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Abstract

Vandenbussche and West conjectured that every matching of the hypercube can be ex-
tended to a 2-factor. We prove this conjecture.

1 Introduction

A set of edges P ⊂ E of a graph G = (V,E) is a matching if every vertex of G is incident with at
most one edge of P . If a vertex v of G is incident with an edge of P , we say that v is covered by
P . A matching P is perfect if every vertex of G is covered by P . A set of edges S ⊆ E is called
k-factor if every vertex of the subgraph (V, S) has degree exactly k. Clearly, 1-factors are exactly
perfect matchings. Next, a 2-factor is a union of vertex-disjoint cycles covering all vertices. If
a 2-factor forms a single cycle, then it is called a Hamiltonian cycle.

The n-dimensional hypercube Qn is a graph whose vertex set consists of all binary vectors of
length n, with two vertices being adjacent whenever the corresponding vectors differ at exactly one
coordinate. It is well known that Qn is Hamiltonian for every n ≥ 2. This statement can be traced
back to 1872 [6]. Since then the research on Hamiltonian cycles in hypercubes satisfying certain
additional properties has received considerable attention. Dvořák [3] showed that any set of at
most 2n− 3 edges of Qn (n ≥ 2) that induces vertex-disjoint paths is contained in a Hamiltonian
cycle.

Ruskey and Savage [10] asked whether every matching of the hypercube Qn can be extended
into a Hamiltonian cycle and this problem is still open. One natural step toward this problem
is considering perfect matchings only. Kreweras [9] conjectured that every perfect matching in
the n-dimensional hypercube with n ≥ 2 extends to a Hamiltonian cycle. This conjecture was
popularized by Knuth [8] and proven by Fink [4]. The proof of Kreweras’ conjecture actually
provides a slightly stronger statement saying that every matching in the complete graph on vertices
of Qn can be extended into a Hamiltonian cycle using only edges of Qn [4]. This result inspired
several generalizations [1, 5], e.g. the authors of [1] showed that Kreweras’ conjecture also holds for
sparse spanning regular subgraphs of hypercubes. Dimitrov et al. [2] presented a complementary
result that the hypercube Qn contains a Hamiltonian cycle avoiding a given matching except a
forbidden configuration. An interested reader can find more details about this topic in the survey
of Savage [11].

Another, weaker form of the problem of Ruskey and Savage was considered by Vandenbussche
and West [12] who conjectured that every matching can be extended into a 2-factor.

Conjecture 1.1 (Vandenbussche, West [12]). Every matching of the hypercube Qn can be extended
into a 2-factor where n ≥ 2.

Vandenbussche and West [12] verified the conjecture for dimension n at most 5. In this paper,
we prove that the conjecture holds.
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2 The proof

The weight |u| of a vertex u of Qn is the number of 1’s in the binary vector u and parity(u) = |u|
mod 2. A vertex u of Qn is called even if parity(u) = 0 and odd otherwise. We consider the
canonical orientation of all edges of Qn such that every edge is oriented from its even endvertex
to the odd one.

A subgraph Q of the hypercube Qn is called a subcube of dimension d if Q is isomorphic to the
d-dimensional hypercube Qd where 1 ≤ d ≤ n. In this paper, we consider subcubes of dimension
2 only. A coordinate of an edge uv of Qn is the coordinate in which the binary vectors u and
v differ, denoted by u4v. The graph obtained from Qn by removing all edges in coordinates
3, . . . , n consists of 2n−2 components forming 2-dimensional subcubes with edges in the first and
the second coordinate, and let C be the set of all these subcubes. Given C and a set of edges
S ⊆ Qn the interconnection graph I(C, S) is the oriented multigraph where every subcube of C is
represented by a single vertex and two vertices of I(C, S) are connected by as many edges as there
are edges of S between corresponding subcubes while preserving orientations of edges; see Figure
1. A reverse of an oriented multigraph is obtained by reversing the orientation of all edges. The
degree degS(Q) of a subcube Q ∈ C is the number of edges of S having exactly one endvertex in
Q. Furthermore, indegS(Q) is the number of edges of S incoming to Q from other subcubes, and
similarly, outdegS(Q) is the number of edges of S outgoing from Q to other subcubes. Note that
degS(Q), indegS(Q) and outdegS(Q) are the appropriate degrees of the vertex corresponding to
Q in I(C, S). Whenever we discuss components, paths, or cycles in an oriented multigraph, we
neglect the orientation of edges, so e.g. orientations of edges on a cycle may alternate.

Our goal is to find a set of edges R of Qn which extends a given matching P into a 2-factor.
In order to avoid confusion, we require P and R to be disjoint. Hence, P ∪ R is a 2-factor if and
only if P ∩R = ∅ and every vertex of Qn covered by P is incident with exactly one edge of R and
every vertex of Qn uncovered by P is incident with exactly two edges of R.

We prove Conjecture 1.1 using the following lemma.

Lemma 2.1. Let P be a matching of Qn with n ≥ 2 such that all edges between every two vertices
of I(C, P ) have the same orientation. Then, there exists a set of edges R of Qn such that P ∪ R
is a 2-factor of Qn and P ∩R = ∅ and

I(C, R) equals the reverse of I(C, P ). (1)

First, we show how Conjecture 1.1 follows from this lemma.

Theorem 2.2. For every matching P of Qn with n ≥ 2 there exists a set of edges R of Qn such
that the union P ∪R forms a 2-factor.

Proof. We convert the matching P of Qn into a matching P ′ of Qn satisfying the assumptions of
Lemma 2.1 which provides us a set of edges R′ of Qn extending P ′ into a 2-factor of Qn. Then,
we convert R′ into a set of edges of R of Qn such that P ∪R is a 2-factor as this theorem requires.
We present simple rules how to construct P ′ from P and, after the application of Lemma 2.1, how
to construct R from R′. These rules are applied to every pair of subcubes of C and they modify
sets P ′ and R. In the beginning, we initialize P ′ := P and after the application of Lemma 2.1 we
initialize R := R′.

Now, we present the rules to modify P ′ and R. We process every pair of subcubes Q and Q′ of
C having edges of P between Q and Q′ in both directions as follows. Since we consider subcubes
of dimension 2, the hypercube Qn contains exactly two edges between Q and Q′ in each direction.
We distinguish the following cases.

1. If P contains 3 edges between Q and Q′, then P contains exactly one edge uv in one direction,
say from Q to Q′. In this case, we remove the edge uv from P ′. The extending set of edges
R′ has to contain both edges from Q′ to Q to ensure (1). In the construction of R from R′,
we remove the edge uv from R as it is already contained in P which guarantees that P and
R are disjoint.
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2. If P contains exactly one edge uu′ from Q to Q′ and exactly one edge v′v from Q′ to Q, then
we replace the edges uu′ and v′v by the edges uv and v′u′ in P ′, so P ′ has no edge between
Q and Q′. From (1) it follows that there is also no edge between Q and Q′ in R′ and we
also let R have no edges between Q and Q′.

3. If P contains all 4 edges between Q and Q′, then we replace these 4 edges by two non-
adjacent edges of Q and two non-adjacent edges of Q′ in P ′, so P ′ has no edge between Q
and Q′. Then R′ has no edges between Q and Q′, and we also let R have no edge between
Q and Q′.

This way we process every pair of subcubes once to construct P ′ and then once more to
reconstruct R. Furthermore, the construction of P ′ ensures that P ′ does not contain edges of
both directions between any two subcubes, so Lemma 2.1 can be applied. Then, the construction
of R ensures that degrees of all vertices of Qn in P ∪ R are the same as in P ′ ∪ R′ and also
P ∩R = P ′ ∩R′ = ∅.

Now, we prove the lemma.

even

odd 10 11

00 01

Figure 1: Canonical orientation of edges; a subcube with 2 incoming and 1 outgoing edges of P ;
the corresponding vertex in I(C, P ); the crossroad split into two vertices in L(C, P ). The two-digit
numbers denote the values in the first two coordinates of vertices.

Proof of Lemma 2.1. A subcube Q ∈ C with indegP (Q) = 2 or outdegP (Q) = 2 is called a
crossroad. Let L(C, P ) be a graph obtained from I(C, P ) by splitting every crossroad Q into two
vertices where one is incident with all edges of P incoming to Q and the other is incident with
all edges of P outgoing from Q; see Figure 1. Note that non-crossroads of I(C, P ) are unchanged
in L(C, P ). Observe that every vertex of L(C, P ) has degree at most two, so every component of
L(C, P ) is a path or a cycle or an isolated vertex or two parallel edges between two crossroads.

Consider a cycle D of L(C, P ). The orientation of edges along the cycle D alternates in every
crossroad and is preserved in every non-crossroad. Since the orientation of edges in the cycle D
alternates even times, the cycle D contains an even number of crossroads, as well. Furthermore,
the cycle D corresponds to a closed walk of Qn−2 so the cycle D has even length. Therefore, every
cycle of L(C, P ) contains an even number of non-crossroad vertices.

Now, we colour every edge e of L(C, P ) by a colour c(e) ∈ {1, 2} so that for every pair of
adjacent edges e and e′ sharing a common endvertex Q satisfies

c(e) = c(e′) if and only if Q is a crossroad. (2)

Note that parallel edges e and e′ sharing both endvertices have the same colour by (2) since their
endvertices are crossroads. Furthermore, note that every non-crossroad Q has at most two incident
edges in L(C, P ), and they have opposite colours by (2). Every component of L(C, P ) forming a
path can be greedily coloured to satisfy (2). Similarly, every component of L(C, P ) forming a cycle
can be greedily coloured to satisfy (2) since every cycle of L(C, P ) contains an even number of
non-crossroads, so the colour is alternated even times along the cycle.

Next, we describe all edges of R between different subcubes of C. Consider an edge xx′ of P
from a subcube Q to another subcube Q′. According to (1), R has to contain an edge y′y from
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Q′ to Q in the direction opposite to xx′. Here y′y can be chosen from two such edges between Q
and Q′ since x4y is either the first or the second coordinate. We choose

the coordinate x4y to be the colour c(xx′). (3)

Note that Q′ contains a unique vertex y′ such that y′y is an edge of Qn and the coordinate x′4y′

is also c(xx′). We add this edge to R. Furthermore, if P contains two edges uu′ and vv′ between
a pair of subcubes Q and Q′, then these edges have the same orientation by the assumption of
the lemma. Hence, both Q and Q′ are crossroads so c(uu′) = c(vv′) and thus R contains the
remaining two edges between Q of Q′ of opposite direction. This R clearly satisfies (1).

Finally, we describe all edges of R inside the subcubes of C assuming that R already contains
the edges between different subcubes as presented above. Consider a subcube Q ∈ C and let a, b, c
and d be all vertices of Q so that a and c are the odd vertices. Without loss of generality, we
assume that indegP (Q) ≥ outdegP (Q) and we distinguish the following cases. It is easy to check
in all the following cases that every vertex of Q will have two incident edges in P ∪R and no edge
of Q will be contained in both P and R, which implies that this lemma holds.

01 b

00 a

Q

11 01

10 00

01 11

00 10

a b

d c

Q

10 00

11 01

Figure 2: 2-factor in a non-crossroad Q with indegP (Q) = 1 and outdegP (Q) ∈ {0, 1}, i.e. cases
1b (the left figure) and 1c (the right figure) of the proof of Lemma 2.1. Full red lines are edges of
P and dashed blue lines are edges of R and dotted black lines belong either to P or R.

1. Assume that Q is a non-crossroad; see Figure 2 for cases (b) and (c).

(a) indegP (Q) = outdegP (Q) = 0. In this case, we add all edges of Q not contained in P
into R.

(b) indegP (Q) = 1 and outdegP (Q) = 0. P covers one odd vertex (say a) of Q by an
incoming edge and by (1) R covers one even vertex (say b) of Q by an outgoing edge.
So, we add edges E(Q) \ (P ∪ {ba}) into R.

(c) indegP (Q) = outdegP (Q) = 1. Assume that a and b are the vertices of Q covered by
edges a′a and bb′ of P incoming to Q and outgoing from Q, respectively. By (1), Q
contains vertices x and y already covered by edges of R incoming to Q and outgoing
from Q, respectively. From (2) it follows that edges of L(C, P ) corresponding to a′a
and bb′ have the opposite colour, so (3) implies a4y 6= b4x. Furthermore, a and y are
neighbour vertices as well as b and x which implies | {a, y} ∩ {b, x} | = 1. From parities
of all vertices it follows that either x = a or y = b and without loss of generality we
assume that x = a which implies y = d. We add the edge bc into R and we also add
the edge cd into R unless cd is already contained in P .

2. Assume that Q is a crossroad; see Figure 3. Since indegP (Q) ≥ outdegP (Q) it follows that
indegP (Q) = 2. Hence, P covers both odd vertices of Q by incoming edges and P contains
no edge of Q which simplifies the proof since it is impossible to fail the condition that no
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Figure 3: 2-factor in a crossroad Q with indegP (Q) = 2 and outdegP (Q) ∈ {0, 1, 2}.

edge of Q is contained in both P and R. Furthermore, by (1) R contains two edges outgoing
from Q.

(a) outdegP (Q) = 0. We add edges ab and cd into R.

(b) outdegP (Q) = 1. P covers one even vertex (say b) of Q by an outgoing edge and by (1)
R covers one odd vertex (say a) by an incoming edge. We add the edge cd into R.

(c) outdegP (Q) = 2. P covers both even vertices of Q by incoming edges and R covers
both odd vertices of Q by outgoing edges. This implies that every vertex of Q has two
incident edges in P ∪R, so no edge needs to be added into R.

3 Concluding remarks

Note that the following conclusions trivially follow from Theorem 2.2 using the well known fact
that the edges of every regular bipartite graph may be partitioned into perfect matchings [7].

Corollary 3.1. Every matching of the hypercube Qn can be extended into a k-factor where n ≥
k ≥ 2.

Corollary 3.2. For every matching P of Qn there exists a k-factor R of Qn avoiding P where
n− 2 ≥ k ≥ 1.

In this paper, we proved that every matching of Qn can be extended into a 2-factor. However,
the presented construction finds a 2-factor which may contain up to 2n−2 cycles, e.g. when P
contains all edges of Qn of the first coordinate. We are interested in an improved construction
which significantly reduces the number of cycles in a 2-factor, ideally to a single one [10].
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discussions on this topic. The author would also like to thank the anonymous referees for their
helpful comments.
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