1

The the third homework are Problems 6 and 7.

Problem 1. Is the following language (partially) deciable?

 $\{(M, w); M \text{ terminates on input w and the tape of } M \text{ is empty after the computation}\}$

Problem 2. Are the following languages (partially) decidable where M is a (code of a) Turing machine and $k \in \mathbb{N}$ and |w| is the length of a word w.

- 1. $\{w; |w| \le k\}$
- 2. $\{(M,k); |L(M)| \le k\}$
- 3. $\{M; |L(M)| \ge 10\}$
- 4. $\{M; L(M) = \{w; |w| = 10\}\}$
- 5. $\{(M,k); L(M) \text{ contains a word of length } k\}$

Problem 3. Are the following problem (partially) decidable?

- 1. For a given Turing machine M, a state q of M and an input w, does M enter the state q during computation M(w)?
- 2. For a given Turing machine M and a state q of M, is there an input w such that M enter the state q during computation M(w)?
- 3. For a given Turing machine M and a state q of M, does M enter the state q during computation M(w) for every word w?

Problem 4. Consider a Turing machine M with the following time complexities f(n) and an integer $k \in \mathbb{N}$. For which functions f the language L(M) belongs to P or to EXP?

- 1. $f(n) = n^k$
- 2. $f(n) = k^n$
- 3. $f(n) = n^n$
- 4. $f(n) = k^{k \log n}$
- 5. $f(n) = n^{\log \log n}$
- 6. $f(n) = k^{n^k}$
- 7. $f(n) = k^{n^n}$
- 8. $f(n) = n^{n^k}$
- 9. $f(n) = n^{n^n}$

Problem 5. For each pair of complexity classes below try to decide if we can prove a relation between them (by using theorems and propositions from the lecture). That is, for every pair of classes A and B decides whether $A \subseteq B$, $B \subseteq A$, $A \setminus B = \emptyset$ and $B \setminus A = \emptyset$. Note that some relations may not be known.

- 1. $\mathsf{DSPACE}(n)$ and $\mathsf{DSPACE}(n^3)$
- 2. DSPACE (n^3) and DTIME (2^{n^3})
- 3. $\mathsf{DTIME}(2^{n^3})$ and $\mathsf{NSPACE}(n \log n)$
- 4. $\mathsf{NSPACE}(n \log n)$ and $\mathsf{NTIME}(n \log n)$
- 5. $\mathsf{NTIME}(n \log n)$ and $\mathsf{DSPACE}(n)$
- 6. $\mathsf{DSPACE}(n)$ and $\mathsf{DTIME}(2^{n^3})$
- 7. $\mathsf{DSPACE}(n^3)$ and $\mathsf{NSPACE}(n \log n)$
- 8. $\mathsf{DTIME}(2^{n^3})$ and $\mathsf{NTIME}(n \log n)$
- 9. $\mathsf{NSPACE}(n \log n)$ and $\mathsf{DSPACE}(n)$
- 10. $\mathsf{NTIME}(n \log n)$ and $\mathsf{DSPACE}(n^3)$

Problem 6. For each pair of complexity classes below try to decide if we can prove a relation between them (by using theorems and propositions from the lecture). That is, for every pair of classes A and B decides whether $A \subseteq B$, $B \subseteq A$, $A \setminus B = \emptyset$ and $B \setminus A = \emptyset$. Note that some relations may not be known.

- 1. $\mathsf{DSPACE}(n)$ and $\mathsf{DTIME}(2^{n^3})$
- 2. $\mathsf{DSPACE}(n^3)$ and $\mathsf{NSPACE}(n \log n)$
- 3. $\mathsf{DTIME}(2^{n^3})$ and $\mathsf{NTIME}(n \log n)$
- 4. $\mathsf{NSPACE}(n \log n)$ and $\mathsf{DSPACE}(n)$

Problem 7. Let A be the language of properly nested parentheses. For example, (()) is in A but)(is not. Let B be the language of properly nested parentheses and brackets. For example, ([()]()[]) is in B but ([)] is not. Show that both A and B are in L.