
Data struktures II
NTIN067

Jirka Fink
https://ktiml.mff.cuni.cz/˜fink/

Katedra teoretické informatiky a matematické logiky
Matematicko-fyzikálnı́ fakulta
Univerzita Karlova v Praze

Summer semester 2018/19
Last change March 18, 2019

License: Creative Commons BY-NC-SA 4.0

Jirka Fink Data Structures II 1

Content

1 Static dictionaries

2 Integer data structures

3 Graph data structures

4 Dynamization and persistence

5 Cache-oblivious structures

6 Succinct data structures

7 Computation in stream model

8 Literatura

Jirka Fink Data Structures II 2

Jirka Fink: Data Structures II

General information
E-mail fink@ktiml.mff.cuni.cz

Homepage https://ktiml.mff.cuni.cz/˜fink/

Consultations Individual schedule

Jirka Fink Data Structures II 3

Content

1 Static dictionaries

2 Integer data structures

3 Graph data structures

4 Dynamization and persistence

5 Cache-oblivious structures

6 Succinct data structures

7 Computation in stream model

8 Literatura

Jirka Fink Data Structures II 4

Computational model Word-RAM

Description
A word is a w-bit integer

A memory an array of words indexed by words

The size of memory is 2w , so we assume that w = Ω(log n)

Operations of words in constant time:
Arithmetical operations are +, −, ?, /, mod
Bit-wise operations &, |, ,̂ >>, <<
Comparisons =, <, ≤, >, ≥

Other operations in constant time: (un)conditional jumps, assignments, memory
accesses, etc.

Inputs and outputs are stored in memory

Jirka Fink Data Structures II 5

Static dictionaries

Notations
Universe U of all elements (words)

Store S ⊆ U of size n in a data structure

Using hashing, we store S in a table M = [m] = {0, . . . ,m − 1} of size m

Goal
Create a data structure determining whether a given element of U belongs to S.

Methods

Build Member
Search tree n log n log n optimal in the comparison model
Cuckoo n (exp.) 1 log n-independent
FKS n (exp.) 1 2-independent

n log n 1 deterministic

Jirka Fink Data Structures II 6

Independent repeated trials

Markov inequality

If X is a non-negative random variable and c > 1, then P[X < cE [X ]] > c−1
c .

Expected number of trial using probability
Let V be an event that occurs in a trial with probability p. The expected number of trials
to first occurrence of V in a sequence of independent trials is 1

p .

Expected number of trial using mean
If X is a non-negative random variable and c > 1. The expected number of trials to first
occurrence of X ≤ cE [X ] in a sequence of independent trials is at most c

c−1 .

Example
If the expected number of collisions of a randomly chosen hashing function h is k , then
the expected number of independent trials to the first occurrence of a hashing function
h with at most 2k collisions is 2.

Jirka Fink Data Structures II 7

Universal hashing systems

c-universal hashing system
A hashing system H of functions h : U → M is c-universal for c > 1 if a uniformly
chosen h from H satifies P[h(x) = h(y)] ≤ c

m for every x , y ∈ U and x 6= y .

k -independent hashing system
A hashing system H of functions h : U → M is k -independent for k ∈ N if a uniformly
chosen h from H satifies P[h(xi ) = zi for all i = 1, . . . , k ] = O

( 1
mk

)
for all pairwise

different x1, . . . , xk ∈ U and all z1, . . . , zk ∈ M.

Example: System Multiply-mod-prime
Let p be a prime greater than |U|
ha,b(x) = (ax + b mod p) mod m

H = {ha,b; a, b ∈ [p], a 6= 0}
System H is 1-universal and 2-independent but it is not 3-independent

Jirka Fink Data Structures II 8

https://ktiml.mff.cuni.cz/~fink/
https://creativecommons.org/licenses/by-nc-sa/4.0/


Hagerup, Miltersen, Pagh, 2001 [2]

Goal
A static dictionary for n w-bit keys with constant lookup time and a space consumption
of O(n) words can be constructed in O(n log n) time on w-word-RAM.
The algorithm is weakly non-uniform, i.e. requires certain precomputed constants
dependent on w .

Overview
1 Create a function f1 : [2w ]→ [24w ] which is an error-correcting code of relative

minimum distance δ > 0.
2 Create a function f2 : [24w ]→ [O

(
nk)] which is an injection on f1(S)

3 Create a function f3 : [O
(
nk)]→ [O

(
n2)] which is an injection on f2(f1(S))

4 Create a function f4 : [O
(
n2)]→ [O(n)] which is an injection on f3(f2(f1(S)))

f4 ◦ f3 ◦ f2 ◦ f1 can be computed in constant time

f2, f3, f4 can be found in time O(n log n)

f1 can be precomputed in time O(w)

Jirka Fink Data Structures II 9

Static dictionaries: [O
(
n2)]→ [O(n)]

Goal

Find a function h : U → [2r ] with U = [O
(
n2)] and r = max

{w
2 , 3 + log n

}
s.t.

h is perfect on S ⊆ U of size n and

h can be computed in constant time and

space consumption O(n) for finding and storing h and
h can be found in O(n log n) worst case time.

First, expected O(n) time,
then derandomize to O(n log n) worst case time.

x ∈ U is a point (α(x), β(x)) in a (O(n)×O(n))-table

For x ∈ U, let α(x) denote the first r bits of x and β(x) denotes the remaining bits. 1

Then x 7→ (α(x), β(x)) is an injection (e.i. perfect on U). 2

Jirka Fink Data Structures II 10

1 The number of remaining bits is at most r .
2 Since r ≥ w

2 .

Jirka Fink Data Structures II 10

Static dictionaries: [O
(
n2)]→ [O(n)]

Definition
For q ≥ 0 and functions f , g : U → [2r ], the pair (f , g) is q-good if

f has at most q collisions and

x 7→ (f (x), g(x)) is perfect on S.

The number of collisions is the number of pairs {x , y} ⊆ S such that f (x) = f (y).

Lemma
Suppose that (f , g) is q-good and r ≥ 3 + log n. Then, for every v ∈ [2r ] there exists

av ∈ [2r ] such that (x 7→ g(x)⊕ af (x), f ) is q′-good where q′ =

{
0 if q ≤ n
n otherwise.

All values av can be computed in expected time O(n) and space O(n) worst case.

Application: Randomized construction of a mapping [O
(
n2

)
]→ [O(n)]

0 (α, β) is
(n

2

)
-good

1 (x 7→ β(x)⊕ aα(x), α) =: (α′, β′) is n-good
2 (x 7→ β′(x)⊕ a′α′(x), α

′) =: (α′′, β′′) is 0-good, so α′′ is perfect

Jirka Fink Data Structures II 11

Static dictionaries: [O
(
n2)]→ [O(n)]

Lemma
Suppose that (f , g) is q-good and r ≥ 3 + log n. Then, for every v ∈ [2r ] there exists

av ∈ [2r ] such that (x 7→ g(x)⊕ af (x), f ) is q′-good where q′ =

{
0 if q ≤ n
n otherwise.

All values av can be computed in expected time O(n) and space O(n) worst case.

Proof (q′ ≤ n)
1 Let h(x) = g(x)⊕ af (x)

2 If x , y ∈ S and x 6= y and f (x) = f (y), then g(x) 6= g(y) and h(x) 6= h(y) 1

3 If f (x) 6= f (y), then P[h(x) = h(y)] = 1
2r where av ∼ U[2r ] independently for all

v ∈ [2r ] 2

4 E [| {{x , y} ⊆ S; h(x) = h(y)} |] ≤
(n

2

)
/2r < n

16
3

5 The expected number of trials to generate h with at most n collisions is O(1).

Jirka Fink Data Structures II 12

1 Since x 7→ (f (x), g(x)) is perfect on S, g(x) 6= g(y). From
g(x)⊕ af (x) = g(x)⊕ af (y) 6= g(y)⊕ af (y) it follows that h(x) 6= h(y).

2 For every v ∈ [2r ] we randomly and independently choose av from the uniform
distribution on [2r ]. Then,

h(x) = h(y)

g(x)⊕ af (x) = g(y)⊕ af (y)

af (x) = g(x)⊕ g(y)⊕ af (y)

Since ([2r ],⊕) is an Abelian group, b 7→ b ⊕ c is a bijection on [2r ] for every
c ∈ [2r ] and so af (y) ∼ U[2r ], it follows that g(x)⊕ g(y)⊕ af (y) ∼ U[2r ]. Since af (x)

and af (y) are independent, also af (x) and g(x)⊕ g(y)⊕ af (y) are independent.
Hence, P[h(x) = h(y)] = 1

2r .
3 Use the linearity of expectation and substitute r .

Jirka Fink Data Structures II 12

Static dictionaries: [O
(
n2)]→ [O(n)]

Lemma
Suppose that (f , g) is q-good and r ≥ 3 + log n. Then, for every v ∈ [2r ] there exists

av ∈ [2r ] such that (x 7→ g(x)⊕ af (x), f ) is q′-good where q′ =

{
0 if q ≤ n
n otherwise.

All values av can be computed in expected time O(n) and space O(n) worst case.

Proof (q ≤ n implies q′ = 0)
1 Let Sv = {x ∈ S; f (x) = v}
2 Order Sv by non-increasing size, i.e. |Sv1 | ≥ |Sv2 | ≥ . . . ≥ |Sv2r |
3 For j = 1, . . . , 2r we find avj such that h is perfect 1

4 For avj ∼ U[2r ] it holds E [|
{

(x , y) ∈ Svj × S<j ; h(x) = h(y)
}
|]

≤ |Svj ||S<j |P[h(x) = h(y)] 2

≤
∑j−1

i=1 |Svj ||Svi |/2r 3

≤
∑j−1

i=1 |S
2
vi
|/2r 4

≤
∑j−1

i=1

(Svi
2

)
/2r−2 5

≤ q/2r−2 ≤ 1
2

5 The expected number of trials to generate avj such that h has no collision is O(1).
6 7

Jirka Fink Data Structures II 13

1 Note that we must find h without collisions. To be precise, we iteratively find avj for
j from 1 to 2r such that it holds h(x) 6= h(y) for every x ∈ Svj and y ∈ S<j where
S<j =

⋃j
i=1 Svi .

2 Linearity of expectation
3 Definition of S<j

4 |Svi | ≥ |Svj |
5 From this point, assume that |Svj | ≥ 2.
6 In order to verify that h has no collision, we use a counter

mv = | {y ∈ S<j ; h(y) = v} |. For every j we can count the collisions and update
mv in time O(|Sj |). The expected time to find all avj is

∑
j O(|Sj |) = O(n).

7 For Svj = {x} we can find v with mv = 0 and set avj = v ⊕ g(x).

Jirka Fink Data Structures II 13



Static dictionaries: [O
(
n2)]→ [O(n)]

Derandomization

Let Lk (a) = |
{

(x , y) ∈ Svj × S<j ; (g(x)⊕ a)[k ] = (h(y))[k ]
}
| 1

(a)i denotes the i-th bit of a and (a)M denotes the vector of all bits (a)i for i ∈ M ⊆ [r ] 2

1 for j ← 1 to 2r do
2 avj ← 0
3 for k ← 0 to r − 1 do
4 if Lk+1(avj ) > Lk+1(avj + 2k ) then
5 avj ← avj + 2k

Proof (goodness of (h, f ))

Lk (a) + Lk (a⊕ 2k ) = Lk−1(a) for every a ∈ [2k ] and k ∈ [r ]

Lk (avj ) ≤
Lk−1(avj )

2 ≤
L0(avj )

2k =
|Svj ||S<j |

2k

The total number of collision is at most∑
j Lr (avj ) ≤

∑
j 2−r |Svj ||S<j | ≤

∑
i<j 2−r |Svj ||Svi | ≤ 2−r−1 (∑

i Svi

)2
< n

16

If q ≤ n, then the number of collision with Svj is

Lr (avj ) ≤
∑

i<j 2−r |Svj ||Svi | ≤
∑

i<j 22−r(Svj
2

)
≤ 22−r q ≤ 1

2

Jirka Fink Data Structures II 14

1 Where k ∈ [r ] and a ∈ [2k ]

2 Our goal is to iteratively and deterministically compute avj for j from 1 to 2r . The
value of avk is computed by bits from the least significant to the most significant
bit. Lk (a) determines the number of collision between Svj and S<j if we consider
only last k bits.

Jirka Fink Data Structures II 14

Static dictionaries: [O
(
n2)]→ [O(n)]

Derandomization

Let Lk (a) = |
{

(x , y) ∈ Svj × S<j ; (g(x)⊕ a)[k ] = (h(y))[k ]
}
|

(a)i denotes the i-th bit of a and (a)M denotes the vector of all bits (a)i for i ∈ M ⊆ [r ]

1 for j ← 1 to 2r do
2 avj ← 0
3 for k ← 0 to r − 1 do
4 if Lk+1(avj ) > Lk+1(avj + 2k ) then
5 avj ← avj + 2k

Proof (Complexity)
In order to compute Lk (a), we build a binary tree (trie)

Every vertex a ∈ [2k ] of the k -th level has a counter
ck (a) = |

{
y ∈ S<j ; (h(y))[k ] = (a)[k ]

}
|

Lk (a) =
∑

x∈Svj
ck (g(x)⊕ a) can be computed in O

(
|Svj |

)
time

After the j-th step, counters can be updated in O
(
|Svj |r

)
time

Total time is
∑

j |Svj |r = O(n log n)

Jirka Fink Data Structures II 15

Static dictionaries: [O
(
nk)]→ [O

(
n2)]

Approach

Every x ∈ U = [O
(
nk)] can be regarded as constant-length string over an

alphabet of size n

Build n-way branching compressed trie of string S

The number of leaves is |S| = n, so the total number of vertices is at most 2n

Build static [O
(
n2)]→ [O(n)] dictionary for pairs (vertex of the trie, letter) which

returns a child of the vertex

One polynomial-size-universe lookup is evaluated using a constant number of
quadratic-size-universe lookups

Space complexity is O(n) and this dictionary is constructed in O(n log n) time

Jirka Fink Data Structures II 16

Static dictionaries: Error-correcting code

Definition
The Hamming distance between x ∈ [2w ] and y ∈ [2w ] is the number of bits in
which x and y differ.

ψ : [2w ]→ [24w ] is an error correcting code of relative minimum distance δ > 0 if
the Hamming distance between ψ(x) and ψ(y) is at least 4wδ for every distinct
x , y ∈ [2w ].

Lemma

Let H be a 2-universal hashing system of function [2w ]→ [24w ]. For every δ with
1/4w < δ ≤ 1/2, the probability that h ∼ U(H) is an error correcting code of relative
minimum distance δ > 0 is at least 1−

(
( e
δ

)4δ/4
)w

. 1

Proof

For x ∈ [24w ] the number of y within Hamming distance k is at most ( 4ew
k )k . 2

For x 6= y , P(Hamming distance between x and y ≤ k) ≤ 21−4w ( 4ew
k )k

The probability that this happens for any of the
(2w

2

)
< 22w−1 pairs is at most(

( e
δ

)4δ/4
)w

3

Jirka Fink Data Structures II 17

1 For δ < 1
4w it holds that 4wδ < 1 and the identity is an error correcting code of

relative minimum distance δ.
2 The number of y ∈ [24w ] within Hamming distance k ≥ 1 from a fixed x ∈ [24w ] is∑k

i=0

(4w
i

)
≤ ( 4w

k )k ∑k
i=0

(4w
i

)
( k

4w )i ≤ ( 4w
k )k (1 + k

4w )4w ≤ ( 4w
k )k ek ≤ ( 4ew

k )k using
the binomial theorem.

3 By setting k = b4wδc we obtain 22w−121−4w ( 4ew
k )k ≤ 2−2w ( 4ew

4wδ )4wδ = (2−2( e
δ

)4δ)w

Jirka Fink Data Structures II 17

Static dictionaries: [2w ]→ [O
(
nk)]

Lemma

Let ψ : [2w ]→ [24w ] be an error correcting code of relative minimum distance δ > 0
and S ⊆ U = [2w ] of size n. There exists a set D ⊆ [4w ] with |D| ≤ 2 log n/ log 1

1−δ
such that for every pair x , y of distinct elements of S it holds (ψ(x))D 6= (ψ(y))D .

Proof

For D ⊆ [4w ] and v ∈ [2|D|] let C(D, v) = {x ∈ S; (ψ(x))D = v} 1

The set of colliding pairs of D is B(D) =
⋃

v∈[2|D|]
(C(D,v)

2

)
We construct D0 ⊆ D1 ⊆ . . . ⊆ Dk such that |Di | = i and |B(Di )| < (1− δ)in2/2 2

Let I(d) = {{x , y} ∈ B(Di ); (ψ(x))d = (ψ(y))d} be the colliding pairs
indistinguishable by d ∈ [4w ] \ Di

Let I =
∑

d∈[4w ]\Di
|I(d)|

Every pair {x , y} ∈ B(Di ) contributes to I by at most 4w − i − 4wδ < 4w(1− δ),
so I ≤ 4w(1− δ)|B(Di )|
By averaging, there exists d ∈ [4w ]\Di such that |I(d)| ≤ I

4w−i ≤ (1− δ)|B(Di )| 3

Let Di+1 = Di ∪ {d}. Hence, |B(Di+1)| = |I(d)| ≤ (1− δ)|B(Di )|

By setting k =
⌊
2 log n/ log 1

1−δ

⌋
we obtain |B(Dk )| < 1.

Jirka Fink Data Structures II 18

1 Note that for every D ⊆ [4w ] the set S is split into 2|D| disjoint clusters C(D, v) for
v ∈ [2|D|].

2 For i = 0 it holds that D0 = ∅ and B(D0) =
(n

2

)
< n2

2 .
3 A bit d ∈ [4w ] \ Di with |I(d)| ≤ (1− δ)|B(Di )| can be found in O(wn) time as

follows. We a list of all clusters C(Di , v) of size at least two. Every cluster has a list
of all elements. So, I(d) for one d ∈ [4w ] \ Di can be determined in O(n) time and
we can process all d in O(wn) time. Then, all lists can be updated in O(n) time.
Using word-level parallelism, the time complexity can be improved to O(n).

Jirka Fink Data Structures II 18



Content

1 Static dictionaries

2 Integer data structures

3 Graph data structures

4 Dynamization and persistence

5 Cache-oblivious structures

6 Succinct data structures

7 Computation in stream model

8 Literatura

Jirka Fink Data Structures II 19

Word-RAM as a vector computer

Theorem (Linear compression and speed up
An algorithm running on a O(w)-word-RAM with time complexity T (n) and space
complexity S(n) can be simulated on w-word-RAM with time complexity O(T (n)) and
space complexity O(S(n)) assuming S(n) = o(2w ). 1 2

Proof
Every word of O(w)-word-RAM is replaced by O(1) words on w-word-RAM, so
the space complexity is O(T (n)).

Every instruction on O(w)-word-RAM is replaced by O(1) instruction on
w-word-RAM. 3

Jirka Fink Data Structures II 20

1 This theorem is similar to the linear speed theorem for Turing machines.
2 The assumption S(n) = o(2w ) is needed to ensure a sufficient amount of memory

for linear data decompression.
3 Bit-wise operations and comparisons are trivial. In order to simulate arithmetical

operations, every O(w) bits word is split into w
2 bits words to handle integer

overflows and carry.

Jirka Fink Data Structures II 20

RAM with uninitialized memory

Theorem
Every program with time complexity T (n) and space complexity S(n) which assumes
initialized memory by zeros can be simulated by a program with time complexity
O(T (n)) and space complexity S(n) which do not assume initialized memory. 1

Proof
Simulation uses the following variables:

M: An array of the original memory

N: The number of already initialized cells by the original program

I: An array of indices of all initialized cells

X: A reverse table of I, i.e. if j is initialized, then I[X [j]] = j

A read cell j is initialized if and only if X [j] < N and I[X [j]] = j .

Jirka Fink Data Structures II 21

1 Reading initialized memory must be permitted but an arbitrary value can be read.

Jirka Fink Data Structures II 21

Integer data structures

Goal
Create a dynamic data structure storing a set S of intergers from a universe U with is
can find the predecessor and the successor of a element x ∈ U.

Predecessor: PRED(x ∈ U) = max {y ∈ S; y < x}
Successor SUCC(x ∈ U) = min {y ∈ S; y > x}

An invalid element is returned if no such element exists.

Our knowledge
O(log n) query and update using search trees

Jirka Fink Data Structures II 22

van Emde Boas tree [3]

Notation
For a t-bit integer x ∈ U let

r(x) be the left (upper) dt/2e bits of x and

l(x) be the left (lower) dt/2e bits of x .

For a set of elements S let

Si = {r(x) ∈ S \min S; l(x) = i} for i ∈ l(U)

P = {Si ; Si 6= ∅}

A node of van Emde Boas tree contains
Pointers to the minimum and maximum of S

An array of vEB trees for all sets Si

A primary vEB tree of elements P for finding non-empty buckets

Space complexity
Terrible: O(U), but we will improve it later.

Requires initialized memory

Jirka Fink Data Structures II 23

van Emde Boas tree: Operation FIND(x)

Algorithm

1 Procedure FIND(x, S)
2 if S = ∅ then
3 return None

4 if x = min(S) then
5 return min(S)

6 return FIND(r(x),Sl(x))

Analysis
The height of the tree is O(log log U)

Time complexity is O(log log U)

Jirka Fink Data Structures II 24



van Emde Boas tree: Operation SUCC(x)

Algorithm

1 Procedure SUCC(x, S)
2 if S = ∅ or x ≥ max(S) then
3 return None

4 if x < min(S) then
5 return min(S)

6 i ← l(x)
7 if Si 6= ∅ and x < max(Si ) then
8 return SUCC(r(x),Si)

9 i ← SUCC(i, P)
10 return min(Si )

Analysis
The recursion is called at most once for every level of the tree

Time complexity is O(log log U)

Jirka Fink Data Structures II 25

van Emde Boas tree: Operation INSERT(x)

Algorithm

1 Procedure INSERT(x, S)
2 if S = ∅ then
3 min(S)← max(S)← x and return

4 if x < min(S) then
5 swap(x ,min(S))

6 if x > max(S) then
7 max(S)← x

8 i ← l(x)
9 if Si = ∅ then

10 INSERT(i, P)

11 INSERT(r(x),Si)

Analysis
If Si = ∅, then INSERT(r(x),Si) only sets min(Si ) and max(Si )

A non-trivial recursion is called at most once for every level of the tree

Time complexity is O(log log U)

Jirka Fink Data Structures II 26

van Emde Boas tree: Operation DELETE(x)

Algorithm 1

1 Procedure DELETE(x, S)
2 if S = ∅ or x = min(S) = max(S) then
3 S ← ∅ and return

4 if x = min(S) then
5 min(S)← DELETEMIN(S) and return

6 i ← l(x)
7 if x = min(Si ) = max(Si ) then
8 DELETE(i, P)

9 DELETE(r(x),Si)
10 max(S)← max(Smax(P))

11 Procedure DELETEMIN(S) 2

12 i ← min(P)
13 if min(Si ) < max(Si ) then
14 return DELETEMIN(Si)

15 Si ← ∅
16 i ← DELETEMIN(P)
17 return min(Si )

Jirka Fink Data Structures II 27

1 Time complexity is also O(log log U)

2 Function DELETEMIN also returns the new minimal value.

Jirka Fink Data Structures II 27

x-fast trie (Willard [4])

First step
A set S is represented using an array A such that x is stored at A[x ]

Non-empty positions of A are interconnected using a linked list

Build a binary tree T whose leaves are cells of A

Every node v of T stores the minimum and maximum of the subtree of v

Operation SUCC(x)
If A[x ] is non-empty, then return A[x ]→ next

Find the largest empty subtree v containing x and its parent p

If v is a left child of p, then return p → min

Return p → max → next

Complexity
Space: O(U)

SUCC: O(log U)

INSERT, DELETE: O(log U)

Jirka Fink Data Structures II 28

x-fast trie: Improvements

Second step: Speed up
The largest empty subtree v containing x can be found using binary search

Time complexity of SUCCis O(log log U)

Third step: Space reduction
The number of nodes of T with non-empty subtree is at most nw

Store them in a hash table (e.g. Cuckoo)

x-fast trie
Space complexity O(nw)

SUCC: O(log log U) worst case

INSERT, DELETE: O(log U) expected amortized

Jirka Fink Data Structures II 29

y-fast trie (Willard [4])

Structure
Split the ordered set S into Θ(n/B) blocks Si of size Θ(B) where B = log U

For every block Si choose a representative ri and let R be the set of all
representatives

Create x-fast trie for representatives R, called a primary tree

For every block Si , create a balanced search tree Ti , called block trees

Space complexity
Every elements of S is stored in one node of one block tree

Space complexity of al block trees is O(n)

Space complexity of the primary tree is O(|R|w) = O(n) since |R| = Θ(n/ log U)
and |w | = Θ(log U)

Jirka Fink Data Structures II 30

y-fast trie: Operations FIND and SUCC

Operation FIND(x)
Find the predecessor ri and the successor rj representatives of x in the primary
tree

Element x lives in Ti or Tj , so search both block trees 1

Time complexity
Representative are found in time O(log log U)

Searching block trees takes O(log |B|) = O(log log U)

Time complexity of operation FINDis O(log log U)

Operation SUCC(x)
If x /∈ S, then FIND(x) finds both the predecessor and the successor of x

If x ∈ S, we use a linked list to find the successor

Time complexity of operation SUCCis O(log log U)

Jirka Fink Data Structures II 31



1 If x is a representative, we search only one tree.

Jirka Fink Data Structures II 31

y-fast trie: Operations INSERT and DELETE

Without balancing sizes of blocks
Find the proper block tree: O(log log U) time

Update the block tree: O(log B) = O(log log U) time

However, the size of blocks must be O(log B) and number of blocks must be
O(n/ log B)

Balancing sizes of blocks
If a block is too large, split it

If a block is too small, merge it with a sibling or move Ω(B) elements from a sibling

Updates blocks trees takes O(B) time

Updates the primary tree takes O(log U) time

Homework: Create rules which ensures that balancing occur once every Ω(B)
updates

Amortized cost of balancing is O(1)

Time complexity is O(log log U) expected amortized 1

Jirka Fink Data Structures II 32

1 Remind that x-fast trie uses Cuckoo hashing

Jirka Fink Data Structures II 32

RAM as a vector computer

Representation of a vector
Consider b-bits integers x0, . . . , xn−1

Every integers is prepended by 0 and concatenated, i.e. a vector is represented
as
∑n

i=0 xi2i(b+1)

Using linear compression theorem, it suffices to assume that nb = O(w)

Operation Read(x,i)
Returns the i-th integers from a vector x

Read(x,i) = x >> 2i(b+1)&1b

where 1b is a binary number with b ones, i.e. 2b+1 − 1

Operation Write(x,i,a)
Write a into the i-th position of x

Write(x,i,a) = (x&Mi )|(a << 2i(b+1))

where Mi = 1(b+1)(n−i−1)0b+11(b+1)i is a mask cleaning the i-th position

Jirka Fink Data Structures II 33

RAM as a vector computer

Replicate(a)
Create n copies of a

Replicate(a) = a · (0b1)n

Sum(x)

Return the sum
∑n−1

i=0 xi

Sum(x) = x mod 2b+1 − 1

x =
∑n−1

i=0 xi2b+1 ≡
∑n−1

i=0 xi mod 2b+1 − 1

Cmp(x,y)
return z such that zi = 1 if xi ≥ yi and 0 otherwise

in the difference (1xi )− (0yi ), the first bit is 1 if and only if xi ≥ yi

Cmp(x,y) = (((x |(10b)n)− y) >> b)&(0b1)n

Min(x,y)

m = Cmp(x , y) · 1b

m filters positions of x where xi ≥ yi

Min(x,y) = (x& ∼ m)|(y&m)

Jirka Fink Data Structures II 34

RAM as a vector computer

Rank(x,a)
The number of elements of x smaller than a

Rank(x,a) = Sum(Cmp(x,Replicate(a)))

Insert(x,a)
Insert a into a sorted vector x

i = Rank(x,a) is the possition for a in x

Filter and move xi , . . . , xn−1 to left

Jirka Fink Data Structures II 35

RAM as a vector computer

Unpack(a)
Create a vector x such that xi equals to the i-th bit ai of a

y = Replicate(a) &(2b−1, . . . , 1), i.e. yi = 2iai

Unpack(a) = Cmp(y, (0b1)n)

Unpackπ(a) according to to a permutation π

Pack(a)
Consider that b is decreased by one and apply Sum

Since the vector is not properly formatted, modulo cannot be used

Pack(a) = ((a · (0b−11)n) >> bn)&1b

Jirka Fink Data Structures II 36

RAM as a vector computer assuming w ≥ Ω(b2)

Weight(a)
The Hamming weight of a

Weight(a) = Sum(Unpack(a))

Permuteπ(a)
Permute bits in a according to a permutation π

Permuteπ(a) = Pack(Unpackπ(a))

LSB(a)
The least significant bit in a

LSB(a) = Weight(a⊕ (a− 1))-1

MSB(a)
MSB(a) = b-1-LSB(Permuterevers(a))

Jirka Fink Data Structures II 37



RAM as a vector computer

MSB(a) on O(w) bits

b =
⌊√

w
⌋

Split a into l block of b bits and padding

x = (a&(01b)l )|((a&(10b)l ) >> b)

Now, padding is zero and xi = 0 if and only if i-th block is zero

y = Cmp(x,(0b1)n)

yi = 1 if if and only if i-th block is non-zero

j = MSB(Pack(y))

j is the first non-empty block

z = (a >> (b + 1)j)&1b+1

z is the content of the j-th block

MSB(a) = (b + 1)j+ MSB(z)

Jirka Fink Data Structures II 38

Fusion trees (Fredman, Willard, 1993 [1])

Fusion node

Let k = O
(

w1/5
)

A fusion node stores keys x0, . . . , xk−1

A fusion node can find Rank, SUCC and PRED in O(1)

Construction time is Poly(k)

Fusion tree
B-tree for B = k

Nodes are Fusion nodes

The depth of the tree is O(logB(n)) = O
(

log n
log w

)
Time complexity of Rank, SUCC and PRED is O

(
log n
log w

)

Jirka Fink Data Structures II 39

Fusion trees

Fusion node
Consider a trie on keys x0, . . . , xk−1

The number of leaves is k , so the number of splitting nodes is k − 1 1

Hence, at most k − 1 levels has a splitting node 2

Let s(x) select all splitting bits from the binary code of x 3

Observe that s(x0) < s(x1) < · · · < s(xk−1)

S = (s(x0), . . . , s(xk−1)

The number of bits of S is at most k2 = O
(

w2/5
)

so S can be stored in a single
w-word

Rank(x) can be computed using Rank(s(x),S) in O(1)

However, we need to compute s(x) in O(1)

We find a(x) of length O
(
k4) containing s(x) with extra zeros on the same

position of all x

Jirka Fink Data Structures II 40

1 Splitting node is a node of degree 2.
2 We call them splitting levels.
3 Note that every level of a trie corresponds to one bit in the binary code. Bits

corresponding to splitting levels are called splitting bits. Since only splitting bits are
significant, s(x) select these splitting bits from x .

Jirka Fink Data Structures II 40

Fusion trees

Lemma
For every b0 < · · · < bk−1 there exist m0 < · · · < mk−1 such that

bi + mj are pair-wise different for all i and j

b0 + m0 < · · · < bk−1 + mk−1

(bk−1 + mk−1)− (b0 + m0) = O
(
k4)

Splitting bits with extra zeros

y = x&
∑

i 2bi filters all splitting bits

z = y ·
∑

j 2mj =
∑

i

∑
j xbi 2

bi+mj

There is no carry since bi + mj are pair-wise different

a(x) = z&(
∑

i 2bi+mi ) >> (b0 + m0)

Jirka Fink Data Structures II 41

Content

1 Static dictionaries

2 Integer data structures

3 Graph data structures

4 Dynamization and persistence

5 Cache-oblivious structures

6 Succinct data structures

7 Computation in stream model

8 Literatura

Jirka Fink Data Structures II 42

Path queries in trees

Goals
Store a tree with weights on vertices

Query: Find the minimum on the path between given two vertices

Local update: Change the weight on a given vertex

Path update: Increase weights on all vertices on the path between given two
vertices

Cut: Split the tree by removing a given two vertices

Link: Join two trees by adding an edge between two given vertices

Evert: Change the root of a tree and the orientation of all edges on the path
between old and new vertices

Jirka Fink Data Structures II 43

Queries in sequences

Static representation
Store a sequence of weights w1, . . . ,wn in an array

Build a balances binary search tree with leaves corresponding to the weights

Every vertex stores the minimum of all weights in its subtree

Query: Find the minimum in a given subsequence wi , . . . ,wj

Process O(log n) nodes on paths from wi and wj to the root

Time complexity is O(log n)

Local update of a given weight wi

Update the minimum in all vertices on the path from wi to the root

Time complexity is O(log n)

Jirka Fink Data Structures II 44



Queries in sequences

Increase all weights in a subsequence wi , . . . ,wj

Lazy evaluation: Vertex can store an increment of all weight in its subtree

Invariant: The actual weight wk is the sum of the value stored in k -th leave and all
increments on the path to the root

Increment propagation: The increment stored in a vertex u can be added to
increments in children and cleared in u

All operations propagate increment on accessed vertices

Subsequence increase: Set the increase in nodes on paths from wi and wj to the
root

Time complexity is O(log n)

Jirka Fink Data Structures II 45

Heavy-light decomposition of rooted trees

Heavy and light edges
Let s(v) be the number of vertices in the subtree of v (including v )

Let u be a vertex and v its child

The edge uv is called heavy if s(u) ≥ s(v)/2; and light otherwise

Observations
Every vertex u has at most one child v such that uv is heavy

Heavy edges form a set paths

Every vertex lies on a heavy path since trivial paths are allowed

For every vertex u the path from the root to u contains at most log n light edges
and most log n prefixes of heavy paths

Jirka Fink Data Structures II 46

Heavy-light decomposition of rooted trees

Representation
Every vertex v stores:

Its parent u and the list of its children

Heavy/light flag of the edge uv

Minimum of weights in the subtree

First vertex of the heavy path containing v

Order of v on the heavy path containing v

Every heavy path has a DS for sequences

In static version: Minimum of the prefix of heavy path to v

Jirka Fink Data Structures II 47

Heavy-light decomposition of rooted trees

Lowest Common Ancestor (LCA)
For given two vertices u and v find the last common vertex on path from the root to u
and v

On the path from u to the root, mark all heavy paths

Find the first marked heavy path p from v to the root

Using the order of vertices on p, determine the LCA

Time complexity is O(log n)

Path query
Find the minimal weight on the path between given two vertices u and v

Find z = LCA(u,v )
The path u . . . z . . . v contains:

O(log n) light edges
O(log n) prefixes of heavy paths
At most one subpath of a heavy path

Time complexity
Static version: O(log n)
Dynamic version: O

(
log2 n

)
Jirka Fink Data Structures II 48

Link-Cut trees (Sleator, Tarjan)

Definition
Trees are rooted

Every edges is thick or thin

Every vertex u has at most one child v such that uv is thick

Thick edges form a set paths

Every vertex lies on a thick path since trivial paths are allowed

Operations
Expose(v ): Makes the path from v to the root thick and all children of v thin

Find the parent of v and the root of v

Cut: Split the tree by removing a given two vertices

Link: Join two trees by adding an edge between two given vertices

Evert: Change the root of a tree and the orientation of all edges on the path
between old and new vertices

Find the weight of a path

Find the minimum of all weight on a path

Change the weight of vertex

Increase all weights of vertices on a path
Jirka Fink Data Structures II 49

Content

1 Static dictionaries

2 Integer data structures

3 Graph data structures

4 Dynamization and persistence

5 Cache-oblivious structures

6 Succinct data structures

7 Computation in stream model

8 Literatura

Jirka Fink Data Structures II 50

Content

1 Static dictionaries

2 Integer data structures

3 Graph data structures

4 Dynamization and persistence

5 Cache-oblivious structures

6 Succinct data structures

7 Computation in stream model

8 Literatura

Jirka Fink Data Structures II 51

Content

1 Static dictionaries

2 Integer data structures

3 Graph data structures

4 Dynamization and persistence

5 Cache-oblivious structures

6 Succinct data structures

7 Computation in stream model

8 Literatura

Jirka Fink Data Structures II 52



Content

1 Static dictionaries

2 Integer data structures

3 Graph data structures

4 Dynamization and persistence

5 Cache-oblivious structures

6 Succinct data structures

7 Computation in stream model

8 Literatura

Jirka Fink Data Structures II 53

Content

1 Static dictionaries

2 Integer data structures

3 Graph data structures

4 Dynamization and persistence

5 Cache-oblivious structures

6 Succinct data structures

7 Computation in stream model

8 Literatura

Jirka Fink Data Structures II 54

[1] Michael L Fredman and Dan E Willard.
Surpassing the information theoretic bound with fusion trees.
Journal of computer and system sciences, 47(3):424–436, 1993.

[2] Torben Hagerup, Peter Bro Miltersen, and Rasmus Pagh.
Deterministic dictionaries.
Journal of Algorithms, 41(1):69–85, 2001.

[3] Peter van Emde Boas.
Preserving order in a forest in less than logarithmic time.
In 16th Annual Symposium on Foundations of Computer Science (sfcs 1975),
pages 75–84. IEEE, 1975.

[4] Dan E Willard.
Log-logarithmic worst-case range queries are possible in space θ (n).
Information Processing Letters, 17(2):81–84, 1983.

Jirka Fink Data Structures II 54


	Static dictionaries
	Integer data structures
	Graph data structures
	Dynamization and persistence
	Cache-oblivious structures
	Succinct data structures
	Computation in stream model
	Literatura

