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Abstract

In 1995 Gutman and Yeh [3] conjectured that for every large enough integer w there
exists a tree with Wiener index equal to w. The conjecture has been solved by Wang
and Yu [8] and independently by Wagner [6]. We present a constant time algorithm to
construct a tree with a given Wiener index. Moreover, we show that there exist 2Ω( 4

√

w)

non-isomorphic trees with Wiener index w.
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1 Introduction

The sum of distances between all pairs of vertices W (G) in a connected graph G as a graph
invariant was first introduced by Wiener [9] in 1947. He observed a correlation between
boiling points of paraffins and this invariant, which has later become known as Wiener index
of a graph. Today, the Wiener index is one of the most widely used descriptors in chemical
graph theory. Due to its strong connection to chemistry, where molecules have a tree-like
structures, a lot of research was done on acyclic graphs (see [2] for survey).

In 1995 Gutman and Ye [3] considered an inverse Wiener index problem. They asked for
which integers n there exist trees with Wiener index n, and posed the following conjecture:

Conjecture 1. For all but finitely many integers n there exist trees with Wiener index n.

Inspired by the conjecture above, Lepović and Gutman [4] checked integers up to 1206 and
found 49 integers that are not Wiener indices of trees. In 2004, Ban, Bereg, and Mustafa [1]
computationally proved that for all integers n on the interval from 103 to 108 there exist a
tree with Wiener index n. Finally, in 2006, two proofs of the conjecture were published. First,
Wang and Yu [8] proved that for every n > 108 there exists a caterpillar tree with Wiener
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index n. The second result is due to Wagner [6], who proved that all integers but 49 are
Wiener indices of trees with diameter at most 4.

In Section 2, we present a proof, similar to Wagner’s, that we use to develop a constant
time algorithm, which for a given, sufficiently large integer w returns a tree with diameter 4
and with Wiener index w in a constant number of arithmetic operations.

In Section 4, we prove that there exist at least 2Ω( 4
√
w) non-isomorphic trees with Wiener

index w, i.e. there exist w0 and C > 0 such that for every w ≥ w0 there are at least 2C
4
√
w

trees with Wiener index w. On the other hand, note that the number of non-isomorphic trees
with Wiener index w is at most 2O(

√
w).

2 Inverse Wiener index problem for large values

Here, we present a proof of Conjecture 1, similar to Wagner’s, for large values.

Let k, m and s1, . . . , sk be non-negative numbers such that m =
∑k

i=1 si. Let Ts1,...,sk

be a tree that has one center vertex with k neighbours, called branches, and a branch i has
other si neighbours, called terminals. Fig. 1 depictes the tree T0,2,3,4. Note that Ts1,...,sk has
m terminals and n = m+ k + 1 vertices. First, we compute the Wiener index of Ts1,...,sk .

Figure 1: A tree T0,2,3,4 with four branches and nine terminals.

Lemma 1.

W (Ts1,...,sk) = 2m2 + (3k − 1)m+ k2 −
k

∑

i=1

s2i .

Proof. We have three types of vertices (center, branch and terminal) and we compute the
number of pairs of vertices of given type.

Type of vertices distance number of pairs of vertices

center – branch 1 k

center – terminal 2 m

branch – branch 2
(

k
2

)

branch – terminal 1 m

branch – terminal 3
∑k

i=1(m− si)

terminal – terminal 2
∑k

i=1

(

si
2

)

terminal – terminal 4 1
2

∑k
i=1 si(m− si)
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We sum up all products of the second and the third columns to obtain Wiener index of
Ts1,...,sk . First, we sum up the last two rows separately.

2
k

∑

i=1

(

si

2

)

+ 4 · 12
k

∑

i=1

si(m− si) =
k

∑

i=1

s2i −m+ 2m2 − 2
k

∑

i=1

s2i = 2m2 −
k

∑

i=1

s2i −m.

Now, we sum up all rows to obtain W (Ts1,...,sk) = 2m2 + (3k − 1)m+ k2 −∑k
i=1 s

2
i .

Since
∑k

i=1 si and
∑k

i=1 s
2
i have the same parity, the parity of W (Ts1,...,sk) depends only

on the number of branches and terminals, thus moving terminals between branches does not
change the parity. However, we obtain different Wiener indices by moving terminals between
branches in Ts1,...,sk with fixed number of vertices and branches. Our aim is to cover a long
interval of numbers of the same parity by Wiener indices of Ts1,...,sk with fixed k and m.

Therefore, we need to know which values of
∑k

i=1 s
2
i are obtained when the sum

∑k
i=1 si

equals m. The further computation is made simpler by restricting our attention on situation
0 ≤ si ≤ s for all i ∈ [k], where s is a fixed number and [k] denotes the set {1, 2, . . . , k}.

Lemma 2. Let s, k and m be natural numbers such that k ≤ m ≤ 2k. Let Mmin = 3m− 2k
and Mmax = s

(

m−
(

s
2

))

. For every z with the same parity as Mmin and Mmin ≤ z ≤ Mmax

there exist s1, . . . , sk ∈ {0, . . . , s} such that
∑k

i=1 si = m and
∑k

i=1 s
2
i = z.

Proof. We prove the statement by induction on z. The smallest value of z = Mmin is obtained
by choosing s1, . . . , s2k−m = 1 and s2k−m+1, . . . , sk = 2.

Let us assume that
∑k

i=1 si = m and
∑k

i=1 s
2
i = z where Mmin ≤ z ≤Mmax− 2. We show

how to obtain a sequence s̄1, . . . , s̄k such that
∑k

i=1 s̄i = m and
∑k

i=1 s̄
2
i = z + 2.

We will show that there exist two indices a and b such that 0 < sa = sb < s. Then, just
let s̄a = sa − 1 and s̄b = sb + 1 and s̄i = si for all other i and observe that the sequence
s̄1, . . . , s̄k satisfies our requirements.

So, if there are no such a and b, then every number of [s− 1] occurs at most once in the
sequence s1, . . . , sk. Since

∑k
i=1 si = m, there exist at least

⌈

m−∑s−1

i=1
i

s

⌉

=

⌈

m−(s
2
)

s

⌉

indices i with si = s. But, this is impossible since

z =
k

∑

i=1

s2i ≥ s2

⌈

m−(s
2
)

s

⌉

≥ s

(

m−
(

s

2

))

= Mmax ≥ z + 2 .

Now, we present a short proof of the inverse Wiener index problem for large values.

Theorem 3. For every sufficiently large number w there exists a tree T with Wiener index

w.

Proof. We putm = k+1 in order to make the computation simpler. Hence, using the notation
of Lemma 2, we have Mmin = k+3 and Mmax = s (k+1−

(

s
2

)

). By Lemma 1, it follows that

W (Ts1,...,sk) = 6k2 + 6k + 1 −∑k
i=1 s

2
i . As the smallest value of

∑k
i=1 s

2
i is k + 3, we obtain
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that W (Ts1,...,sk) ≤ 6k2 + 5k − 2. Now, let k be the smallest number of the same parity as w
that satisfies w ≤ 6k2 + 5k − 2. Let z = 6k2 + 6k + 1−w. Notice that z has the same parity
as Mmin and z ≥Mmin. If z ≤Mmax then by Lemma 2 there exists a sequence s1, . . . , sk such
that

∑k
i=1 si = m and

∑k
i=1 s

2
i = z, and then by Lemma 1, the Wiener index of Ts1,...,sk is w.

So, it only remains to prove the inequality z ≤ Mmax. By the definition of z, we know
w = 6k2 + 6k + 1 − z, and by minimality of k we infer that w > 6(k − 2)2 + 5(k − 2) − 2,
which implies 25k − 11 > z. We have to prove that s

(

k −
(

s
2

)

+ 1
)

≥ z, and it suffices to
prove s

(

k −
(

s
2

)

+ 1
)

≥ 25k − 11, which we can simplify to k(s − 25) ≥ 1
2s

3 − 1
2s

2 − s − 11.

Since w is sufficiently large, we can assume that k ≥ s3−s2−2s−22
2(s−25) , where s is a fixed constant

of size at least 26, and this establishes the theorem.

3 Algorithm

Theorem 3 and Lemma 2 immediately give us the following algorithm which finds a tree with
Wiener index w.

Algorithm 1

Require: Wiener index w that is large enough.
k ← The smallest number of the same parity as w that satisfies w ≤ 6k2 + 5k − 2.
m← k + 1
z ← 6k2 + 6k + 1− w

{Now, we find s1, . . . , sk such that 0 ≤ s1, . . . , sk ≤ s and
∑k

i=1 si = m and
∑k

i=1 s
2
i = z.}

s1, . . . , sk−1 ← 1
sk ← 2
{We start with s1, . . . , sk satisfying

∑k
i=1 si = m and the minimum value of

∑k
i=1 s

2
i which

we increase by 2 in every step.}
while

∑k
i=1 s

2
i < z do

Find two indices a and b such that 0 < sa = sb < s.
sa ← sa − 1
sb ← sb + 1

end while

Ensure: W (Ts1,...,sk) = w

We would like to achieve a constant time algorithm. However, there are two parts in
Algorithm 1 which increase the time complexity. The first one is the while loop and the
second part is searching for the indices a and b.

The second one can be handled easily: we store the number of branches having j terminals
instead of the number of terminals of branch i. Let tj be the number of indices i ∈ [k] such
that si = j. Since s is a constant, we can find j ∈ {0, . . . , s} such that tj ≥ 2 in a constant
time. Note that numbers t0, . . . , ts uniquely describe Ts1,...,sk , so output of our algorithm is
only s+ 1 numbers.

Now, we describe how we speed up the while loop. For a given w we compute k, m, and
z as described in Algorithm 1, and from them we create the required sequence s1, . . . , sk in
two steps.

In the first step, we compute α, β, and γ to be the number of branches with 0, 1, and s

terminals, respectively. There remains k′ = k−α−β−γ undefined numbers of the sequence.
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The sum of undefined numbers must be m′ = m−β−sγ; and the sum of squares of undefined
numbers must be z′ = z− β− s2γ. In the second, we use Lemma 2 to find a sequence for the
triple (k′,m′, z′). If we prove that all numbers of the new triple (k′,m′, z′) are bounded by a
constant, then the number of iterations in the while loop is bounded by a constant.

Let us recall our conditions:

k′ = k − α− β − γ ,

m′ = m− β − sγ ,

z′ = z − β − s2γ ,

3m′ − 2k′ ≤ z′ ≤ s

(

m′ −
(

s

2

))

.

Lemma 2 requires that the last inequality is satisfied. Note that the given triple (k,m, z)
satisfies 3m− 2k ≤ z ≤ s (m−

(

s
2

)

) which is assured by the proof of Theorem 3.
Recall that m = k + 1. We keep the same relation also for m′ and k′, i.e. m′ = k′ + 1.

This implies α = γ (s− 1) and simplifies our conditions in the following way:

k′ = k − β − sγ ,

z′ = z − β − s2γ ,

k′ + 3 ≤ z′ ≤ s

(

k′ −
(

s

2

)

+ 1

)

. (1)

Replacing the values of k′ and z′ in (1) gives us:

k − β − sγ + 3 ≤ z − β − s2γ ≤ s

(

k − β − sγ −
(

s

2

)

+ 1

)

,

which can be simplifed in the following way:

k − sγ + 3 ≤ z − s2γ and z − β ≤ s

(

k − β −
(

s

2

)

+ 1

)

.

Hence, we can easily solve the two inequalities independently. We choose the solutions:

β =
⌊

s(k+1)−z
s−1 − s2

2

⌋

and γ =
⌊

z−k−3
s(s−1)

⌋

.

It remains to show that we can bound all parameters k′, m′, and z′ by a constant. From the
definitions of k′, β, and γ it follows that

k′ = k − β − sγ ,

β + 1 >
s(k−(s

2
)+1)−z

s−1 ,

γ + 1 > z−k−3
s(s−1) .

It implies that k′ is bounded by s2

2 + s+ 2
s−1 which is a constant. Hence, m′ is also bounded

since m′ = k′ + 1. Similarly, from z′ ≤ s
(

k′ −
(

s
2

)

+ 1
)

it follows that z′ is also bounded by a

constant s
(

3s
2 + 1 + 2

s−1

)

. This analysis implies the following theorem:

Theorem 4. The Algorithm 2 finds a tree with a given sufficiently large Wiener index in a

constant time.
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Algorithm 2 Constant time algorithm for constructing tree of given Wiener index

Require: Wiener index w that is large enough.
{Specify a constant s that is used in calculations.}
s← 26
{Compute k to be the smallest number of the same parity as w that satisfies w ≤ 6k2 +
5k − 2.}
k ←

⌈√
24w+73
12 − 5

12

⌉

if k 6≡ w (mod 2) then
k ← k + 1

end if

m← k + 1
z ← 6k2 + 6k + 1− w

{Compute the number of branches with 0, 1 and s terminals that we obtain directly.}
β ←

⌊

s(k+1)−z
s−1 − s2

2

⌋

γ ←
⌊

z−k−3
s(s−1)

⌋

α← γ(s− 1)
{Compute parameters for Lemma 2.}
k′ ← k − α− β − γ

m′ ← m− β − sγ

z′ ← z − β − s2γ

{Base of induction in Lemma 2.}
t0, . . . , ts ← 0
t1 ← k′ − 1
t2 ← 1
{Initial sum of squares is k′ + 3 and it is increased by 2 in every step.}
for z′−k′−3

2 times do
Find index i such that 0 < i < s and ti ≥ 2. {A trivial loop over all indices.}
{Move one terminal from a branch with i terminals into another branch with i terminals.}

ti−1 ← ti−1 + 1
ti ← ti − 2
ti+1 ← ti+1 + 1

end for

{We add branches that were created in the beginning.}
t0 ← t0 + α

t1 ← t1 + β

ts ← ts + γ

4 Semi-exponential number of trees with given Wiener index

In this section we prove that there exist at least 2Ω( 4
√
w) trees with Wiener index w. Here, let

us mention that a tree with Wiener index w has at most ⌊√w⌋+1 vertices, since the Wiener
index of the star Sn is (n−1)2 and it is the smallest among all trees on n vertices. It is known
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that there are at most 3n non-isomorphic trees on n vertices (see [5]), hence there are at most

⌊√w⌋+1
∑

i=1

3i = 3
2(3

⌊√w⌋+1 − 1)

non-isomorphic trees with at most
√
w + 1 vertices. This proves the following proposition.

Proposition 5. There is at most 2O(
√
w) non-isomorphic trees with Wiener index w.

In order to obtain many non-isomorphic trees with the same Wiener index w, we increase
the maximum number of terminals on a branch to p, where p = p(k) is a function of number
of branches k. As described in the previous section, we denote a tree Ts1,...,sk also by T ∗

t0,...,tp ,
where ti is the number of branches with precisely i terminals, for i ∈ {0, 1, . . . , p}. Let s be a
fixed integer, and let p > s be of the same parity as s. We show that for every combination
of numbers tj , where j ∈ P = {s+ 1, s+ 3, . . . , p− 1} and tj ∈ {0, 1}, there exist numbers
tk, for k ∈ {0, 1, . . . , p} \P, such that W (T ∗

t0,...,tp) = w. It is easy to see that all possible

combinations of tj , j ∈ P, give exactly 2(p−s)/2 distinct sequences, i.e. non-isomorphic trees.
Note that the numbers in P are of the same parity.

Next, let us introduce the notation used in this section. Let k1, m1, z1, k2, m2, and z2 be
defined as

k1 =
s

∑

i=0

ti , m1 =
s

∑

i=0

i ti , z1 =
s

∑

i=0

i2 ti ,

k2 =

p
∑

i=s+1

ti , m2 =

p
∑

i=s+1

i ti , z2 =

p
∑

i=s+1

i2 ti .

By the above definitions, the number of branches k, terminals m, and the sum of squares of
numbers of terminals z, respectively, is

k = k1 + k2 , m = m1 +m2 , z = z1 + z2 . (2)

Now, we describe how to compute the undefined values of the sequence {ti}pi=0, after the
values tj , j ∈ P, are fixed. We want the number of branches with big number of terminals
(at least s+1) to be always the same, so that the possible values of m2 and z2 are on a small
interval. Therefore, we define ti+1 = 1 − ti, where i ∈ P. Hence, the value of k2 is always
equal to

k2 =
1
2(p− s) . (3)

Note that the minimum (resp. maximum) values of m2 and z2 are obtained when for every
j ∈ P holds that tj = 1 (resp. tj = 0). It is easy to see that the following inequalities hold:

1
4(p

2 − s2) ≤ m2 ≤ 1
4(p (p+ 2)− s (s+ 2)) (4)

(

p+ 1

3

)

−
(

s+ 1

3

)

≤ z2 ≤
(

p+ 2

3

)

−
(

s+ 2

3

)

. (5)

Now, we present a variation of Lemma 2 in terms of ti’s.
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Lemma 6. Let s, k1 and m1 be natural numbers such that s is fixed and

k1 ≤ m1 ≤ 2k1 . (6)

Let Mmin = 3m1 − 2k1 and Mmax = s
(

m1 −
(

s
2

))

. For every integer z1 with the same parity

as Mmin and

Mmin ≤ z1 ≤Mmax (7)

there exist t0, . . . , ts ∈ {1, . . . , k1} such that
∑s

i=0 ti = k1,
∑s

i=0 i ti = m1, and
∑s

i=0 i
2 ti = z1.

The equivalence between Lemmas 2 and 6 is obvious. Now, we are ready to state the main
theorem of this section.

Theorem 7. There exists a function f(w) ∈ Ω( 4
√
w) such that for every sufficiently large

integer w there exist at least 2f(w) trees with Wiener index w.

Proof. In the proof we use the notation given above. We will prove that there exist at least
2(p−s)/2 non-isomorphic trees with sufficiently large Wiener index w, where s = 124 and p is
a function of k1 of order Ω( 4

√
w), defined as follows:

p = p(k1) = ⌊
√

k1⌋ −
(

⌊
√

k1⌋ mod 4
)

. (8)

Recall that k is of order O(√w). Hence k1 is also of order O(√w), since k = k1 +
1
2(p− s).

Let ti ∈ {0, 1}, where i ∈ P, be arbitrarily chosen, and set ti+1 = 1− ti. Observe that by
this procedure all ti, for i ∈ {s+ 1, s+ 2, . . . , p} are fixed and so are k2, m2, and z2. We will
show that for every selection of ti’s, i ∈ P, there exist numbers tj , j ∈ {0, 1, . . . , s}, such that
k1 =

∑s
i=0 ti, m1 =

∑s
i=0 i ti, and z1 =

∑s
i=0 i

2 ti. Hence, the Wiener index of T ∗
t0,...,tp will be

w. In order to do this, we need to satisfy the conditions of Lemma 6.
Let m = 2k − 2. From (2) it follows m1 +m2 = 2(k1 + k2)− 2. Hence,

m1 = 2(k1 + k2)− 2−m2 . (9)

By Lemma 1, we have

w = W (T ∗
t0,...,tp) = 15k2 − 24k + 10− z . (10)

Note that (10) implies z = 15k2 − 24k + 10− w.
We proceed by showing that all the assumptions of Lemma 6 are satisfied. First, we show

that the assumption (6) holds. By substituting m2 in (9) with its minimum and maximum
value derived in (4) and k2 with its value derived in (3) we obtain the lower and upper bound
for m1:

m1 ≥ 2k1 − 1
4p

2 + 1
2p+

1
4s

2 − 1
2s− 2 , (11)

m1 ≤ 2k1 − 1
4p

2 + p+ 1
4s

2 − s− 2 . (12)

Note that by the definition of p, the inequalities (11) and (12) imply that the assumption (6)
of Lemma 6 is satisfied, since w is large enough.

Now, we show that we satisfy the assumption (7). First, note that by (5), we have the
following lower bound for z = z1 + z2:

z ≥ z∗2 , (13)
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where
z∗2 = 1

6

(

p(k1)
3 − p(k1)− s3 + s

)

.

Now, we compute the upper bound M(k1) that the Wiener index of T ∗
t0,...,tp can achieve. We

do this by substituting z in the equality (10) with its minimum value derived in (13). We
also substitute k2 by its value defined in (3).

M(k1) = 15(k1 + k2)
2 − 24(k1 + k2) + 10− z∗2

= 15
(

k1 +
1
2(p(k1)− s)

)2 − 24
(

k1 +
1
2(p(k1)− s)

)

+ 10

− 1
6

(

p(k1)
3 − p(k1)− s3 + s

)

Let k1 be the smallest integer of the same parity as w such that M(k1) ≥ w. By the choice
of k1, we also obtain the inequality

w > 15
(

(k1 − 2) + 1
2(p(k1 − 2)− s)

)2 − 24
(

(k1 − 2) + 1
2(p(k1 − 2)− s)

)

+ 10

− 1
6

(

p(k1 − 2)3 − p(k1 − 2)− s3 + s
)

. (14)

Now, we apply the equality (10) to the inequality (14) using that k = k1+k2 and obtain that

15
(

k1 +
1
2(p(k1)− s)

)2 − 24
(

k1 +
1
2(p(k1)− s)

)

+ 10− z2 − z1 >

15
(

(k1 − 2) + 1
2(p(k1 − 2)− s)

)2 − 24
(

(k1 − 2) + 1
2(p(k1 − 2)− s)

)

+ 10

− 1
6

(

p(k1 − 2)3 − p(k1 − 2)− s3 + s
)

. (15)

In order to simplify the calculations, we use the inequality

p(k1)− p(k1 − 2) ≤ 4 . (16)

It is easy to verify that (16) holds for every k1 ≥ 4. By plugging the inequality (16) in (15)
we infer

z1 < 120k1 + 60
√

k1 − 60s− 216− z2

+1
6(p(k1 − 2)3 − p(k1 − 2)− s3 + s) . (17)

Now we show that the assumption (7) of Lemma 6 is satisfied. The maximum value that z1
attains, is obtained when z2 is as small as possible. By replacing z2 with its lower bound z∗2 ,
we infer

z1 < 120k1 + 60
√

k1 − 60s− 216 ≤Mmax .

Since s = 124, the right side of assumption (7) of Lemma 6 is satisfied. On the other hand,
the minimum value of z1 is at least Mmin = 3m1 − 2k1, since

z1 −Mmin =
s

∑

i=0

i2ti −
s

∑

i=0

(3i− 2)ti =
s

∑

i=0

(i− 1)(i− 2)ti ≥ 0 .

Finally, we argue the parity condition of Lemma 6. First, note that k2 (defined in (3))
is always even, since p and s are both divisible by 4. It follows that k = k1 + k2 has the
same parity as w, since we chose k1 to have the same parity as w. Using this fact and the
equality (10) we have that z is even. Since z = z1+ z2, we infer that z1 and z2 have the same
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parity. Obviously, z2 =
∑p

i=s+1 i
2 ti and m2 =

∑p
i=s+1 i ti also have the same parity. On the

other hand, since m = 2k− 2, it follows that m = m1 +m2 is always even, implying that m1

has the same parity as m2. Now, m1, m2, z1, and z2 have the same parity, which implies that
Mmin = 3m1 − 2k1 and z1 are also of the same parity as required in Lemma 6.

Hence, we have satisfied all asuumptions of Lemma 6, therefore there exist tj , j ∈
{0, 1, . . . , s}, such that W (T ∗

t0,...,tp) = w what completes the proof.
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