The the third homework are Problems 6 and 7.

Problem 1. Is the following language (partially) deciable?

$$
\{(M, w) ; M \text { terminates on input } \mathrm{w} \text { and the tape of } M \text { is empty after the computation }\}
$$

Problem 2. Are the following languages (partially) decidable where M is a (code of a) Turing machine and $k \in \mathbb{N}$ and $|w|$ is the length of a word w .

1. $\{w ;|w| \leq k\}$
2. $\{(M, k) ;|L(M)| \leq k\}$
3. $\{M ;|L(M)| \geq 10\}$
4. $\{M ; L(M)=\{w ;|w|=10\}\}$
5. $\{(M, k) ; L(M)$ contains a word of length $k\}$

Problem 3. Are the following problem (partially) decidable?

1. For a given Turing machine M, a state q of M and an input w, does M enter the state q during computation $M(w)$?
2. For a given Turing machine M and a state q of M, is there an input w such that M enter the state q during computation $M(w)$?
3. For a given Turing machine M and a state q of M, does M enter the state q during computation $M(w)$ for every word w ?

Problem 4. Consider a Turing machine M with the following time complexities $f(n)$ and an integer $k \in \mathbb{N}$. For which functions f the language $L(M)$ belongs to P or to EXP?

1. $f(n)=n^{k}$
2. $f(n)=k^{n}$
3. $f(n)=n^{n}$
4. $f(n)=k^{k \log n}$
5. $f(n)=n^{\log \log n}$
6. $f(n)=k^{n^{k}}$
7. $f(n)=k^{n^{n}}$
8. $f(n)=n^{n^{k}}$
9. $f(n)=n^{n^{n}}$

Problem 5. For each pair of complexity classes below try to decide if we can prove a relation between them (by using theorems and propositions from the lecture). That is, for every pair of classes A and B decides whether $A \subseteq B, B \subseteq A, A \backslash B=\emptyset$ and $B \backslash A=\emptyset$. Note that some relations may not be known.

1. $\operatorname{DSPACE}(n)$ and $\operatorname{DSPACE}\left(n^{3}\right)$
2. $\operatorname{DSPACE}\left(n^{3}\right)$ and $\operatorname{DTIME}\left(2^{n^{3}}\right)$
3. $\operatorname{DTIME}\left(2^{n^{3}}\right)$ and $\operatorname{NSPACE}(n \log n)$
4. $\operatorname{NSPACE}(n \log n)$ and $\operatorname{NTIME}(n \log n)$
5. $\operatorname{NTIME}(n \log n)$ and $\operatorname{DSPACE}(n)$
6. $\operatorname{DSPACE}(n)$ and $\operatorname{DTIME}\left(2^{n^{3}}\right)$
7. $\operatorname{DSPACE}\left(n^{3}\right)$ and $\operatorname{NSPACE}(n \log n)$
8. $\operatorname{DTIME}\left(2^{n^{3}}\right)$ and $\operatorname{NTIME}(n \log n)$
9. $\operatorname{NSPACE}(n \log n)$ and $\operatorname{DSPACE}(n)$
10. $\operatorname{NTIME}(n \log n)$ and $\operatorname{DSPACE}\left(n^{3}\right)$

Problem 6. For each pair of complexity classes below try to decide if we can prove a relation between them (by using theorems and propositions from the lecture). That is, for every pair of classes A and B decides whether $A \subseteq B, B \subseteq A, A \backslash B=\emptyset$ and $B \backslash A=\emptyset$. Note that some relations may not be known.

1. $\operatorname{DSPACE}(n)$ and $\operatorname{DTIME}\left(2^{n^{3}}\right)$
2. $\operatorname{DSPACE}\left(n^{3}\right)$ and $\operatorname{NSPACE}(n \log n)$
3. $\operatorname{DTIME}\left(2^{n^{3}}\right)$ and $\operatorname{NTIME}(n \log n)$
4. $\operatorname{NSPACE}(n \log n)$ and $\operatorname{DSPACE}(n)$

Problem 7. Let A be the language of properly nested parentheses. For example, $(())$ is in A but $)$ (is not. Let B be the language of properly nested parentheses and brackets. For example, $([()]()[])$ is in B but $([)]$ is not. Show that both A and B are in L.

