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Computational model Word-RAM

Description
A word is a w-bit integer

A memory an array of words indexed by words

The size of memory is 2w , so we assume that w = Ω(log n)

Operations of words in constant time:
Arithmetical operations are +, −, ?, /, mod
Bit-wise operations &, |, ,̂ >>, <<
Comparisons =, <, ≤, >, ≥

Other operations in constant time: (un)conditional jumps, assignments, memory
accesses, etc.

Inputs and outputs are stored in memory
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Static dictionaries

Notations
Universe U of all elements (words)

Store S ⊆ U of size n in a data structure

Using hashing, we store S in a table M = [m] = {0, . . . ,m − 1} of size m

Goal
Create a data structure determining whether a given element of U belongs to S.

Methods

Build Member
Search tree n log n log n optimal in the comparison model
Cuckoo n (exp.) 1 log n-independent
FKS n (exp.) 1 2-independent

n log n 1 deterministic
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Independent repeated trials

Markov inequality

If X is a non-negative random variable and c > 1, then P[X < cE [X ]] > c−1
c .

Expected number of trial using probability
Let V be an event that occurs in a trial with probability p. The expected number of trials
to first occurrence of V in a sequence of independent trials is 1

p .

Expected number of trial using mean
If X is a non-negative random variable and c > 1. The expected number of trials to first
occurrence of X ≤ cE [X ] in a sequence of independent trials is at most c

c−1 .

Example
If the expected number of collisions of a randomly chosen hashing function h is k , then
the expected number of independent trials to the first occurrence of a hashing function
h with at most 2k collisions is 2.
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Universal hashing systems

c-universal hashing system
A hashing system H of functions h : U → M is c-universal for c > 1 if a uniformly
chosen h from H satifies P[h(x) = h(y)] ≤ c

m for every x , y ∈ U and x 6= y .

k -independent hashing system
A hashing system H of functions h : U → M is k -independent for k ∈ N if a uniformly
chosen h from H satifies P[h(xi ) = zi for all i = 1, . . . , k ] = O

( 1
mk

)
for all pairwise

different x1, . . . , xk ∈ U and all z1, . . . , zk ∈ M.

Example: System Multiply-mod-prime
Let p be a prime greater than |U|
ha,b(x) = (ax + b mod p) mod m

H = {ha,b; a, b ∈ [p], a 6= 0}
System H is 1-universal and 2-independent but it is not 3-independent
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Hagerup, Miltersen, Pagh, 2001 [2]

Goal
A static dictionary for n w-bit keys with constant lookup time and a space consumption
of O(n) words can be constructed in O(n log n) time on w-word-RAM.
The algorithm is weakly non-uniform, i.e. requires certain precomputed constants
dependent on w .

Overview
1 Create a function f1 : [2w ]→ [24w ] which is an error-correcting code of relative

minimum distance δ > 0.
2 Create a function f2 : [24w ]→ [O

(
nk)] which is an injection on f1(S)

3 Create a function f3 : [O
(
nk)]→ [O

(
n2)] which is an injection on f2(f1(S))

4 Create a function f4 : [O
(
n2)]→ [O(n)] which is an injection on f3(f2(f1(S)))

f4 ◦ f3 ◦ f2 ◦ f1 can be computed in constant time

f2, f3, f4 can be found in time O(n log n)

f1 can be precomputed in time O(w)
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Static dictionaries: [O
(
n2)]→ [O(n)]

Goal

Find a function h : U → [2r ] with U = [O
(
n2)] and r = max

{w
2 , 3 + log n

}
s.t.

h is perfect on S ⊆ U of size n and

h can be computed in constant time and

space consumption O(n) for finding and storing h and
h can be found in O(n log n) worst case time.

First, expected O(n) time,
then derandomize to O(n log n) worst case time.

x ∈ U is a point (α(x), β(x)) in a (O(n)×O(n))-table

For x ∈ U, let α(x) denote the first r bits of x and β(x) denotes the remaining bits. 1

Then x 7→ (α(x), β(x)) is an injection (e.i. perfect on U). 2
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1 The number of remaining bits is at most r .
2 Since r ≥ w

2 .
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Static dictionaries: [O
(
n2)]→ [O(n)]

Definition
For q ≥ 0 and functions f , g : U → [2r ], the pair (f , g) is q-good if

f has at most q collisions and

x 7→ (f (x), g(x)) is perfect on S.

The number of collisions is the number of pairs {x , y} ⊆ S such that f (x) = f (y).

Lemma
Suppose that (f , g) is q-good and r ≥ 3 + log n. Then, for every v ∈ [2r ] there exists

av ∈ [2r ] such that (x 7→ g(x)⊕ af (x), f ) is q′-good where q′ =

{
0 if q ≤ n
n otherwise.

All values av can be computed in expected time O(n) and space O(n) worst case.

Application: Randomized construction of a mapping [O
(
n2

)
]→ [O(n)]

0 (α, β) is
(n

2

)
-good

1 (x 7→ β(x)⊕ aα(x), α) =: (α′, β′) is n-good
2 (x 7→ β′(x)⊕ a′α′(x), α

′) =: (α′′, β′′) is 0-good, so α′′ is perfect
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Static dictionaries: [O
(
n2)]→ [O(n)]

Lemma
Suppose that (f , g) is q-good and r ≥ 3 + log n. Then, for every v ∈ [2r ] there exists

av ∈ [2r ] such that (x 7→ g(x)⊕ af (x), f ) is q′-good where q′ =

{
0 if q ≤ n
n otherwise.

All values av can be computed in expected time O(n) and space O(n) worst case.

Proof (q′ ≤ n)
1 Let h(x) = g(x)⊕ af (x)

2 If x , y ∈ S and x 6= y and f (x) = f (y), then g(x) 6= g(y) and h(x) 6= h(y) 1

3 If f (x) 6= f (y), then P[h(x) = h(y)] = 1
2r where av ∼ U[2r ] independently for all

v ∈ [2r ] 2

4 E [| {{x , y} ⊆ S; h(x) = h(y)} |] ≤
(n

2

)
/2r < n

16
3

5 The expected number of trials to generate h with at most n collisions is O(1).
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1 Since x 7→ (f (x), g(x)) is perfect on S, g(x) 6= g(y). From
g(x)⊕ af (x) = g(x)⊕ af (y) 6= g(y)⊕ af (y) it follows that h(x) 6= h(y).

2 For every v ∈ [2r ] we randomly and independently choose av from the uniform
distribution on [2r ]. Then,

h(x) = h(y)

g(x)⊕ af (x) = g(y)⊕ af (y)

af (x) = g(x)⊕ g(y)⊕ af (y)

Since ([2r ],⊕) is an Abelian group, b 7→ b ⊕ c is a bijection on [2r ] for every
c ∈ [2r ] and so af (y) ∼ U[2r ], it follows that g(x)⊕ g(y)⊕ af (y) ∼ U[2r ]. Since af (x)

and af (y) are independent, also af (x) and g(x)⊕ g(y)⊕ af (y) are independent.
Hence, P[h(x) = h(y)] = 1

2r .
3 Use the linearity of expectation and substitute r .
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Static dictionaries: [O
(
n2)]→ [O(n)]

Lemma
Suppose that (f , g) is q-good and r ≥ 3 + log n. Then, for every v ∈ [2r ] there exists

av ∈ [2r ] such that (x 7→ g(x)⊕ af (x), f ) is q′-good where q′ =

{
0 if q ≤ n
n otherwise.

All values av can be computed in expected time O(n) and space O(n) worst case.

Proof (q ≤ n implies q′ = 0)
1 Let Sv = {x ∈ S; f (x) = v}
2 Order Sv by non-increasing size, i.e. |Sv1 | ≥ |Sv2 | ≥ . . . ≥ |Sv2r |
3 For j = 1, . . . , 2r we find avj such that h is perfect 1

4 For avj ∼ U[2r ] it holds E [|
{

(x , y) ∈ Svj × S<j ; h(x) = h(y)
}
|]

≤ |Svj ||S<j |P[h(x) = h(y)] 2

≤
∑j−1

i=1 |Svj ||Svi |/2r 3

≤
∑j−1

i=1 |S
2
vi
|/2r 4

≤
∑j−1

i=1

(Svi
2

)
/2r−2 5

≤ q/2r−2 ≤ 1
2

5 The expected number of trials to generate avj such that h has no collision is O(1).
6 7
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1 Note that we must find h without collisions. To be precise, we iteratively find avj for
j from 1 to 2r such that it holds h(x) 6= h(y) for every x ∈ Svj and y ∈ S<j where
S<j =

⋃j
i=1 Svi .

2 Linearity of expectation
3 Definition of S<j

4 |Svi | ≥ |Svj |
5 From this point, assume that |Svj | ≥ 2.
6 In order to verify that h has no collision, we use a counter

mv = | {y ∈ S<j ; h(y) = v} |. For every j we can count the collisions and update
mv in time O(|Sj |). The expected time to find all avj is

∑
j O(|Sj |) = O(n).

7 For Svj = {x} we can find v with mv = 0 and set avj = v ⊕ g(x).
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Static dictionaries: [O
(
n2)]→ [O(n)]

Derandomization

Let Lk (a) = |
{

(x , y) ∈ Svj × S<j ; (g(x)⊕ a)[k ] = (h(y))[k ]
}
| 1

(a)i denotes the i-th bit of a and (a)M denotes the vector of all bits (a)i for i ∈ M ⊆ [r ] 2

1 for j ← 1 to 2r do
2 avj ← 0
3 for k ← 0 to r − 1 do
4 if Lk+1(avj ) > Lk+1(avj + 2k ) then
5 avj ← avj + 2k

Proof (goodness of (h, f ))

Lk (a) + Lk (a⊕ 2k ) = Lk−1(a) for every a ∈ [2k ] and k ∈ [r ]

Lk (avj ) ≤
Lk−1(avj )

2 ≤
L0(avj )

2k =
|Svj ||S<j |

2k

The total number of collision is at most∑
j Lr (avj ) ≤

∑
j 2−r |Svj ||S<j | ≤

∑
i<j 2−r |Svj ||Svi | ≤ 2−r−1 (∑

i Svi

)2
< n

16

If q ≤ n, then the number of collision with Svj is

Lr (avj ) ≤
∑

i<j 2−r |Svj ||Svi | ≤
∑

i<j 22−r(Svj
2

)
≤ 22−r q ≤ 1

2

Jirka Fink Data Structures II 14

1 Where k ∈ [r ] and a ∈ [2k ]

2 Our goal is to iteratively and deterministically compute avj for j from 1 to 2r . The
value of avk is computed by bits from the least significant to the most significant
bit. Lk (a) determines the number of collision between Svj and S<j if we consider
only last k bits.
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Static dictionaries: [O
(
n2)]→ [O(n)]

Derandomization

Let Lk (a) = |
{

(x , y) ∈ Svj × S<j ; (g(x)⊕ a)[k ] = (h(y))[k ]
}
|

(a)i denotes the i-th bit of a and (a)M denotes the vector of all bits (a)i for i ∈ M ⊆ [r ]

1 for j ← 1 to 2r do
2 avj ← 0
3 for k ← 0 to r − 1 do
4 if Lk+1(avj ) > Lk+1(avj + 2k ) then
5 avj ← avj + 2k

Proof (Complexity)
In order to compute Lk (a), we build a binary tree (trie)

Every vertex a ∈ [2k ] of the k -th level has a counter
ck (a) = |

{
y ∈ S<j ; (h(y))[k ] = (a)[k ]

}
|

Lk (a) =
∑

x∈Svj
ck (g(x)⊕ a) can be computed in O

(
|Svj |

)
time

After the j-th step, counters can be updated in O
(
|Svj |r

)
time

Total time is
∑

j |Svj |r = O(n log n)
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Static dictionaries: [O
(
nk)]→ [O

(
n2)]

Approach

Every x ∈ U = [O
(
nk)] can be regarded as constant-length string over an

alphabet of size n

Build n-way branching compressed trie of string S

The number of leaves is |S| = n, so the total number of vertices is at most 2n

Build static [O
(
n2)]→ [O(n)] dictionary for pairs (vertex of the trie, letter) which

returns a child of the vertex

One polynomial-size-universe lookup is evaluated using a constant number of
quadratic-size-universe lookups

Space complexity is O(n) and this dictionary is constructed in O(n log n) time

Jirka Fink Data Structures II 16

Static dictionaries: Error-correcting code

Definition
The Hamming distance between x ∈ [2w ] and y ∈ [2w ] is the number of bits in
which x and y differ.

ψ : [2w ]→ [24w ] is an error correcting code of relative minimum distance δ > 0 if
the Hamming distance between ψ(x) and ψ(y) is at least 4wδ for every distinct
x , y ∈ [2w ].

Lemma

Let H be a 2-universal hashing system of function [2w ]→ [24w ]. For every δ with
1/4w < δ ≤ 1/2, the probability that h ∼ U(H) is an error correcting code of relative
minimum distance δ > 0 is at least 1−

(
( e
δ

)4δ/4
)w

. 1

Proof

For x ∈ [24w ] the number of y within Hamming distance k is at most ( 4ew
k )k . 2

For x 6= y , P(Hamming distance between x and y ≤ k) ≤ 21−4w ( 4ew
k )k

The probability that this happens for any of the
(2w

2

)
< 22w−1 pairs is at most(

( e
δ

)4δ/4
)w

3
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1 For δ < 1
4w it holds that 4wδ < 1 and the identity is an error correcting code of

relative minimum distance δ.
2 The number of y ∈ [24w ] within Hamming distance k ≥ 1 from a fixed x ∈ [24w ] is∑k

i=0

(4w
i

)
≤ ( 4w

k )k ∑k
i=0

(4w
i

)
( k

4w )i ≤ ( 4w
k )k (1 + k

4w )4w ≤ ( 4w
k )k ek ≤ ( 4ew

k )k using
the binomial theorem.

3 By setting k = b4wδc we obtain 22w−121−4w ( 4ew
k )k ≤ 2−2w ( 4ew

4wδ )4wδ = (2−2( e
δ

)4δ)w
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Static dictionaries: [2w ]→ [O
(
nk)]

Lemma

Let ψ : [2w ]→ [24w ] be an error correcting code of relative minimum distance δ > 0
and S ⊆ U = [2w ] of size n. There exists a set D ⊆ [4w ] with |D| ≤ 2 log n/ log 1

1−δ
such that for every pair x , y of distinct elements of S it holds (ψ(x))D 6= (ψ(y))D .

Proof

For D ⊆ [4w ] and v ∈ [2|D|] let C(D, v) = {x ∈ S; (ψ(x))D = v} 1

The set of colliding pairs of D is B(D) =
⋃

v∈[2|D|]
(C(D,v)

2

)
We construct D0 ⊆ D1 ⊆ . . . ⊆ Dk such that |Di | = i and |B(Di )| < (1− δ)in2/2 2

Let I(d) = {{x , y} ∈ B(Di ); (ψ(x))d = (ψ(y))d} be the colliding pairs
indistinguishable by d ∈ [4w ] \ Di

Let I =
∑

d∈[4w ]\Di
|I(d)|

Every pair {x , y} ∈ B(Di ) contributes to I by at most 4w − i − 4wδ < 4w(1− δ),
so I ≤ 4w(1− δ)|B(Di )|
By averaging, there exists d ∈ [4w ]\Di such that |I(d)| ≤ I

4w−i ≤ (1− δ)|B(Di )| 3

Let Di+1 = Di ∪ {d}. Hence, |B(Di+1)| = |I(d)| ≤ (1− δ)|B(Di )|

By setting k =
⌊
2 log n/ log 1

1−δ

⌋
we obtain |B(Dk )| < 1.
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1 Note that for every D ⊆ [4w ] the set S is split into 2|D| disjoint clusters C(D, v) for
v ∈ [2|D|].

2 For i = 0 it holds that D0 = ∅ and B(D0) =
(n

2

)
< n2

2 .
3 A bit d ∈ [4w ] \ Di with |I(d)| ≤ (1− δ)|B(Di )| can be found in O(wn) time as

follows. We a list of all clusters C(Di , v) of size at least two. Every cluster has a list
of all elements. So, I(d) for one d ∈ [4w ] \ Di can be determined in O(n) time and
we can process all d in O(wn) time. Then, all lists can be updated in O(n) time.
Using word-level parallelism, the time complexity can be improved to O(n).
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Word-RAM as a vector computer

Theorem (Linear compression and speed up
An algorithm running on a O(w)-word-RAM with time complexity T (n) and space
complexity S(n) can be simulated on w-word-RAM with time complexity O(T (n)) and
space complexity O(S(n)) assuming S(n) = o(2w ). 1 2

Proof
Every word of O(w)-word-RAM is replaced by O(1) words on w-word-RAM, so
the space complexity is O(T (n)).

Every instruction on O(w)-word-RAM is replaced by O(1) instruction on
w-word-RAM. 3
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1 This theorem is similar to the linear speed theorem for Turing machines.
2 The assumption S(n) = o(2w ) is needed to ensure a sufficient amount of memory

for linear data decompression.
3 Bit-wise operations and comparisons are trivial. In order to simulate arithmetical

operations, every O(w) bits word is split into w
2 bits words to handle integer

overflows and carry.
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RAM with uninitialized memory

Theorem
Every program with time complexity T (n) and space complexity S(n) which assumes
initialized memory by zeros can be simulated by a program with time complexity
O(T (n)) and space complexity S(n) which do not assume initialized memory. 1

Proof
Simulation uses the following variables:

M: An array of the original memory

N: The number of already initialized cells by the original program

I: An array of indices of all initialized cells

X: A reverse table of I, i.e. if j is initialized, then I[X [j]] = j

A read cell j is initialized if and only if X [j] < N and I[X [j]] = j .
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1 Reading initialized memory must be permitted but an arbitrary value can be read.
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Integer data structures

Goal
Create a dynamic data structure storing a set S of intergers from a universe U with is
can find the predecessor and the successor of a element x ∈ U.

Predecessor: PRED(x ∈ U) = max {y ∈ S; y < x}
Successor SUCC(x ∈ U) = min {y ∈ S; y > x}

An invalid element is returned if no such element exists.

Our knowledge
O(log n) query and update using search trees
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van Emde Boas tree [3]

Notation
For a t-bit integer x ∈ U let

r(x) be the left (upper) dt/2e bits of x and

l(x) be the left (lower) dt/2e bits of x .

For a set of elements S let

Si = {r(x) ∈ S \min S; l(x) = i} for i ∈ l(U)

P = {Si ; Si 6= ∅}

A node of van Emde Boas tree contains
Pointers to the minimum and maximum of S

An array of vEB trees for all sets Si

A primary vEB tree of elements P for finding non-empty buckets

Space complexity
Terrible: O(U), but we will improve it later.

Requires initialized memory
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van Emde Boas tree: Operation FIND(x)

Algorithm

1 Procedure FIND(x, S)
2 if S = ∅ then
3 return None

4 if x = min(S) then
5 return min(S)

6 return FIND(r(x),Sl(x))

Analysis
The height of the tree is O(log log U)

Time complexity is O(log log U)

Jirka Fink Data Structures II 24



van Emde Boas tree: Operation SUCC(x)

Algorithm

1 Procedure SUCC(x, S)
2 if S = ∅ or x ≥ max(S) then
3 return None

4 if x < min(S) then
5 return min(S)

6 i ← l(x)
7 if Si 6= ∅ and x < max(Si ) then
8 return SUCC(r(x),Si)

9 i ← SUCC(i, P)
10 return min(Si )

Analysis
The recursion is called at most once for every level of the tree

Time complexity is O(log log U)
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van Emde Boas tree: Operation INSERT(x)

Algorithm

1 Procedure INSERT(x, S)
2 if S = ∅ then
3 min(S)← max(S)← x and return

4 if x < min(S) then
5 swap(x ,min(S))

6 if x > max(S) then
7 max(S)← x

8 i ← l(x)
9 if Si = ∅ then

10 INSERT(i, P)

11 INSERT(r(x),Si)

Analysis
If Si = ∅, then INSERT(r(x),Si) only sets min(Si ) and max(Si )

A non-trivial recursion is called at most once for every level of the tree

Time complexity is O(log log U)
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van Emde Boas tree: Operation DELETE(x)

Algorithm 1

1 Procedure DELETE(x, S)
2 if S = ∅ or x = min(S) = max(S) then
3 S ← ∅ and return

4 if x = min(S) then
5 min(S)← DELETEMIN(S) and return

6 i ← l(x)
7 if x = min(Si ) = max(Si ) then
8 DELETE(i, P)

9 DELETE(r(x),Si)
10 max(S)← max(Smax(P))

11 Procedure DELETEMIN(S) 2

12 i ← min(P)
13 if min(Si ) < max(Si ) then
14 return DELETEMIN(Si)

15 Si ← ∅
16 i ← DELETEMIN(P)
17 return min(Si )
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1 Time complexity is also O(log log U)

2 Function DELETEMIN also returns the new minimal value.
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x-fast trie (Willard [4])

First step
A set S is represented using an array A such that x is stored at A[x ]

Non-empty positions of A are interconnected using a linked list

Build a binary tree T whose leaves are cells of A

Every node v of T stores the minimum and maximum of the subtree of v

Operation SUCC(x)
If A[x ] is non-empty, then return A[x ]→ next

Find the largest empty subtree v containing x and its parent p

If v is a left child of p, then return p → min

Return p → max → next

Complexity
Space: O(U)

SUCC: O(log U)

INSERT, DELETE: O(log U)
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x-fast trie: Improvements

Second step: Speed up
The largest empty subtree v containing x can be found using binary search

Time complexity of SUCCis O(log log U)

Third step: Space reduction
The number of nodes of T with non-empty subtree is at most nw

Store them in a hash table (e.g. Cuckoo)

x-fast trie
Space complexity O(nw)

SUCC: O(log log U) worst case

INSERT, DELETE: O(log U) expected amortized
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y-fast trie (Willard [4])

Structure
Split the ordered set S into Θ(n/B) blocks Si of size Θ(B) where B = log U

For every block Si choose a representative ri and let R be the set of all
representatives

Create x-fast trie for representatives R, called a primary tree

For every block Si , create a balanced search tree Ti , called block trees

Space complexity
Every elements of S is stored in one node of one block tree

Space complexity of al block trees is O(n)

Space complexity of the primary tree is O(|R|w) = O(n) since |R| = Θ(n/ log U)
and |w | = Θ(log U)
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y-fast trie: Operations FIND and SUCC

Operation FIND(x)
Find the predecessor ri and the successor rj representatives of x in the primary
tree

Element x lives in Ti or Tj , so search both block trees 1

Time complexity
Representative are found in time O(log log U)

Searching block trees takes O(log |B|) = O(log log U)

Time complexity of operation FINDis O(log log U)

Operation SUCC(x)
If x /∈ S, then FIND(x) finds both the predecessor and the successor of x

If x ∈ S, we use a linked list to find the successor

Time complexity of operation SUCCis O(log log U)
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1 If x is a representative, we search only one tree.
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y-fast trie: Operations INSERT and DELETE

Without balancing sizes of blocks
Find the proper block tree: O(log log U) time

Update the block tree: O(log B) = O(log log U) time

However, the size of blocks must be O(log B) and number of blocks must be
O(n/ log B)

Balancing sizes of blocks
If a block is too large, split it

If a block is too small, merge it with a sibling or move Ω(B) elements from a sibling

Updates blocks trees takes O(B) time

Updates the primary tree takes O(log U) time

Homework: Create rules which ensures that balancing occur once every Ω(B)
updates

Amortized cost of balancing is O(1)

Time complexity is O(log log U) expected amortized 1
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1 Remind that x-fast trie uses Cuckoo hashing
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RAM as a vector computer

Representation of a vector
Consider b-bits integers x0, . . . , xn−1

Every integers is prepended by 0 and concatenated, i.e. a vector is represented
as
∑n

i=0 xi2i(b+1)

Using linear compression theorem, it suffices to assume that nb = O(w)

Operation Read(x,i)
Returns the i-th integers from a vector x

Read(x,i) = x >> 2i(b+1)&1b

where 1b is a binary number with b ones, i.e. 2b+1 − 1

Operation Write(x,i,a)
Write a into the i-th position of x

Write(x,i,a) = (x&Mi )|(a << 2i(b+1))

where Mi = 1(b+1)(n−i−1)0b+11(b+1)i is a mask cleaning the i-th position
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RAM as a vector computer

Replicate(a)
Create n copies of a

Replicate(a) = a · (0b1)n

Sum(x)

Return the sum
∑n−1

i=0 xi

Sum(x) = x mod 2b+1 − 1

x =
∑n−1

i=0 xi2b+1 ≡
∑n−1

i=0 xi mod 2b+1 − 1

Cmp(x,y)
return z such that zi = 1 if xi ≥ yi and 0 otherwise

in the difference (1xi )− (0yi ), the first bit is 1 if and only if xi ≥ yi

Cmp(x,y) = (((x |(10b)n)− y) >> b)&(0b1)n

Min(x,y)

m = Cmp(x , y) · 1b

m filters positions of x where xi ≥ yi

Min(x,y) = (x& ∼ m)|(y&m)
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RAM as a vector computer

Rank(x,a)
The number of elements of x smaller than a

Rank(x,a) = Sum(Cmp(x,Replicate(a)))

Insert(x,a)
Insert a into a sorted vector x

i = Rank(x,a) is the possition for a in x

Filter and move xi , . . . , xn−1 to left
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RAM as a vector computer

Unpack(a)
Create a vector x such that xi equals to the i-th bit ai of a

y = Replicate(a) &(2b−1, . . . , 1), i.e. yi = 2iai

Unpack(a) = Cmp(y, (0b1)n)

Unpackπ(a) according to to a permutation π

Pack(a)
Consider that b is decreased by one and apply Sum

Since the vector is not properly formatted, modulo cannot be used

Pack(a) = ((a · (0b−11)n) >> bn)&1b
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RAM as a vector computer assuming w ≥ Ω(b2)

Weight(a)
The Hamming weight of a

Weight(a) = Sum(Unpack(a))

Permuteπ(a)
Permute bits in a according to a permutation π

Permuteπ(a) = Pack(Unpackπ(a))

LSB(a)
The least significant bit in a

LSB(a) = Weight(a⊕ (a− 1))-1

MSB(a)
MSB(a) = b-1-LSB(Permuterevers(a))
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RAM as a vector computer

MSB(a) on O(w) bits

b =
⌊√

w
⌋

Split a into l block of b bits and padding

x = (a&(01b)l )|((a&(10b)l ) >> b)

Now, padding is zero and xi = 0 if and only if i-th block is zero

y = Cmp(x,(0b1)n)

yi = 1 if if and only if i-th block is non-zero

j = MSB(Pack(y))

j is the first non-empty block

z = (a >> (b + 1)j)&1b+1

z is the content of the j-th block

MSB(a) = (b + 1)j+ MSB(z)
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Fusion trees (Fredman, Willard, 1993 [1])

Fusion node

Let k = O
(

w1/5
)

A fusion node stores keys x0, . . . , xk−1

A fusion node can find Rank, SUCC and PRED in O(1)

Construction time is Poly(k)

Fusion tree
B-tree for B = k

Nodes are Fusion nodes

The depth of the tree is O(logB(n)) = O
(

log n
log w

)
Time complexity of Rank, SUCC and PRED is O

(
log n
log w

)
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Fusion trees

Fusion node
Consider a trie on keys x0, . . . , xk−1

The number of leaves is k , so the number of splitting nodes is k − 1 1

Hence, at most k − 1 levels has a splitting node 2

Let s(x) select all splitting bits from the binary code of x 3

Observe that s(x0) < s(x1) < · · · < s(xk−1)

S = (s(x0), . . . , s(xk−1)

The number of bits of S is at most k2 = O
(

w2/5
)

so S can be stored in a single
w-word

Rank(x) can be computed using Rank(s(x),S) in O(1)

However, we need to compute s(x) in O(1)

We find a(x) of length O
(
k4) containing s(x) with extra zeros on the same

position of all x
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1 Splitting node is a node of degree 2.
2 We call them splitting levels.
3 Note that every level of a trie corresponds to one bit in the binary code. Bits

corresponding to splitting levels are called splitting bits. Since only splitting bits are
significant, s(x) select these splitting bits from x .
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Fusion trees

Lemma
For every b0 < · · · < bk−1 there exist m0 < · · · < mk−1 such that

bi + mj are pair-wise different for all i and j

b0 + m0 < · · · < bk−1 + mk−1

(bk−1 + mk−1)− (b0 + m0) = O
(
k4)

Splitting bits with extra zeros

y = x&
∑

i 2bi filters all splitting bits

z = y ·
∑

j 2mj =
∑

i

∑
j xbi 2

bi+mj

There is no carry since bi + mj are pair-wise different

a(x) = z&(
∑

i 2bi+mi ) >> (b0 + m0)
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Path queries in trees

Goals
Store a tree with weights on vertices

Query: Find the minimum on the path between given two vertices

Local update: Change the weight on a given vertex

Path update: Increase weights on all vertices on the path between given two
vertices

Cut: Split the tree by removing a given two vertices

Link: Join two trees by adding an edge between two given vertices

Evert: Change the root of a tree and the orientation of all edges on the path
between old and new vertices
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Queries in sequences

Static representation
Store a sequence of weights w1, . . . ,wn in an array

Build a balances binary search tree with leaves corresponding to the weights

Every vertex stores the minimum of all weights in its subtree

Query: Find the minimum in a given subsequence wi , . . . ,wj

Process O(log n) nodes on paths from wi and wj to the root

Time complexity is O(log n)

Local update of a given weight wi

Update the minimum in all vertices on the path from wi to the root

Time complexity is O(log n)
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Queries in sequences

Increase all weights in a subsequence wi , . . . ,wj

Lazy evaluation: Vertex can store an increment of all weight in its subtree

Invariant: The actual weight wk is the sum of the value stored in k -th leave and all
increments on the path to the root

Increment propagation: The increment stored in a vertex u can be added to
increments in children and cleared in u

All operations propagate increment on accessed vertices

Subsequence increase: Set the increase in nodes on paths from wi and wj to the
root

Time complexity is O(log n)
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Heavy-light decomposition of rooted trees

Heavy and light edges
Let s(v) be the number of vertices in the subtree of v (including v )

Let u be a vertex and v its child

The edge uv is called heavy if s(u) ≥ s(v)/2; and light otherwise

Observations
Every vertex u has at most one child v such that uv is heavy

Heavy edges form a set paths

Every vertex lies on a heavy path since trivial paths are allowed

For every vertex u the path from the root to u contains at most log n light edges
and most log n prefixes of heavy paths

Jirka Fink Data Structures II 46

Heavy-light decomposition of rooted trees

Representation
Every vertex v stores:

Its parent u and the list of its children

Heavy/light flag of the edge uv

Minimum of weights in the subtree

First vertex of the heavy path containing v

Order of v on the heavy path containing v

Every heavy path has a DS for sequences

In static version: Minimum of the prefix of heavy path to v
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Heavy-light decomposition of rooted trees

Lowest Common Ancestor (LCA)
For given two vertices u and v find the last common vertex on path from the root to u
and v

On the path from u to the root, mark all heavy paths

Find the first marked heavy path p from v to the root

Using the order of vertices on p, determine the LCA

Time complexity is O(log n)

Path query
Find the minimal weight on the path between given two vertices u and v

Find z = LCA(u,v )
The path u . . . z . . . v contains:

O(log n) light edges
O(log n) prefixes of heavy paths
At most one subpath of a heavy path

Time complexity
Static version: O(log n)
Dynamic version: O

(
log2 n

)
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Link-Cut trees (Sleator, Tarjan)

Definition
Trees are rooted

Every edges is thick or thin

Every vertex u has at most one child v such that uv is thick

Thick edges form a set paths

Every vertex lies on a thick path since trivial paths are allowed

Operations
Expose(v ): Makes the path from v to the root thick and all children of v thin

Find the parent of v and the root of v

Cut: Split the tree by removing a given two vertices

Link: Join two trees by adding an edge between two given vertices

Evert: Change the root of a tree and the orientation of all edges on the path
between old and new vertices

Find the weight of a path

Find the minimum of all weight on a path

Change the weight of vertex

Increase all weights of vertices on a path
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