stored for later processing.

The BFS method works as follows.
Algorithm 4.1: BFS generation of perfect matchings on vertices in M marked as MATCH.

Define S := {M}
Let a be the number of MATCH vertices in M

for a/2 times do
Define S ′ := ∅
foreach N ∈ S do

Let u be a vertex marked as MATCH in N

foreach vertex v 6= u marked as MATCH in N do
Let N ′ be the matching obtained from N by adding the edge uv
Set S ′ := S ′ ∪ {N ′}

Set S := S ′

Remove isomorphic matchings from S

BFS stores an entire set S of matchings simultaneously, which is more memory-intensive,
but has the advantage that it allows removing isomorphic matchings each time an edge has
been added (see the last line in the pseudocode above). We therefore gain running time if we
can quickly remove a significant number of isomorphic matchings. Intuitively, the fraction of
removed matchings decreases with the number of edges added, i.e., while many matchings with



24 MATCHINGS IN HYPERCUBES EXTEND TO LONG CYCLES

few edges will be removed as isomorphic, in later stages only few matchings with more edges
will be removed. For optimal performance, we apply BFS as long as there is enough memory
available and the isomorphism testing removes a significant number of matchings. Afterwards
we continue building the matching via DFS.

We follow the approach from [GNŠ18] to remove isomorphic matchings from a set S of match-
ings of Qd. It is well-know that every automorphism of Qd is composed of a transposition (i.e.,
switching certain directions) and a permutation of directions, i.e., there are 2dd! automorphisms
of Qd. However, in our setting we require the fixed vertex z = ∅ to be forbidden, so we consider
only automorphisms that permute directions, sometimes with one or two directions fixed. Our
function removes isomorphic matchings from S by applying to every matching M ∈ S all relevant
automorphisms and by selecting the lexicographically minimal representation. As isomorphic
matchings have the same lexicographically minimal representation, this will remove duplicates.

4.4.2. Extending matchings to a cycle or linear forest. We now explain how we test whether
a matching M can be extended to a cycle or linear forest. Specifically, if M has no TERMINAL
vertices, we seek an extension to a cycle, and if M has t > 0 many TERMINAL vertices, then
we seek an extension to a linear forest consisting of t/2 paths between these t terminals. In
both cases, the extension has to avoid all FORBIDDEN vertices, and it may use any number of
UNCOVERED vertices. We test extendability using the following straightforward recursive function.
Algorithm 4.2: Test whether a matching M can be extended to a cycle or linear forest.

Function extends(M)
Choose a vertex u such that M [u] is a vertex or TERMINAL
foreach i ∈ [d] do

if uui is the last added edge then
return true

else if uui can be added then
Let M ′ be obtained from M by adding the edge uui

if extends(M ′) then
return true

return false

Adding an edge uui is simple, although we have to consider a few cases depending on the
values of M [u] and M [ui]. If both M [u] and M [ui] are vertices such that M [u] 6= ui, we join
the vertices M [u] and M [ui] by an edge and we mark u and ui as FORBIDDEN. Observe that
the resulting matching M ′ can be extended if and only if M ∪ {uui} can be extended. I.e.,
in our algorithm we store in M a matching that is a compact representation of the actual
partial extension, obtained by replacing every path by the shortcut between its two end vertices.
Similarly, if M [u] is a vertex and M [ui] = UNCOVERED, we join vertices M [u] and ui by an edge
and we mark u as FORBIDDEN. If M [u] is a vertex and M [ui] = TERMINAL, we mark u and ui

as FORBIDDEN and M [u] as TERMINAL. The remaining cases are analogous.
It remains to determine whether an edge uui can be added and whether it is the last edge to

be added. Clearly, if M [u] = ui and uui is not an edge of the original matching (but a shortcut
edge), then adding the edge uui closes a cycle. In order to avoid closing a cycle that misses some
edges of M , we maintain two counters for the number of edges and terminals in M . The last
edge uui is added if M has one edge uui and no TERMINAL vertices (extension to cycle), or M
has no edges and two TERMINAL vertices u and ui (extension to linear forest). We can add an
edge uui (not the last one) to the matching M if M [u] 6= ui and M has at least four terminals
or at least one of u and M [u] is not marked as TERMINAL.

Our recursive algorithm works for every choice of u, so we choose a vertex that minimizes
the number of non-forbidden neighbors in Qd, which quickly cascades forced choices (if only
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one non-forbidden neighbor is left). The number of non-forbidden neighbors for each vertex is
maintained in an array.

5. Proofs of Theorems 6, 7, and 12

Proof of Theorem 6. Let M be a matching of Qd, and let M ′ be any maximal matching of Qd

that extends M . By Lemma 19 we have |M ′| ≥ d
3d−1 |V (Qd)| ≥ 1

3 |V (Qd)|. Applying Theorem 5
to M ′ yields a cycle of length at least 2|M ′| = 2

3 |V (Qd)| = 2d+1/3 that extends M . �

Proof of Theorem 7. Let M be a matching of K(Qd), and let M ′ be any maximal matching
of K(Qd) that extends M . By Lemma 20 we have |M ′| ≥ 1

4 |V (Qd)| = 2d−2. Applying Theorem 5
to M ′ yields a cycle of length at least 2|M ′| = 1

2 |V (Qd)| = 2d−1 that extends M . �

Proof of Theorem 12. Let M be a perfect matching of K(Qd \ {x, y}) that extends to a cycle C
that avoids x and y, but contains all other vertices. W.l.o.g. we assume that x = ∅. Let
i ∈ [d]. If y ∈ Qi

0, then as y is avoided by M and has opposite (odd) parity, then M cannot
contain a half-layer in direction i. On the other hand, if y ∈ Qi

1, then M cannot contain a
half-layer in direction i either, as otherwise by property (H) in Theorem 8 there would be a
third vertex u ∈ V (Qi

0) \ {x} avoided by M , which is impossible. We conclude that M does not
contain a half-layer.

To prove the converse direction, let M be a perfect matching of K(Qd \ {x, y}) that does not
contain a half-layer. Then property (H) in Theorem 8 is trivially satisfied, so the theorem yields
a cycle C that extends M and avoids x. By Lemma 13, C also avoids y, so the cycle C has the
desired properties. �

6. Open questions

We conclude this paper with some interesting directions for future investigations.
It would be interesting to translate the construction described in this paper to an algorithm

that computes a cycle C that extends a given matching M of K(Qd) in polynomial time
(polynomial in the size of the graph Qd or K(Qd)), and we do not see any fundamental obstacles
to such an endeavor. Furthermore, can this be improved, along the lines described in [Fin20],
where part of the output can be computed already while knowing only part of the input?

Our Theorems 6 and 7 provide a lower bound for the length of a cycle C that extends a given
matching M . Similarly, note that our proof of Theorem 8 starts by the assumption that M is
(H)-maximal, i.e., in a first step we always add edges to M so that we can guarantee the existence
of a direction i ∈ [d] such that many edges of M have direction i; recall Lemma 23. This has the
effect that even for very small matchings M , the cycle C might be very long. Can we instead
prove a theorem about a cycle C extending a given matching M , such that the length of C is
relatively short compared to the size of M , i.e., such that |C| ≤ f(|M |) for some reasonable
function f? Obviously, we will always have |C| ≥ 2|M |.

More generally, given a matching M of Qd or K(Qd), for which integers ` is there a cycle C
with |C| = ` that extends M? This includes the Ruskey-Savage conjecture as a special case
(when ` = 2d). This can also be stated as a decision problem: Given M and `, does C exist, yes
or no?

Complementing Theorem 4, it is known that not every matching of K(Qd) can be extended
to a cycle factor of Qd. In fact, Dvořák and Fink [DF19] constructed a matching of B(Qd) that
cannot be extended to a cycle factor. Is there a matching of K(Qd) or B(Qd) that is extendable
to a cycle factor but not to a Hamilton cycle?
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