
Data Structures 1
NTIN066

Jirka Fink

Department of Theoretical Computer Science and Mathematical Logic
Faculty of Mathematics and Physics

Charles University in Prague

Winter semester 2023/24
Last change on February 23, 2024

Licence: Creative Commons BY-NC-SA 4.0

Jirka Fink Data Structures 1 1 / 15

https://creativecommons.org/licenses/by-nc-sa/4.0/


Content

Search trees (BB[α]-tree, Splay tree, B-tree)

Cache-oblivious algorithms

Hashing

Suffix array

Geometric data structures

Parallel data structures

Jirka Fink Data Structures 1 2 / 15



Assignments

Overview
There are at least 7 programming assignments per 10 points

and at least 3 experimental assignments per 15 points

You need 75 points for class credit

Deadline: 2 weeks

Programming assignments
You are given a partial implementation of a DS

Implement the missing bits

Automatic checking, tests are public

Instructor looks at the source code

C++ and (usually) Python available

Programming assignments
Measure properties of a given implementation

Write a report (and submit PDF)

Jirka Fink Data Structures 1 3 / 15



General rules

Do not share code nor reports (except with the instructor).

Do not share example solutions with anybody.

Deadlines are strict.

Before deadline, you can re-submit.

The code must pass all tests.

Quality of your code and reports contributes to grading.

Do not use non-trivial code you didn’t write yourself. This includes other peoples’
implementations and non-obvious library functions. Trivial cases of growing arrays
(appending to std::vector in C++ or list.append() in Python) are permitted, anything
more complicated isn’t. When in doubt, ask your instructor.

All theorems used in your reports must be stated in full and their source must be
properly cited. If the theorem was stated at the lecture, citing the lecture is
considered sufficient.

Jirka Fink Data Structures 1 4 / 15



Requisite knowledge

Programming (Python or C++)

Basic algorithms and data structures: e.g., balanced search trees
(AVL/red-black/. . . )

Discrete math (combinatorics, basic number theory)

Basic probability theory (linearity of expectation, . . . )

Computer architecture

Jirka Fink Data Structures 1 5 / 15



Organization

Web
https://ktiml.mff.cuni.cz/˜fink/

E-mail
fink@ktiml.mff.cuni.cz

GIT
Problem statements

Templates to be filled

https://gitlab.kam.mff.cuni.cz/datovky/assignments

Recodex
Submissions and unit tests

Comments to your solutions

https://recodex.mff.cuni.cz

Jirka Fink Data Structures 1 6 / 15

https://gitlab.kam.mff.cuni.cz/datovky/assignments
https://recodex.mff.cuni.cz


Complexity

What is the time complexity of the following algorithms or operations

Add an element to the end of a linked list

Find an element in a linked list

Find an element in a sorted array

Find the smallest element in a sorted array

Sort an array of elements

Determine the number of components of a graph

Find a shortest path in a graph

Find a cycle visiting all vertices in a graph

Jirka Fink Data Structures 1 7 / 15



Amortized complexity

Motivation
Consider a data structure which is usually very fast

However in rare cases, it needs to reorganize its internal structure

So, the worst-case complexity is quite slow

This data structure may be used by an algorithm

We are interested in the total complexity or average complexity of many operations

Jirka Fink Data Structures 1 8 / 15



Dynamic array

Problem description (Stack version)
We have an array of length p storing n elements, and we need to implement
operations Insert and Delete

If n = p and an element has to be inserted, then the length of the array is doubled

If 4n = p and an element has to be deleted, then the length of the array is halved

What is the number of copied elements during k operations Insert and Delete?

Aggregated analysis
Let ki be the number of operations between (i − 1)-th and i-th reallocation

The first reallocation copies at most n0 + k1 elements where n0 is the initial
number of elements

The i-th reallocation copies at most 2ki elements for i ≥ 2

Every operation without reallocation copies at most 1 element

The total number of copied elements is at most k + (n0 + k1) +
∑

i≥2 2ki ≤ n0 + 3k

Jirka Fink Data Structures 1 9 / 15



Dynamic array

Potential method
Consider the potential

Φ =


0 if p = 2n
n if p = n
n if p = 4n

and piece-wise linear function in other cases

Explicitly,

Φ =

{
2n − p if p ≤ 2n
p/2 − n if p ≥ 2n

Change of the potential without reallocation is Φi − Φi−1 ≤ 2 1

Let Ti be the number of elements copied during i-th operation

Hence, Ti +Φi − Φi−1 ≤ 3

The total number of copied elements during k operations is∑k
i=1 Ti ≤ 3k +Φ0 − Φk ≤ 3k + n0

Jirka Fink Data Structures 1 10 / 15



1

Φ′ − Φ =


2 Insert and p ≤ 2n
−2 Delete and p ≤ 2n
−1 Insert and p ≥ 2n
1 Delete and p ≥ 2n

Jirka Fink Data Structures 1 10 / 15



Amortized complexity

Average of the aggregated analysis
The amortized complexity of an operation is the total time of k operations over k
assuming that k is sufficiently large.

For example, the amortized complexity of operations Insert and Delete in the

dynamic array is
∑k

i=1 Ti
k ≤ 3k+n0

k ≤ 4 = O(1) assuming that k ≥ n0.

Potential method
Let Φ a potential which evaluates the internal representation of a data structure

Let Ti be the actual time complexity of i-th operation

Let Φi be the potential after i-th operation

The amortized complexity of the operation is O(f (n)) if Ti +Φi − Φi−1 ≤ f (n) for
every operation i in an arbitrary sequence of operations

For example in dynamic array, Ti +Φi − Φi−1 ≤ 3, so the amortized complexity of
operations Insert and Delete is O(1)

Jirka Fink Data Structures 1 11 / 15



Why dynamic array is doubling the size?

Consider that an array is full, and it has n elements.
What happens when we change its size to be

3n

n + 10

n2?

Jirka Fink Data Structures 1 12 / 15



Queue

Propose an efficient implementation of a queue.

You have two stacks, supporting only the POP and PUSH operations. Propose an
algorithm, that would simulate a Queue with operations ENQUEUE and
DEQUEUE. Besides the two stacks, you have only a constant amount of memory.
Show that the queue operations have a constant amortized time complexity.

class Queue :
def i n i t ( s e l f ) :

s e l f . input = [ ] # For elements t h a t are enqueued
s e l f . ou tput = [ ] # For elements t h a t w i l l be dequeued

def enqueue ( s e l f , element ) :
s e l f . input . append ( element )

def dequeue ( s e l f ) :
i f not s e l f . ou tput : # I f the output l i s t i s empty

while s e l f . input : # While the inpu t l i s t i s not empty
s e l f . ou tput . append ( s e l f . input . pop ( ) )

return s e l f . ou tput . pop ( )

More details on Wikipedia
Jirka Fink Data Structures 1 13 / 15

https://en.wikipedia.org/wiki/Amortized_analysis#Queue


Dequeue

Propose an efficient implementation of a dequeue; e.i. an array that allows inserting,
and removing elements from both ends.

Jirka Fink Data Structures 1 14 / 15



1st assignment: Successor in a binary tree

Successor of a node A is the smallest node larger than A

Given a tree and its node, find the successor

If the given node is the last one, return None

If the given node is None, return the first node

When whole tree is traversed by your program, the total time complexity has to be
O(n)

Jirka Fink Data Structures 1 15 / 15


