
Arc-routing for winter road maintenance

Jǐŕı Fink1,2[0000−0001−5065−1213], Martin Loebl3,4[0000−0001−7968−0376], and Petra Pelikánová3

1 Department of Theoretical Computer Science and Mathematical Logic, Charles University, Czech
Republic fink@ktiml.mff.cuni.cz

2 This research is conducted within the project Network Optimization (17-10090Y) supported by Czech
Science Foundation

3 Department of Applied Mathematics, Charles University, Czech Republic
4 supported by the H2020-MSCA-RISE project CoSP- GA No. 823748 loebl@kam.mff.cuni.cz

Abstract. The winter road maintenance arc-routing is recognized as a notoriously hard
problem not only from the algorithmic point of view. This paper lays down foundations of
theoretical understanding of our new winter road maintenance optimization for the Plzeň
region of the Czech Republic which has been implemented by the regional authorities since
the winter of 2019–20. Our approach is not, contrary to most of existing work, based on
the integer and linear programming machinery. We concentrate on studying arc-routing on
trees. This is practical since routes of single vehicles can be well represented by trees, and
allows algorithms and complementary hardness results. We then extend the approach to the
bounded tree width graphs. This leads to considering planar graphs which well abstract the
realistic road networks.
We formalize important aspects of the winter road maintenance problem which were not
formalized before, e.g., public complaints. The number of complaints from public against
the winter road maintenance is a quantitative measure of the quality of the service which
is focused on, e.g., in media or in election campaigns. A fear of ’complaints’ is a fact every
optimizer must deal with. Hence, a formal model of public complaints and its inclusion in
the optimization is vital. Our formalization of the winter road maintenance is robust in the
sense that it relates to well-known extensively studied concepts of discrete mathematics like
graph cutting and splitting of necklaces.

Keywords: arc routing · algorithms on trees · necklace splitting.

1 Introduction

Our involvement started by being asked
Can you improve routing for winter road maintenance in the Czech Republic and specifically

in the Plzeň region.
We were asked to create new routing for vehicles of winter road maintenance while minimizing

the total number of used vehicles. There were many additional conditions that needed to be
satisfied, in particular, conditions given by the Czech legislation. A fixed plan for one whole winter
season had to be created.

Our plan (described in [13]) has been implemented by the Plzeň region authorities starting the
winter of 2019–20.

Towards a model. In the design of tours for vehicles in winter road maintenance, one needs
to cover the graph of the road network by subgraphs and then one needs to design routing for each
of these subgraphs by one vehicle; see e.g. surveys [28–31]. Each edge of the graph has attributes
given by the length, the priority5 and the type of maintenance6 of the corresponding road segment.
Some vertices serve as depots. Each such vertex has defined types of material which it can store.

The road network has a service priority defined by the legislation based on traffic volume which
partitions the roads into classes. For instance in the Czech Republic, there are three such classes:
Arterial roads through regions have the highest level of service priority (1). Priority (2) is assigned

5 Vyhláška č. 104/1997 Sb., §45 (the Czech law).
6 Vyhláška č. 104/1997 Sb., §43, 44 (the Czech law).

2 J. Fink et al.

to bus routes and other important routes. Third priority of service is assigned to local roads. Each
class of roads is associated with maximum time of maintenance completion. For instance, in the
Czech Republic the edges in the first priority level have to be cleaned by a vehicle every three
hours, in the second level every six hours and in the third level every twelve hours.

Next important issue is the length of the working shift. For instance, the standard length of
the working shift of a maintenance driver is eight hours in the Czech Republic.7 Moreover, the
Czech legislation requires multiple safety breaks for drivers during the working shift.8 It is natural
to expand the time for the safety breaks and for all other non-driving manipulations of a vehicle
to two hours per shift; this reduces the total time of driving to six hours.

For simplicity, we will assume in our model that the working shift lasts a fixed amount of
time, e.g., six hours during which there are no breaks for the drivers and also the time to load the
maintenance material is negligible. We translate the time requirement into the upper bound of the
length of the vehicle route.

Another imposed rule (without clear rationale) is that each road has to be maintained by
the same car in both directions.9 In this work we assume that there are no one-way roads. The
results presented here are valid also for the more general case when one-way roads are present;
the assumption does not change the algorithmic and complexity considerations for the problems
discussed while simplifies the definitions and the arguments. Also, this assumption has been valid
for the winter road maintenance of the Plzeň region road network we optimized.10 This is the reason
why we base our models on undirected graphs in the next sections. For each undirected graph G
we consider its symmetric orientation Gs where each edge is replaced by two arcs with opposite
orientations. This representation enables to discuss maintaining of edges in both directions.

Finally, there is the capacity cm describing the maximum length of a route which can be
maintained with only one loading of the material m ∈ M . The capacity condition requires that
during each spreading material m on road-length cm the vehicle must pass its depot d at least
once. It is convenient to define cm as a fraction of the maximum route-length of one vehicle.

The goal is to assign for each edge a vehicle which will maintain the corresponding road while
minimizing the number of used vehicles and the length of the roads traversed without maintenance
(deadhead). A critically important part of the considerations is public complaints.

Features of a winter road maintenance plan

– We construct a partition P = {P1, . . . , Pr} of the set of arcs of Gs into sets P1, . . . , Pr and for
each i we assign vertex (depot) di ∈ D. We assume the type of maintenance m constant in Pi.
We also assume that the oppositely oriented edges belong to the same Pi.

– We construct, for each i, a set Ri so that Pi ⊂ Ri and each arc of Pi may be reached from di
by a directed closed walk of Ri.

– For each i, we design a route servicing the edges of Pi by a single vehicle starting and termi-
nating at di and using only arcs of Ri. The schedule must meet

1. the requirement of the maximum length of the route,
2. the requirements given by priorities p(e), e ∈ Pi,
3. the requirements given by capacities cm.

– In our actual computation for the Plzeň region described in [13], the steps above are performed
simultaneously.

1.1 State of the art

Winter road maintenance is recognized as a notoriously hard problem (not only) from the algo-
rithmic point of view since even its significantly simplified variant called Arc Routing Problem is
NP-hard; see e.g. [24, 8]. As far as we know, most of the literature in the algorithmic winter road

7 Zákońık práce 262/2006 Sb., §78 (the Czech law).
8 Nař́ızeńı vlády č. 589/2006 Sb., §9 (the Czech law).
9 Vyhláška č. 104/1997 Sb., §43, 44 (the Czech law).

10 Road network in Czech Republic: https://geoportal.rsd.cz/webappbuilder/apps/7/.

Arc-routing for winter road maintenance 3

maintenance concentrates on designing algorithms, which are typically based on Integer Linear
Programming (LP) [9, 26] and Artificial Intelligence [1, 2, 33].

An overview of literature on the problem of winter road maintenance and its solutions is [28–
31]. An excellent recent overview illustrating main works on the General Routing Problem can be
found in [5] where the authors design a new branch-and-cut algorithm for the capacitated general
routing problem. In [27], the authors also consider road priorities and a precedence relation between
roads of different priority. In [19], the authors aim at constructing the routes schedule minimizing
the maximum length of a route; the network may have one-way streets and is modeled as a mixed
graph.

Kinable [19] study a real-world snow plow routing problem (in the USA) and they compare
three methods based on Integer Linear Programming (LP), Constraint Programming (CP) and a
local heuristic. Kinable [20] used Constraint Programming to further improve snow plow routes in
Pittsburgh. Ciancio [6] applied Branch-price-and-cut method for the Mixed Capacitated General
Routing Problem with Time Windows. Other heuristic algorithms can be found e.g. in [34, 15, 14,
32].

A list of benchmark datasets for vehicle routing problems is provided by Gunawan [16].
In [13] we introduced an heuristic approach with a very competitive implementation and de-

scribed the computational results for the plan of the winter road maintenance in the Plzeň region.
Our plan has been implemented by the regional authorities.

1.2 Main contribution

1. Based on our experience with practical winter road maintenance we introduce several new
concepts, including public complaints. We concentrate on studying these concepts first on
trees, then on bounded tree width graphs and planar graphs.

2. We relate these concepts to extensive research in discrete mathematics.
3. We design algorithms based on dynamic programming and prove matching hardness results in

most cases.

Summarizing, we introduce a realistic robust model of winter road maintenance which can be
successfully studied by theoretical methods and admits competitive algorithms without adding
unrealistic conditions for the actual road networks to be maintained.

2 Basic concepts

In practice we have been given a road network which we represent by a graph. Vertices rep-
resent crossroads (and dead ends) and edges represent roads among them. Let z ≥ 1 denote
the number of priority classes of roads and let M denote the set of types of maintenance,
e.g., M = {chemical, inert, snow − plow} in the Czech Republic. We associate several functions
with G:

– α : E → R+ gives to every edge a non-negative length,
– p : E → {1, . . . , z} priority level,
– m : E →M type of maintenance.

Let D ⊂ V be a set of depots. For d ∈ D we denote by m(d) ∈ M the stored material at depot
d. The arc routing problem is to search for a cover by subgraphs which correspond to parts of
the network maintained by single vehicles. These subgraphs maintained by one vehicle are called
maintaining plans.

Definition 1 (Maintaining Plan). Maintaining plan is a tuple (G,P, d, α, z, p) where
(1) G = (V,E) is a graph of a road network,
(2) P ⊂ E is the set of maintained edges,
(3) d ∈ V is the depot,
(4) α : E → Z+ gives to every edge a non-negative integer length,
(5) p : E → {1, . . . , z} gives to each edge its priority level.

4 J. Fink et al.

Having a maintaining plan, we can search for a route which services it. There are several
external parameters influencing properties of a servicing route.

Definition 2 (External Parameters).

1. maximum length of a servicing route denoted by L = L(G),
2. function f : E → Z+ giving an upper bound on the frequency of traversing each edge e,
3. function t : {1, . . . , z} × Z+ → Q+ describing limits associated with priorities: the total length

of each servicing route between ith and (i+ 1)-th traversal of edge e is at most t(p(e), i)L.
4. capacity c ≤ 1 such that the servicing route must visit the depot within each sub-route of total

length bigger than cL.

These parameters are self-explanatory with the exception of function t, namely why it depends on
specific traversals of a given edge: this is a natural feature of the winter road maintenance since
it is most important that the roads are clean when people leave their homes in the morning, and
when they come back home in the afternoon.

Definition 3 (Vehicle Route). For given maintaining plan (G,P, d, α, z, p) we define a L, c, t, f -
vehicle route as a closed walk w = (e1, . . . , e`) where each ei is an element of the symmetric
orientation Gs = (V,Es) of G, each edge e ∈ Es appears at least once and at most f(e) times
in w and (1) the requirement of the maximum length of the route, (2) the requirements given by
priorities p(e), e ∈ P and (3) the requirements given by the capacity c are kept. We say that a
graph is admissible if there exists a L, c, t, f -vehicle route.

Definition 4 (Maintaining Plan Routing Problem). Maintaining plan routing problem is to
decide, given a maintaining plan with P = E, if a vehicle route exists. We say that the problem is
unweighted if the length of each edge is equal to one.

We note that the condition P = E is a natural simplification when considering single routes
since the dead-heading is typically negligible.

We first observe that the problem to decide if a vehicle route exists is NP-complete even if G
is a star rooted at its vertex d of degree one, c = 1/2 and t is uniformly equal to 1. Such input tree
admits a vehicle route if and only if the edges not incident with d can be divided into two parts
with equal sums of edge lengths. This problem is called Partitioning and is a basic NP-complete
problem.

In view of this observation it is natural to consider a restriction that the edge-lengths are
integers bounded by a fixed power of the size of the input graph. A possible justification is that
in practice the resources (time, maintaining material, cost) depend linearly on the length of the
road segments. However, it is important to have in mind that there are situations, e.g., steep hills
with heavy snow-fall, when this is not true and on the contrary it is realistic to assume that the
resources depend non-linearly, even exponentially, on the lengths of road segments.

Trees. In this paper we concentrate mostly on the Maintaining plan routing problem on trees.
Trees are graphs useful for a representation of a vehicle route in the winter road maintenance.
Even if the set of edges maintained by a single vehicle is not a tree we can represent it as a tree
obtained e.g. from the Depth first search (DFS) algorithm. The symmetric orientation of a tree
is always an Eulerian graph and thus there exists a natural vehicle route if the only goal is to
visit all arcs exactly once. We show in next sections that the Maintaining plan routing problem is
interesting and not easy even for trees.

Graph cutting The routing when the priority function is constant is closely related to the ‘classic’
graph theory concept of graph cutting.

Definition 5 (Graph Cutting Problem). Graph Cutting Problem is to find, for a given graph
G rooted in its vertex r and a set of numbers t1, . . . , tk, a cover of E(G) by connected subgraphs
G1, . . . , Gk rooted in r of sizes t1, . . . , tk.

Arc-routing for winter road maintenance 5

For our purposes of winter road maintenance, it may be more natural to split a maintained
network into connected subgraphs of sizes at most t1, . . . , tk instead of the equality. An interested
reader may observe that results stated below also hold in this case, and we use the equality to
simplify our proofs.

We will need and prove a negative result on the graph cutting when we consider planar graphs.
However, there is a very nice positive result:

Theorem 1 ([18, 17, 21]). Given a k-edge-connected graph G = (V,E), k edges e1, e2, . . . , ek of
G and k positive integers m1, . . . ,mk with the sum equal to |E|. There exists a partition E =
E1 ∪ · · · ∪ Ek such that ei ∈ Ei, |Ei| = mi, and Gi = (V (Ei), Ei) is connected for each i ≤ k.

2.1 Public complaints

The particular aspect of winter road maintenance introduced next are public complaints. This is
an important issue of anybody in this business all around the world. The number of complaints
from public against the winter road maintenance is a quantitative measure of the quality of the
service which is focused on, e.g., in media or in election campaigns.

The experience is that residents make complaints to insufficient service if they think that they
are treated in an unfair manner in particular if their neighborhood is ‘skipped’ in the service.

We make a rational assumption that the number of public complaints can be deduced from the
structure of a vehicle route and in particular from its perceived unfairness. We call this (number)
the unfairness index of a vehicle route w, and define it in Definition 6.

The additional structure used in this definition is a collection of fixed cyclic orders of the
neighbors of each vertex. We observed the empiric existence and the importance of such orders
in our practical work for the winter road maintenance. In fact, in situations when a consensual
order between two edges sharing a vertex (representing two road-segments sharing a crossing) does
not exist, the administrators in charge of the winter road maintenance insisted on using different
maintaining cars to service these two roads in order to avoid complaints caused by one vehicle
giving ’unjustified preference’ to one of the two neighborhoods.

Definition 6. Let G be a graph and let d ∈ V (G) be a vertex of degree 1, called depot. We
further assume that we are given a fixed cyclic order O(v) of the neighbors of each vertex v. Let
w = (e1, . . . , el) be a vehicle route. For i < l let ei = (si, ti), let (w, i)+ denote the edge of G
incident with ti which follows {si, ti} in O(ti) and let (w, i)− denote the edge of G incident with
si which precedes {si, ti} in O(si).

– If no orientation of (w, i)+ belongs to (e1, . . . , ei+1) then we say that edge (w, i)+ has a forward
complaint.

– If no orientation of (w, i+ 1)− belongs to (e1, . . . , ei+1) then we say that edge (w, i+ 1)− has
a backward complaint.

– The unfairness index of the route w, denoted by Uf(w), is the sum of the number of edges
which have a forward complaint and the number of edges which have a backward complaint.

We require the depot to be a vertex of degree 1 since we can always append an artificial edge
with a vertex of degree 1.

Naturally we can introduce the unfairness minimization problem to find a vehicle route w with
Uf(w) as small as possible. We show further that this innocent looking problem is related to the
extensively studied necklace splitting problem.

3 Main results

3.1 Routing problem on trees with constant priority function

We recall that the parameters of winter maintaining of a network are (1) upper bound L for the
total length of a vehicle route, (2) priority function t and (3) capacity c. Additional assumption
of this section is a constant priority function. We denote the value t := t(p(e), i).

6 J. Fink et al.

We already noticed that the weighted problem is NP-complete even for stars. Hence, let us
consider the unweighted problem. It is equally straightforward to observe that deciding admissi-
bility for the unweighted problem is NP-complete for subdivided stars when the capacity c may
depend on the input tree (reduction to the 3-partitioning problem).

The case of the fixed capacity c already admits a polynomial algorithm based on the dynamic
programming.

Theorem 2. There is a polynomial algorithm for finding a solution of the unweighted maintaining
plan routing problem restricted to maintaining plans (T, d, p) with T tree, the priority function t
constant and the capacity c = 1/c′ a constant fraction not depending on the input tree. Also, the
unfairness minimization problem admits a polynomial algorithm.

3.2 Public complaints and necklace splitting

In 1987, Noga Allon [11] first studied an interesting problem in combinatorics which may be
interpreted as the problem how to divide a stolen necklace fairly between the thieves.

Definition 7 (k-splitting). Let N be an open necklace, i.e., a path consisting of k · n vertices-
beads, chosen from s different colors. There are k · ai beads of color i, 1 ≤ i ≤ s. A k-splitting
of the necklace is a partition of the necklace into k parts, each consisting of a finite number of
non-overlapping intervals of beads whose union contains precisely ai beads of color i, 1 ≤ i ≤ s.
The size of the k-splitting is the number of cuts that forms the intervals of the splitting.

Definition 8 (Necklace Splitting Problem). Let N be a necklace. Necklace splitting problem
is to find for given number k a k-splitting of necklace N of minimal size.

If the beads of each color appear contiguously, then at least k − 1 cuts between the beads of
each color are necessary and hence the number (k − 1) · s of cuts is a lower bound. The following
theorem says that this is sufficient for all k-splittings.

Theorem 3 (Noga Alon). Every necklace with kai beads of color i, 1 ≤ i ≤ s, has a k-splitting
of size at most (k − 1) · s.

This theorem has only topological non-constructive proofs so far; Alon’s proof uses a transfor-
mation of the discrete problem to a continuous coloring of the unit interval.

Complexity of necklace splitting. The algorithmic complexity of the necklace splitting has
been intensively studied. First, the problem to determine the algorithmic complexity of feasible
splitting with the smallest number of cuts was proven to be NP-complete even for 2-splitting
(k = 2) and two beads of each color by Bonsman, Epping and Hochstättler [4]. Alternative proof
was made by Meunier [23].

However, more attention has been given to another problem. Since the known proofs of the
existence of the splitting of size (k − 1)s are not constructive, the consequent research has been
directed towards constructively finding the splitting. The following question had been open for a
long time:

Can one find efficiently the splitting guaranteed by Theorem 3?
This was finally answered negatively in 2019 by Filos-Ratsikas and Goldberg [12]. To explain

this result we introduce the problem LEAF (see [25, 12]).

Definition 9 (LEAF Problem). An instance of the problem called LEAF consists of a graph G
of maximum degree 2, whose 2n vertices are represented by 0, 1 sequences of length n; G is given
by a polynomial Turing machine that takes as input a vertex and outputs its neighbors. Moreover,
the vertex 0 has degree 1. The goal is to output another vertex of degree 1.

Arc-routing for winter road maintenance 7

We say that a problem is PPA-complete if it is polynomial time equivalent to the LEAF
problem. A cryptographic hardness of the PPA-complete problems is discussed e.g. in [12].

The result of Filos-Ratsikas and Goldberg is that finding necklace splitting guaranteed by
Theorem 3 is PPA-complete even for k = 2.

As discussed earlier, the weighted maintaining plans is relevant for the winter road maintenance
when it is realistic to assume that the resources of vehicles (time, amount of the spreading material)
depend non-linearly on the lengths of road segments.

Theorem 4. There exists a polynomial reduction of the necklace splitting problem to the weighted
unfairness minimization for maintaining plans routing on trees, even when the maintaining plan
is a star with weights on edges.

Finally, we find the next questions appealing:

Question 1. Is there a good approximation algorithm for the weighted unfairness minimization
arc routing for trees?

Question 2. Is there an analogue of Thereom 3 for the unfairness minimization for general trees
and for planar graphs?

3.3 Routing unweighted trees with bounded degrees

In this section we consider general priorities in the maintaining plans. All trees are unweighted.
We construct a polynomial algorithm based on dynamic programming which can decide if a given
maintaining plan (T, d, z, p), T tree of bounded degree admits a vehicle root where in addition each
arc is traversed at most a constant number of times. We also show that both these additional
assumptions are necessary.

Theorem 5. Fixed integers F,∆. There exists a polynomial time algorithm which for a tree T =
(V,E) rooted in d with maximal degree at most ∆, function f : E → N such that f(e) ≤ F for all
e ∈ E and function g : E × {1, . . . , F} → N decides whether there exists a closed walk w starting
at r satisfying

– Every edge e of T s is traversed f(e)-times (at most f(e)-times respectively) in both directions.
– For every edge e of T s and y ≤ f(e), there are at most g(e, y) steps between yth and (y + 1)st

traverses of e, taken cyclically.

As a consequence, there is a polynomial algorithm to decide if a L, c, t, f -vehicle route on T exists.

Consider the question: Is it necessary to fix F and ∆? We first show that the admissibility is
hard for unbounded f even if G is a binary tree and g depends only on the edge.

Theorem 6. It is NP-complete to decide whether a given binary tree T = (V,E) rooted in d and
functions f, g : E → N there exists a closed walk w starting at r satisfying (1) Every edge e is
traversed f(e)-times in both directions. (2) For every edge e, there are at most g(e) steps between
two consecutive traverses of e in both direction, taken cyclically. The problem is NP-complete even
if we restrict f to be non-increasing on all paths from the depot.

Next theorem treats the case unbounded degrees.

Theorem 7. Fixed integer F . It is NP-complete to decide whether a given tree T = (V,E) rooted
in d, function f : E → N such that f(e) ≤ F for every edge e and function g : E×{1, . . . , F} → N
there exists a closed walk w starting at d satisfying (1) Every edge e is traversed f(e)-times in
both directions. (2) For every edge e and y ≤ f(e), there are at most g(e) steps between the yth
and (y + 1)st traverses of e in both direction, taken cyclically.

8 J. Fink et al.

3.4 Routing unweighted graphs of bounded tree-width

In this section, all graphs will be unweighted. A tree decomposition of a graph G is a pair (W, b)
where W is a tree and b : V (W)→ 2V (G) assigns a bag b(v) to each vertex v of W such that

– every vertex is in some bag,
– every edge is a subset of some bag,
– every vertex of G appears only in a connected subtree of the decomposition.

The width of the tree decomposition is defined as the size of the largest bag, minus one. The
tree-width of graph G is the minimum width of a tree decomposition of G.

Let G = (V,E) have a distinguished vertex, denoted by d. It is useful to simplify the decom-
position. A tree decomposition (W, b) is canonical if

– T is rooted, and the root r satisfies d ∈ b(r).
– Each leaf u satisfies |b(u)| = 1.
– Each non-leaf vertex u satisfies one of the following conditions:

1. u has exactly one son u′ and b(u) = b(u′) ∪ {v} for some vertex v ∈ V .
2. u has exactly one son u′ and b(u) = b(u′) \ {v} for some vertex v ∈ V .
3. u has exactly two sons u′, u′′ and b(u) = b(u′) = b(u′′).

It is straightforward to verify that every graph G of tree-width at most k has a canonical tree
decomposition of width at most k, of polynomial size. The following theorem is again proved by a
dynamic programming argument building on the proof of Theorem 5.

Theorem 8. Let z,∆, F be integer constants and let (G, d, z, p) be a maintaining plan where
G = (V,E) is a graph rooted in d and with maximal degree at most ∆, given along with its
canonical tree decomposition (W, b) of width k − 1 and functions f : Es → N such that f(e) ≤ F
for all e ∈ Es and t : Es × {1, . . . , F} → N . Then there is an algorithm to decide if a L, c, t, f -
vehicle route on G exists of complexity at most pol(|G|, |t|)× (4kF |E|)4Fk∆.

3.5 Case of more routes

In this section all graphs are unweighted. The graph of road network has each edge maintained by
one method. We recall that the set of the possible maintaining methods is denoted by M . We will
assume that M has a fixed size, e.g., M = {c, i, s}. It is natural to assume that each maintaining
vehicle can snowplow and thus we can include deadheading in our model.

Definition 10. Let G be a graph of road network and Gs its symmetric orientation. Let p : E →
{1, . . . , z} be its priority function and m : E → M be its maintaining type function. Let D be the
set of the depots. We say that a tuple (H,P, d, α, z, p) where H is a subgraph of G and d ∈ D∩V (H)
is a maintaining plan of G if m is constant on H and (H,P, d, α, z, p) admits a L, c, t, f -vehicle
route.

Definition 11 (Feasible and Optimal Solution). Feasible solution of a road network G is a
set O of admissible plans of G so that the union of their P -sets covers E(G). A feasible solution
O is optimal if |O| is as small as possible.

Finding an optimal solution First we note that finding an optimal solution is an NP-complete
problem even for G a tree, all edge-weights equal to 1 and |D| = 1.

Hence from now on let o be a fixed integer and we consider the optimization problem Road-
net(o): find out if there is a feasible solution of a road network consisting of at most o admissible
plans. We arrive at a result analogous to Theorem 8 by further refining the dynamic optimization
argument of its proof.

Theorem 9. Let z,∆, F be integer constants and let (G,D, z, p,m) be a road network where
G = (V,E) is a graph with maximal degree at most ∆ and D ⊂ V , given along with its canonical
tree decomposition (W, b) of width k − 1 and functions f : Es → N such that f(e) ≤ F for all
e ∈ Es and t : Es × {1, . . . , F} → N . Then there is an algorithm for Roadnet(o) of complexity
at most pol(|G|, |t|)× (4koF |E|)4Fko∆.

Arc-routing for winter road maintenance 9

3.6 Solving routing in planar networks

In this section, we consider the class of planar graphs which realistically model most of road
networks. We start with a hardness result on planar graph cutting.

Theorem 10. The following planar graph cutting problem is NP-complete: given a planar graph
G, its vertex d and numbers t1, t2, decide if there are two connected subgraphs G1, G2 containing
d so that |E(Gi)| = ti, i = 1, 2 and E = E(G1) ∪ E(G2).

Proof. We show a reduction from the Steiner tree problem for planar graphs which is a well known
NP-complete problem.

Steiner tree problem: given a graph and a set T of its vertices called terminals, find a connected
subgraph that includes all the terminals and has the minimum possible number of edges.

The reduction goes as follows: let G be a planar graph and let T be a set of its vertices. We
take one of the vertices of T and call it d. Next, we attach to each vertex of T \ d a path of |E|
edges. We let t1 = (|T | − 1)|E|+ x and t2 = |E|. It is not hard to see that G has a Steiner tree of
size at most x if and only if a feasible graph cutting exists for the graph created after attaching
the paths.

Taking into account the proof of Theorem 10, we get the following hardness result:

Theorem 11. The maintaining plan routing problem for planar graphs is NP-complete even when
c = 1/2 and all edge-weights are equal to one.

By Theorem 9 (case of o = 1), the maintaining plan routing problem for planar graphs with
bounded degrees can be solved in 2O(

√
nlogn)nO(1) since every planar graph of n vertices has tree

width at most
√
n.

We conjecture that assuming the exponential time hypothesis, there is no algorithm of com-
plexity 2o(

√
n)nO(1).

Most of the realistic medium size road networks are planar bounded degree, with at most ten
thousand edges (road-segments) and around one hundred of the maintaining vehicles. This leads
to studying planar road networks with n vertices and O(

√
n) maintenance cars.

We do not know if this problem admits a sub-exponential algorithm. However, many realistic
road networks contain small cuts and their tree-width is small. For such networks, Theorem 9
implies a sub-exponential algorithm.

4 The proofs

4.1 Proof of Theorem 2

We start by showing a polynomial algorithm for the Tree Cutting Problem based on the dynamic
programming.

Theorem 12. Let k be any fixed number. There is a polynomial algorithm to solve the Tree Cutting
Problem.

Proof. We are given a tree T rooted in a vertex r and integers s1, . . . , sk. Let us denote by n the
number of vertices of T . We need to cover the graph T with trees of given sizes. To do that we will
construct a cover for all possible sizes of trees. This set of covers is denoted by F (v). Formally, we
proceed in two steps.

First, define for each v ∈ V (T) a set F ′(v); the elements of F ′(v) are all k-tuples of trees
(T1, . . . , Tk) with root v such that:

B(v) =

k⋃
i=1

Ti.

10 J. Fink et al.

Each k-tuple in F ′(v) is a cover of the branch B(v) by trees T1, . . . , Tk. The size of (T1, . . . , Tk)
as the vector (t1, . . . , tk) where tj = |E(Tj)|, 1 ≤ j ≤ k. We define an equivalence on F ′(v):
(T1, . . . , Tk) and (T ′1, . . . , T

′
k) are equivalent if ∀i ∈ {1, . . . , k} : ti = t′i.

Secondly, for each vertex v we let F (v) to be the set of all representatives of this equivalence.
We denote by S(v) the set of the sizes of the elements in F (v). We note that |S(v)| ≤ nk because
each tree has at most n edges and there are k trees in every k-tuple.

We will construct F (v) for all v ∈ T recursively.

– Let v be a leaf: F (v) := {(∅, . . . , ∅)}.
– Let v be a parent of vertices v1, . . . , vm and we assume for all i = 1, . . . ,m F (vi) are determined.

We will define for v and 1 ≤ i ≤ m the set Fvi(v) of k-tuples representing covers of the subtrees
induced by vertex v and branches rooted in its children v1, . . . , vi. We construct Fvi(v) by the
additive step described below.

– We let F (v) := Fvm(v).

Now we describe the additive step used for the construction of F (v).
Additive step: Given a k-tuple (T1, . . . , Tk), we construct a k-tuple (T ′1, . . . , T

′
k) by addition

of the edge {vi, v} in every possible way. There are two cases dependent on the size of the cover.

1. Case ti = 0 for each 1 ≤ i ≤ k :
we add the edge for every nonempty subset of indices

∀I ⊂ {1, . . . , k}, |I| ≥ 1

j ∈ I : T ′j = Tj ∪ {v, vi}

j /∈ I : T ′j = ∅

2. Case ∃i ∈ {1, . . . k} : ti 6= 0
Let J = {i | ti = 0}, we add the edge for all nonempty trees and we add the edge for every
subset of empty trees

∀I ⊂ J

j /∈ J : T ′j = Tj ∪ {v, vi}

j ∈ I : T ′j = Tj ∪ {v, vi}

j ∈ J \ I : T ′j = ∅

This finishes the description of the Additive step.

– Construction of Fv1(v) :
We start with Fv1(v) = ∅. For each (T1, . . . , Tk) ∈ F (v1) we construct by the additive step the
set of k-tuples (T ′1, . . . , T

′
k) which we add into Fv1(v).

– Construction of Fvi+1
(v) :

In this case we proceed in two steps.
First we construct F ′(vi+1) by additive steps applied to F (vi+1). Specifically, we start with
F ′(vi+1) = ∅. For each (T1, . . . , Tk) ∈ F (vi+1) we construct by the additive step a set of k-
tuples (T ′1, . . . , T

′
k) which we add into F ′(vi+1).

Secondly, we merge Fvi(v) and F ′(vi+1) again in two steps as follows.
First, for all (T11, . . . , T1k) ∈ Fvi(v) and all (T21, . . . , T2k) ∈ F ′(vi+1)

∀i ∈ {1, . . . , k} : T ′i = T1i ∪ T2i

and we add into Fvi+1
(v) the created k-tuple (T ′1, . . . , T

′
k).

Finally, we clean the set Fvi+1
(v) by keeping only the representatives of equivalence classes.

Arc-routing for winter road maintenance 11

The described construction of the set F (r) determines the set S(r) of sizes. We have a solution
of the tree cutting problem if and only if the k-tuple (s1, . . . , sk) is in S(r).

By analyzing the above procedure we need at most two times nk × nk steps for adding of one
edge. Hence the complexity of the algorithm is asymptotically n2k+1 because there are at most n
edges. So there exists a polynomial algorithm for the tree cutting problem with fixed k.

Proof of Theorem 2. We distinguish several cases.

1. t ≥ 1, c = 1:
– priority condition and capacity condition always hold
– necessary and sufficient condition for existence of L, c, t-vehicle route is: |E(T)| ≤ 1

2L
2. t ≥ 1, c < 1:

– priority condition always holds
– clearly, if an arc belongs to a trip then its reverse belongs to the same trip. Trips are

determined by subtrees rooted in d and there is no advantage in going through an arc
more than once in the same trip

– we want to construct subtrees T1, . . . , Tk rooted in d such that k :=
⌈
1
c

⌉
,

∀i ∈ [k] : |Ti| ≤ cL,

T = T1 ∪ . . . Tk
and ∑

i≤k

2|E(Ti)| ≤ L.

This is achieved by the algorithm for tree cutting problem described in the proof of The-
orem 12. A solution is any collection of k trees with sizes ti satisfying ti ≤ cL for each
i ≤ k, and ∑

i≤k

2ti ≤ L.

3. t < 1, t ≤ c :
– capacity condition holds if priority condition is satisfied
– necessary and sufficient condition for existence of L, c, t-vehicle route is: 2|E(T)| ≤ tL.

4. t < 1, c < t :
– this case is equivalent to case 2. for L′ := tL, t′ = 1 and capacity c′ := c

t

Solution of cases 1 and 3 can be a DFS order of a tree if the necessary condition holds other-
wise there is no solution. Case 4 is reduced to case 2. Case 2 admits a polynomial algorithm by
Theorem 12.

4.2 Proof of Theorem 4

Proof. We have been given an instance of the Necklace splitting problem. The necklace N of length
nk has to be partitioned into k parts each containing ai beads of color i, 1 ≤ i ≤ s. So the number
of colors is s.

We describe a construction of a network. The graph of the network will be a star with center x
rooted in its leaf d and with nk non-root leaves u1, . . . , unk. The cyclic order for x is (d, u1, . . . , unk).
The number of traverses of each arc e will be bounded by f(e) where f(e) = 1 if e is not incident
with d, and f(e) = k otherwise.

For each color r, 1 ≤ r ≤ s, we define number Mr recursively: M1 = 1 + n and Mr+1 =
1 + n

∑
q≤rMq.

For each i, 1 ≤ i ≤ nk, if the ith bead of the necklace has color r, than we let α({x, ui}) = Mr.
We also let α({x, d}) = 1. Finally we let L = 2k(1 +

∑s
r=1 arMr)) and c = 1

k .
The capacity constant determines the length of each trip from the depot to be exactly 2(1 +∑s
r=1 arMr). Multiplication by two means each edge is traversed in both directions.

12 J. Fink et al.

A solution of the unfairness minimization problem is a vehicle route w. The complaints at edges
{x, ui} naturally determine the splits of the necklace. If {x, ui} has a forward complaint then we
split the necklace between the (i − 1)st and ith beads of the necklace. If {x, ui} has a backward
complaint then we split the necklace between the ith and (i+ 1)st beads of the necklace.

Summarizing, the sum of the complaints at vertices of the route minimizing the unfairness
index is equal to the minimum size of the necklace splitting.

Unfairness and sum packing problem As a follow-up to the proof of Theorem 4 we show a
connection of the unfairness minimization problem with the Sum Packing Problem of Erdös [34].

As described above, the Necklace Splitting is, from the complexity point of view, hard already
for the number of thieves k = 2, and each ai = 1. Clearly, when the number of thieves k = 2
and each ai = 1 then the proof of Theorem 4 works for any set of numbers M1, . . . ,Ms with the
property that all partial sums of Mi’s are pairwise distinct. A natural question is whether such
set exists with all Mi bounded by a fixed power of s.

It turns out that the answer is negative. This is related to a very nice part of the combinatorial
number theory which we now explain.

Definition 12 (Set with Distinct Subset Sums). A set S of positive integers has distinct
subset sums if the set {

∑
x∈X x : X ⊂ S} has 2|S| distinct elements.

For example, any set of distinct powers of number 2 has the distinct subset sums property.
More examples of sets with distinct subset sums are {3, 5, 6, 7} and {6, 9, 11, 12, 13}. We mention
a lower bound for the value of the maximum in the sets with the distinct subset sums property.

Definition 13. Let f(n) = min{maxS : |S| = n, S has distinct subset sums }.

Paul Erdös conjectured in 1931 that for some constant c

f(n) ≥ c2n.

Conway and Guy [7] found a construction of sets with distinct subset sum, now called the
Conway-Guy sequence, which gives an upper bound on f . This was later improved by Lunnan [22],
and then by Bohman [3] to f(n) ≤ 0.22002 · 2n (for n sufficiently large).

The best known lower bound, up to the constant, has been proved by Erdös and Moser [10] in
1955,

f(n) ≥ 2n/(10
√
n).

4.3 Proof of Theorem 5

Proof. The length of the route has to be l = 2
∑
e∈E f(e) and let I = {1, . . . , l} be the set of

all indices on the route. For every A ⊆ I and v ∈ V let Mv[A] be true if there exists route
satisfying all conditions on T [v] using exactly indices of A on T [v]. Similarly we define M ′v[A] for
T ′[v]. Let z(A) for the set of ordered pairs of starting and ending indices of subsequences of A,
i.e. z(A) = {(a1, b1), . . . , (aq, bq)} such that A = {a1, . . . , b1} ∪ · · · ∪ {aq, . . . , bq} and a1 ≤ b1 <
b1+1 < a2 ≤ b2 < b2+1 < · · · < bq−1+1 < aq ≤ bq. Let |z(a)| = q be the number of subsequences.

Let v be a non-root vertex and e = vp(v) where p(v) is the parent of p. If M ′v[A] = true, then
|z(A)| ≤ f(e) since e has to be traversed f(e) (some traverses may be consecutive). Therefore,
there are at most f(e) · l2f(e) sets A such that M ′v[A] = true, so we can store all such sets A instead
of whole table M ′v to ensure polynomial space. Similarly, if Mv[A] = true then |z(A)| ≤ f(e) since
T [v] can be entered at most f(e)-times.

We determine Mv using the following dynamic programming. If v is a leaf, then Mv[A] = true
only for A = ∅. Consider that u1, . . . , us are all children of v. Recall that 1 ≤ s ≤ ∆. First, we
set Mv[A] := false for all A and then we consider all combination Ai for i = 1, . . . , s such that
M ′ui

[Ai] = true. Note that there are at most F∆ · l2F∆ ≤ F d · (2Fn)2F∆ such combinations, so
the algorithm is polynomial. Let A = A1 ∪ · · · ∪ As. We apply the following function for every
combination.

Arc-routing for winter road maintenance 13

– If any two sets of A1, . . . , As have a common member, then the function terminates, since
every index has to be used for exactly once on the route.

– If z(A) > f(e), then the function terminates, since T [v] can be entered at most f(e)-times
where e = vp(v).

– In the end, we set Mv[A] := true.

Now, we determine M ′v. Let e = {v, p(v)}. First, we set M ′v[A] := false for all A and then we
apply the following function for every A with Mv[A] = true.

– Let z(A) = {(a1, b1), . . . , (aq, bq)}. If q > f(e) then stop.
– Let X1 = {a′i; 1 ≤ i ≤ f(e)}, X2 = {b′i; 1 ≤ i ≤ f(e)} and X = X1 ∪ X2 be such that (1)
X ∩A = ∅ (2) X1 ∩X2 = ∅ and (3) for each (ai, bi) ∈ z(A), ai − 1 ∈ X1 and bi + 1 ∈ X2. For
each such X1, X2 we let A′ = A ∪X.

– We check if X1, X2 satisfy the conditions for g(e): if not, we stop.
– We set M ′v[A

′] := true.

Finally, the algorithm returns Md[I].

We note that the same proof works if we require that every edge e is traversed at most f(e)-
times in both directions.

Theorem 13. Let z,∆, F be integer constants and let (T, d, z, p) be a maintaining plan where T
is a tree with maximum degree ∆. Let f : E → N satisfies for each e ∈ E, f(e) ≤ F . Then there
is a polynomial algorithm to decide if a L, c, t, f -vehicle route on T exists.

Proof. We use Theorem 5 and note that we can require that every edge e is traversed at most
f(e)-times in both directions, function t can be modeled by g and the capacity constraint can be
modeled by connecting the depot to a new vertex of degree one and setting the proper value on
g(e) for the new edge.

4.4 Proof of Theorem 6

Proof. The 3-partition problems ask to decide whether a given integers a1, . . . , a3n can be split
into n groups with the same sum. The problem is strongly NP-complete even if it is restricted to
integers strictly between S/2 and S/4 where S is the target sum. Note that in this case, every
group has to contain exactly 3 integers.

Let h = dlog2 3ne and B = 3h and bi = Bai for all i = 1, . . . , 3n and S′ = B(S + 1).
Let Ti be a binary tree on bi edges rooted in ri. Let T ′ be a binary tree rooted in r′ with leaves

r1, . . . , r3n such that all leaves are in depth h. Let T be a binary tree such that

– d is the root of T
– d has only one child d′

– T ′ is attached to the node d′

– trees T1, . . . , T3n are attached to leaves of T ′.

Note that the size of T is O(log n
∑
i ai), so it is only O(log n)-times larger than the size of the

instance of 3-partition problem.
Next, f(e) = 1 for all edges e on trees T1, . . . , T3n. For an edge e of T ′, f(e) is the number of

trees of T1, . . . , T3n in the subtree of e. Finally, f(dd′) = n. The goal is to ensure there that the
route can be split into n parts by passing dd′ and each part traverses from d′ to some ri, whole tree
Ti, returns to d′ and then traverses two other trees of T1, . . . , T3n. In order to ensure the proper
sum, we set g(dd′) = 2S′+ 2 and g(e) is a sufficiently larger number for all other edges e. Clearly,
if integers can be split into n groups, there exists a route.

Consider a walk w. Clearly, every tree T1, . . . , T3n has to be traversed by w completely once it
is entered. Traverses of dd′ split w into n parts and every tree T1, . . . , T3n is completely traversed
in one part. Note that g(dd′) ensures that one part traverses at most S′ edges in both directions
(excluding dd′).

14 J. Fink et al.

We prove that every part traverse exactly tree trees. For contradiction, assume that trees
Ti, Tj , Tk, Tl are traversed in one part. Then, the number of edges in the part is at least bi + bj +
bk + bl + h = B(ai + aj + ak + al) + h ≥ 4B S+1

4 + h = B(S+ 1) + h > S′ which is a contradiction.
Since all parts contain at most 3 trees, every part must contains exactly 3 trees.

Now, consider a part traversing trees Ti, Tj , Tk. For contradiction, assume that ai+ak+aj > S.
The number of traversed edges in the part is at least bi + bj + bk + h = B(ai + aj + ak) + h ≥
B(S + 1) + h > S′ which is a contradiction. Hence, the sum of integers corresponding to each
group is exactly S.

4.5 Proof of Theorem 7

Proof. Consider an instance of 3-partition consisting of 3n integers a1, . . . , a3n and let S be the
target sum. Let B = n and bi = Bai for i = 1, . . . , 3n and S′ = BS + 1 and S′′ = (n− 1)S′. Let
T be tree which consists of

– a depo d, and
– n vertices u1, . . . , un incident only to d where f(dui) = 2 and g(dui, 1) = S′ and g(dui, 2) = S′′,

and
– 3n paths P1, . . . , P3n on b1, . . . , b3n edges such that one end-vertex of each path is d and these

paths have to be traversed only once.

Note that the only possible length of a route is S′ + S′′ and the short and long distances between
tranverses of edges dui have to be exactly S′ and S′′, respectively. If a1, . . . , a3n can be partitioned
into n groups of equal sum S then we construct a route as follows: Start by traversing du1, traverse
3 paths of the first group, traverse du1, traverse du2, etc.

Observe that there is no route such that two close traverses of an edge dui which is interleaved
by a traverse of an edge duj since the sum of lengths of any subset of paths is divisible by B and
even all edges du1, . . . , dun cannot contribute to a multiple of B. Hence, if there exists a route
then it looks like as the one constructed above.

Note that the problem is NP-complete even if F = 2 and all vertices except one have degree at
most 2.

4.6 Proof of Theorem 8

Theorem 8 immediately follows from the following

Theorem 14. Fixed integers F,∆, k. There exists a polynomial time algorithm which for a graph
G = (V,E) rooted in d and with maximal degree at most ∆, given along with its canonical tree
decomposition (W, b) of width k − 1 and functions f : Es → N such that f(e) ≤ F for all e ∈ Es
and g : Es × {1, . . . , F} → N decides whether there exists a closed walk w starting at d satisfying

– Every edge e is traversed f(e)-times in both directions.
– For every edge e and y ≤ f(e), there are at most g(e, y) steps between the yth and (y + 1)st

traverses of e, taken cyclically.

Proof. We assume that for each bag b(v), the edges of Gs incident to a vertex of b(v) (there are
at most 2k∆ of them) are linearly ordered. The ordering may differ in different bags.

The length of the route has to be l = 2
∑
e∈E f(e) and let I = {1, . . . , l} be the set of all indices

on the route. Let I ′ = {(x, i);x ∈ I, 0 ≤ i ≤ 2k∆}. For every A ⊆ I ′, and u ∈ V (W) let Mu[A] be
true if there exists route w = (e1, . . . , el) satisfying all conditions on Gp(u),u so that:

– If A0 = {x; there is i such that (x, i) ∈ A} then w uses exactly indices of A0 on Gp(u),u,
– For each (x, i) ∈ A, i = 0 iff ex is not incident to a vertex of b(u).
– Let S(A) = {x ∈ A0; ex is incident with a vertex of b(u)}. For each x ∈ S(A), if (x, i) ∈ A then

the edge ex of w is the ith edge of the fixed linear order of the edges incident with a vertex of
b(w).

Arc-routing for winter road maintenance 15

Let z(A) = {(a1, b1), . . . , (aq, bq)} such that A0 = {a1, . . . , b1} ∪ · · · ∪ {aq, . . . , bq} and a1 ≤
b1 < b1 + 1 < a2 ≤ b2 < b2 + 1 < · · · < bq−1 + 1 < aq ≤ bq. Clearly, |z(a)| = q be the number of
subsequences in A0.

If Mu[A] = true then |z(A)| ≤ |S(A)| ≤ 2Fk∆ since Gp(u),u can only be entered from a vertex
of b(u) which is incident with at most ∆ edges in Gp(u),u and each such edge can be used at most

f(e)-times. Therefore, there are at most (2kl∆)2Fk∆ sets A such that Mu[A] = true, so we can
store all such sets A instead of whole table Mu to ensure polynomial space.

We determine Mu using the following dynamic programming. Let u be a non-root vertex of
W .

If u is a leaf, then Mu[A] = true only for A = ∅.
If u is unique son of p(u) and b(p(u)) = b(u)\{v} for some vertex v of G then Mp(u)[A] = true

iff Mu[A′] = true where A′ obtained from A but correcting the contribution of the linear order of
edges associated with b(p(u)).

Let u be the unique son of p(u) and b(p(u)) = b(u) ∪ {v} for some vertex v of G. We notice
that no edge incident with v belongs to Gp(u),u. We construct sets A for which Mp(u)[A] = true
by considering edges from v to b(u) one by one and for each such edge e we perform the same
construction as the one of M ′v[A

′] from Mv[A] in the proof of Theorem 5.
Finally let p(u) have two sons u = u1, u2. We know b(p(u)) = b(u1) = b(u2). Let S =

Es(Gp(p(u1)),u1
)∩Es(Gp(p(u2),u2

). We observe: if e ∈ S then e is incident with a vertex of b(p(u1)).
We let again Mp(u)[A] = false for each A and do the following:
Consider all pairs A1, A2 such that Mu1

[A1] = true and Mu2
[A2] = true. We first modify the

elements of both A1, A2 to reflect the fixed linear order of the edges incident with a vertex of
b(p(v)); this linear order may be different from the linear order (of the same set) fixed for b(u1)
or for b(u2). Let the resulting sets be denoted by A′1, A

′
2.

For e ∈ S let i(e) denote its index in the fixed linear order of the edges incident with a vertex
in b(p(u1)). For each such i(e) let S1 = {x; (x, i(e)) ∈ A′1} and S2 = {x; (x, i(e)) ∈ A′2}. If S1 6= S2

then stop.
If [A′1]0 ∩ [A′2]0 contain any other element then stop.
If A′ = A′1 ∪ A′2 does not satisfy the requirements given by function g on the edges incident

with a vertex of b(p(u)) then stop.
Let Mp(u)[A

′] = true.
Finally, the algorithm returns Md[I].

5 Conclusion

This paper provides background for theoretical study of winter road maintenance considering
practical constraints like different priorities and maintenance methods of roads. We introduced
the concept of public complaints to the quality of snow removal and show its algorithmic corre-
spondence to the necklace splitting problem. We extended earlier research by moving from LP
based approach towards studying arc routing problems on trees which allowed more detailed com-
plexity considerations.

In the future work we want to concentrate on the open problems suggested by this work, i.e., on
understanding algorithmic public satisfaction and on arc-routing in planar graphs where we have
only partial results so far

References

1. Rafael Kendy Arakaki and Fabio Luiz Usberti. An efficiency-based path-scanning heuristic for the
capacitated arc routing problem. Computers & Operations Research, 103:288–295, 2019.

2. Badis Bensedira, Abdesslam Layeb, and Zineb Habbas. Discrete cuckoo search applied to capacitated
arc routing problem. International Journal of Metaheuristics, 6(1-2):37–54, 2017.

3. Tom Bohman. A construction for sets of integers with distinct subset sums. the electronic journal of
combinatorics, pages R3–R3, 1998.

16 J. Fink et al.

4. P Bonsma, Th Epping, and Winfried Hochstättler. Complexity results on restricted instances of a
paint shop problem for words. Discrete Applied Mathematics, 154(9):1335–1343, 2006.

5. Adamo Bosco, Demetrio Laganà, Roberto Musmanno, and Francesca Vocaturo. A matheuristic algo-
rithm for the mixed capacitated general routing problem. Networks, 64(4):262–281, 2014.

6. Claudio Ciancio, Demetrio Laganá, and Francesca Vocaturo. Branch-price-and-cut for the mixed
capacitated general routing problem with time windows. European Journal of Operational Research,
267(1):187–199, 2018.

7. J. H. Conway and Richard. K. Guy. Sets of natural numbers with distinct subset sums. Notices of
American Mathematical Society, 345(15), 1968.

8. Ángel Corberán, Richard Eglese, Geir Hasle, Isaac Plana, and José Maŕıa Sanchis. Arc routing
problems: A review of the past, present, and future. Networks, 77(1):88–115, 2021.

9. M Poggi de Aragao and Eduardo Uchoa. Integer program reformulation for robust branch-and-cut-
and-price algorithms. In Mathematical program in rio: a conference in honour of nelson maculan,
pages 56–61, 2003.

10. Paul Erdös. Problems and results in additive number theory, 1955.
11. Aris Filos-Ratsikas and Paul W Goldberg. The complexity of splitting necklaces and bisecting ham

sandwiches. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing,
pages 638–649, 2019.

12. Aris Filos-Ratsikas and Paul W Goldberg. The complexity of splitting necklaces and bisecting ham
sandwiches. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing,
pages 638–649, 2019.

13. Jǐŕı Fink, Martin Loebl, and Petra Pelikánová. A new arc-routing algorithm applied to winter road
maintenance. arXiv preprint arXiv:2001.10828, 2020.

14. László Gáspár and Zsolt Bencze. Salting route optimization in hungary. Transportation Research
Procedia, 14:2421–2430, 2016.

15. Ivona Gudac, Ivan Marović, and Tomaš Hanak. Sustainable optimization of winter road maintenance
services under real-time information. Procedia Engineering, 85:183–192, 2014.

16. Aldy Gunawan, Graham Kendall, Barry McCollum, Hsin-Vonn Seow, and Lai Soon Lee. Vehicle
routing: Review of benchmark datasets. Journal of the Operational Research Society, pages 1–14,
2021.

17. Ervin Gyori. On division of graphs to connected subgraphs. Colloq. Math. Soc. Janos Bolyai, 18:485–
494, 1976.

18. Michael Jünger, Gerhard Reinelt, and William R Pulleyblank. On partitioning the edges of graphs
into connected subgraphs. Journal of Graph Theory, 9(4):539–549, 1985.

19. Joris Kinable, Willem-Jan van Hoeve, and Stephen F Smith. Optimization models for a real-world
snow plow routing problem. In International Conference on AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems, pages 229–245. Springer, 2016.

20. Joris Kinable, Willem-Jan van Hoeve, and Stephen F Smith. Snow plow route optimization: A con-
straint programming approach. IISE Transactions, pages 1–19, 2020.

21. László Lovász. A homology theory for spanning tress of a graph. Acta Mathematica Academiae
Scientiarum Hungarica, 30(3-4):241–251, 1977.

22. W Fred Lunnon. Integer sets with distinct subset-sums. Mathematics of Computation, 50(181):297–
320, 1988.

23. Frédéric Meunier. Discrete splittings of the necklace. Mathematics of Operations Research, 33(3):678–
688, 2008.

24. M Cândida Mourão and Leonor S Pinto. An updated annotated bibliography on arc routing problems.
Networks, 70(3):144–194, 2017.

25. Christos H Papadimitriou. On the complexity of the parity argument and other inefficient proofs of
existence. Journal of Computer and system Sciences, 48(3):498–532, 1994.

26. Diego Pecin and Eduardo Uchoa. Comparative analysis of capacitated arc routing formulations for
designing a new branch-cut-and-price algorithm. Transportation Science, 53(6):1673–1694, 2019.

27. Nathalie Perrier, André Langevin, and Ciro-Alberto Amaya. Vehicle routing for urban snow plowing
operations. Transportation Science, 42(1):44–56, 2008.

28. Nathalie Perrier, André Langevin, and James F Campbell. A survey of models and algorithms for
winter road maintenance. part i: system design for spreading and plowing. Computers & Operations
Research, 33(1):209–238, 2006.

29. Nathalie Perrier, André Langevin, and James F Campbell. A survey of models and algorithms for
winter road maintenance. part ii: system design for snow disposal. Computers & Operations Research,
33(1):239–262, 2006.

Arc-routing for winter road maintenance 17

30. Nathalie Perrier, André Langevin, and James F Campbell. A survey of models and algorithms for
winter road maintenance. part iii: Vehicle routing and depot location for spreading. Computers &
Operations Research, 34(1):211–257, 2007.

31. Nathalie Perrier, André Langevin, and James F Campbell. A survey of models and algorithms for
winter road maintenance. part iv: Vehicle routing and fleet sizing for plowing and snow disposal.
Computers & Operations Research, 34(1):258–294, 2007.

32. Tony K Rodriguez, Olufemi A Omitaomu, and James A Ostrowski. Allocating limited deicing resources
in winter snow events. Journal on Vehicle Routing Algorithms, 2(1):75–88, 2019.

33. Ching-Jung TING and Han-Shiuan TSAI. Ant colony optimization with path relinking for the capac-
itated arc routing problem. Asian Transport Studies, 5(2):362–377, 2018.

34. Binglei Xie, Ying Li, and Lei Jin. Vehicle routing optimization for deicing salt spreading in winter
highway maintenance. Procedia-Social and Behavioral Sciences, 96:945–953, 2013.

