
Data Structure I: Tutorial 5
Example of sizes and speeds of different types of memory:

size speed

L1 cache 32 KB 223 GB/s

L2 cache 256 KB 96 GB/s

L3 cache 8 MB 62 GB/s

RAM 32 GB 23 GB/s

SDD 112 GB 448 MB/s

HDD 2 TB 112 MB/s

Internet ∞ 10 MB/s

Consider the following trivial program:

Initialize an array A of 32-bit integers of length n
1 for (i=0; i+d<n; i+=d) do
2 A[i] = i+d # Create a loop using every d-th position

3 A[i]=0 # Close the loop

4 for (j=0; j< 228; j++) do
5 i=A[i] # Repeatedly walk on the loop

The following figure shows the running time depending on n and d.

10 12 14 16 18 20 22 24 26 28 30
0

5

10

15

log2 n

T
im

e
[s
]

d=211

d=210

d=29

d=28

d=27

d=26

d=25

d=24

d=23

d=22

Exercise 1 Estimate the number of cache misses for the following trivial algorithm transpos-
ing a matrix.

1 for i← 2 to k do
2 for j ← i+ 1 to k do
3 Swap(Aij, Aji)

Exercise 2 The following algorithm splits a matrix of size k×k into submatrices of size z×z
assuming z divides n. Estimate the number of cache misses.

1

We split the matrix A into submatrices of size z × z
1 for (i = 0; i < k; i+ = z) do
2 for (j = i; j < k; j+ = z) do

We transpose the submatrix starting on position (i, j)
3 for (ii = i; ii < min(k, i+ z); ii++) do
4 for (jj = max(j, ii+ 1); jj < min(k, j + z); jj ++) do
5 Swap(Aii,jj, Ajj,ii)

Exercise 3 In the assignment, implement the following recursive algorithm for matrix trans-
position.

1 Procedure transpose on diagonal(A)
2 if matrix A is small then
3 Transpose matrix A using the trivial approach
4 else
5 A11, A12, A21, A22 ← coordinates of submatrices
6 transpose on diagonal(A11)

7 transpose on diagonal(A22)

8 transpose and swap(A12, A21)

9 Procedure transpose and swap(A,B)

10 if matrices A and B are small then
11 Swap and transpose matrices A and B using the trivial approach
12 else
13 A11, A12, A21, A22, B11, B12, B21, B22 ← coordinates of submatrices
14 transpose and swap(A11, B11)

15 transpose and swap(A12, B21)

16 transpose and swap(A21, B12)

17 transpose and swap(A22, B22)

Exercise 4 In the recursive algorithm, describe splitting of a matrix which size is not a power
of two.

Exercise 5 Why the tall-cache assumption is needed in the proof of I/O complexity on matrix
transposition? What happens when this assumption is not satisfied?

The following compares the running time of building a binary heap depending on its size.
The blue line shows the running time when all data are stored in heap’s array. For the red
line, the heap’s array contains pointers to data and memory is allocated for every element
separately.

2

101 102 103 104 105 106 107 108 109

5

10

15

20

Number of elements (log-scale)

R
u
n
n
in
g
ti
m
e
p
er

on
e
el
em

en
t
[n
s] indirect

direct

3

