Content
(4) (a, b)-tree

Jití Fink: Data Structures 1

Literature

- A. Koubková, V. Koubek: Datové struktury I. MATFYZPRESS, Praha 2011.
- T. H. Cormen, C.E. Leiserson, R. L. Rivest, C. Stein: Introduction to Algorithms. MIT Press, 2009
- K. Mehlhorn: Data Structures and Algorithms I: Sorting and Searching. Springer-Verlag, Berlin, 1984
- D. P. Mehta, S. Sahni eds.: Handbook of Data Structures and Applications. Chapman \& Hall/CRC, Computer and Information Series, 2005
- E. Demaine: Cache-Oblivious Algorithms and Data Structures. 2002.
- R. Pagh: Cuckoo Hashing for Undergraduates. Lecture note, 2006.
- M. Thorup: High Speed Hashing for Integers and Strings. lecture notes, 2014.
- M. Thorup: String hashing for linear probing (Sections 5.1-5.4). In Proc. 20th SODA, 655-664, 2009.

Heaps

- d-ary heap
- Binomial heap
- Lazy binomial heap
- Fibonacci heap
- Dijkstra's algorithm

8Cache-oblivious algorithms Hash tables

- Separate chaining
- Linear probing
- Cuckoo hashing
- Hash functions
(7) Geometry
- Range trees
- Interval trees
- Segment trees
- Priority search trees

Bibliography

Jirí Fink: Data Structures 1

General information

E-mail fink@kam.mff.cuni.cz
Homepage http://kam.mff.cuni.cz/fink/
Consultations Individual schedule

Examination

- Successfully work out four out of five homeworks
- Pass the exam

Dictionary problem

Entity

- Entity is a pair of a key and a value
- Keys are linearly ordered
- Number of entities stored in a data structure is n

Basic operations

- Insert a given entity
- Find an entity of a given key
- Delete an entity of a given key

Example of data structures

- Array

- Linked list
- Searching trees (e.g. AVL, red-black)
- Hash tables

Jifi Fink Data Stucurues 1

Binary search tree

Properties

- Entities are stored in nodes (vertices) of a rooted tree
- Each node contains a key and two sub-trees (children), the left and the right
- The key in each node must be greater than all keys stored in the left sub-tree, and smaller than all keys in right sub-tree

Example

Complexity

Space: $\mathcal{O}(n)$

- Time: Linear in the depth of the tree
- Height in the worst case: n

(a,b)-tree

Operation Find

Search from the root using keys stored in internal nodes

Jifi Fink Data Structures 1	9
(a,b)-tree: Insert	
Algorithm	
Find the proper parent v of the inserted entity Add a new leaf into v while $\operatorname{deg}(v)>b$ do \# Find parent u of node v if v is the root then Create a new root with v as its only child else $u \leftarrow$ parent of v \# Split node v into v and v^{\prime} Create a new child v^{\prime} of u immediately to the right of v Move the rightmost $\lfloor(b+1) / 2\rfloor$ children of v to v^{\prime} $v \leftarrow u$	

Jifi Fink Data Stucurus 1
(a,b)-tree: Delete

Jifi Fink \quad Data Stucurues 1

(a,b)-tree: Join

Description

Union of two (a, b)-trees T_{1} and T_{2} assuming max $\operatorname{key}\left(T_{1}\right)<\min \operatorname{key}\left(T_{2}\right)$.

Algorithm

1 if height $\left(T_{1}\right) \geq$ height $\left(T_{2}\right)$ then
$u \leftarrow$ last node of T_{1} in height height $\left(T_{1}\right)-\operatorname{height}\left(T_{2}\right)$
${ }^{3} \quad V \leftarrow \operatorname{root}$ of T_{2}
4 else
$5 \quad u \leftarrow$ last node of T_{2} in height $\operatorname{height}\left(T_{2}\right)-\operatorname{height}\left(T_{1}\right)$
${ }^{6} \quad \mathrm{~V} \leftarrow$ root of T_{1}
7 Move all children of v to u
8 if $\operatorname{deg}(u)>b$ then
$9 \quad$ Recursively split u like in the operation insert

(a,b)-tree: Insert
Insert 4 into the following (2,4)-tree

Add a new leaf into the proper parent
(4)5 6,7
4) 5 (7 8

Recursively split node if needed

(a,b)-tree: Delete
Delete 4 from the following $(2,4)$-tree

Find and delete the proper leaf

Recursively either share nodes from a sibling or fuse the parent

(a,b)-tree: Analysis

Height

- (a,b)-tree of height d has at least a^{d-1} and at most b^{d} leaves.
- Height satisfies $\log _{b} n \leq d \leq 1+\log _{a} n$.

Complexity
The time complexity of operations find, insert and delete is $\mathcal{O}(\log n)$.
(a,b)-tree: Split

Description

Given an (a,b)-tree T and a key k, split T to two (a,b)-trees T_{S} and T_{G} with keys smaller and greater than k, respectively.

Algorithm (only for T_{S})

Input: (a,b)-tree T, key x
$Q_{S} \leftarrow$ an empty stack
$t \leftarrow$ the root of T
3 while t is not a leaf do
${ }^{4} \quad v \leftarrow$ child of t according to the key x
Push all left brothers of v to Q_{S}
${ }^{6} \quad t \leftarrow \mathrm{v}$
$7 T_{S} \leftarrow$ an empty (a, b)-tree
8 while Q_{S} is non-empty do
${ }_{9} T_{S} \leftarrow \operatorname{JOIN}\left(\operatorname{POP}\left(Q_{S}\right), T_{S}\right)$

Time complexity

$\mathcal{O}(\log n)$ since complexity of JOIN is linear in the difference of heights of trees.

Operation insert
Split every node with b children on path from the root to the inserted leaf.


```
A-sort: Algorithm
```

Input: list $x_{1}, x_{2}, \ldots, x_{n}$
$1 T \leftarrow$ an empty (a, b)-tree
2 for $i \leftarrow n$ to 1 do
\# Modified operation insert of x_{i} to T
$v \leftarrow$ the leaf with the smallest key
while x_{i} is greater than the maximal key in the sub-tree of v and v is not a root do $\lfloor v \leftarrow$ parent of v
6 Insert x_{i} but start searching for the proper parent at v Output: Walk through whole (a, b)-tree T and print all leaves

Assumption

$b \geq 2 a$

Statement (without proof)

The number of balancing operations for l inserts and k deletes is $\mathcal{O}(I+k+\log n)$.

Conclusion

The amortized number of balancing operations for one insert or delete is $\mathcal{O}(1)$.

Jifi Fink Data Stuctures 1	
A-sort	
Goal	
Sort "almost sorted" list $x_{1}, x_{2}, \ldots, x_{n}$.	
Modification of (a,b)-tree	
The (a,b)-tree also stores the pointer to the most-left leaf.	
Idea: Insert $x_{i}=16$	
Insert $x_{i}=16$ to this subtree	The height of the subtree is $\Theta\left(\log f_{i}\right)$ where $f_{i}=\left\|\left\{j>i ; x_{j}<x_{i}\right\}\right\|$
Jifif Fink Dala Stuctures 1	
A-sort: Complexity	
The inequality of arithmetic and geometric means	
If a_{1}, \ldots, a_{n} are non-negative real numbers, then $\frac{\sum_{i=1}^{n} a_{i}}{n} \geq \sqrt[n]{\prod_{i=1}^{n} a_{i}}$	

Time complexity

- Denote $f_{i}=\left|\left\{j>i ; x_{j}<x_{i}\right\}\right|$
- $F=\sum_{i=1}^{n} f_{i}$ is the number of inversions
- Finding the starting vertex v for one key $x_{i}: \mathcal{O}\left(\log f_{i}\right)$
- Finding starting vertices for all keys: $\mathcal{O}(n \log (F / n))$
- Splitting nodes during all operations insert: $\mathcal{O}(n)$
- Total time complexity: $\mathcal{O}(n+n \log (F / n))$
- Worst case complexity: $\mathcal{O}(n \log n)$ since $F \leq\binom{ n}{2}$
- If $F \leq n \log n$, then the complexity is $\mathcal{O}(n \log \log n)$

Jififink Data Structures 1

```
(a,b)-tree: Applications
```


Similar data structures

$$
\text { - B-tree, B+ tree, } \mathrm{B}^{*} \text { tree }
$$

- 2-4-tree, 2-3-4-tree, etc.

Applicatins

- A-sort
- File systems e.g. Ext4, NTFS, HFS + , FAT
- Databases

Definition

- Binary search tree with elements stored in inner nodes
- Every inner node has two children - inner nodes or NIL/NULL pointers
- A node is either red or black
- Paths from the root to all leaves contain the same number of black nodes
- If a node is red, then both its children are black
- Leaves are black

Red-black tree: Properties

Equivalence to (2,4)-tree

- Recolour the root to be black
- Combine every red node with its parent

Height

Height of a red-black tree is $\Theta(\log n)$

Applications

- Associative array e.g. std::map and std::set in C++, TreeMap in Java
- The Completely Fair Scheduler in the Linux kernel
- Computational Geometry Data structures

Jififink Data Stucurues 1

Red-black tree: Insert

When balancing

- A node n and its parent p are red. Every other property is satisfied.
- The grandparent g is black.
- The uncle u is red or black.

Outline

Jififink Dala Structures 1

Red-black tree: Insert — uncle is red

Notes

- In the equivalent (2,4)-tree, node g has five children (1,2,3,4,5).
- We "split" the node g by recolouring.
- If the great-grandparent is red, the balancing continues.

Red-black tree: Insert — uncle is black

In the equivalent $(2,4)$-tree, node g has four children (1,2,3,u).
The last balancing operation has two cases.

Methods

- Aggregate analysis
- Accounting method
- Potential method

Jiti Fink Data Structures 1

Splay tree: splay a given node x

- Zig step: If the parent p of x is the root

- Zig-zig step: x and p are either both right children or are both left children

- Zig-zag step: x is a right child and p is a left child or vice versa

Since $4 a b=(a+b)^{2}-(a-b)^{2}$ and $(a-b)^{2} \geq 0$ and $a+b \leq 1$, it follows that $4 a b \leq 1$. Taking the logarithm of both sides, we derive $\log _{2} 4+\log _{2} a+\log _{2} b \leq 0$, so the lemma holds.

Jifi Fink Data Stuctures 1

Splay tree: Zig-zag step

[^0]
Description

- Binary search tree
- Elements are stored in all nodes (both internal and leaves)
- Recently accessed elements are quick to access again
- Operation splay moves a given node to the root

Lemma
If $a+b \leq 1$, then $\log _{2}(a)+\log _{2}(b) \leq-2$.

Notations

- Size $s(x)$ is the number of nodes in the sub-tree rooted at node x (including x)
- Rank $r(x)=\log _{2}(s(x))$
- Potential Φ is the sum of the ranks of all the nodes in the tree
- s^{\prime} and r^{\prime} are size and rank functions after a splay step
- $\Delta \Phi$ is the change in the potential caused by a splay step

Splay tree: Zig step

Observe

- $r^{\prime}(x)=r(p)$
- $r^{\prime}(p)<r^{\prime}(x)$
- $\Delta \Phi=\sum_{x} r^{\prime}(x)-\sum_{x} r(x)=r^{\prime}(p)-r(p)+r^{\prime}(x)-r(x) \leq r^{\prime}(x)-r(x)$

From the third point follows $\frac{s^{\prime}(p)}{s^{\prime}(x)}+\frac{s^{\prime}(g)}{s^{\prime}(x)} \leq 1$, so we use the lemma to obtain

$$
\begin{aligned}
\log _{2} \frac{s^{\prime}(p)}{s^{\prime}(x)}+\log _{2} \frac{s^{\prime}(g)}{s^{\prime}(x)} & \leq-2 \\
\log _{2} s^{\prime}(p)+\log _{2} s^{\prime}(g) & \leq 2 \log s^{\prime}(x)-2
\end{aligned}
$$

Now, we replace $\log s^{\prime}($.$) by the rank function r^{\prime}($.$) to derive the fourth point.$

Splay tree: Zig-zig step
Splay tree: Analysis

Outline

The amorized time

- The amortized cost of one zig-zig or zig-zag step:
$\operatorname{cost}+\Delta \Phi \leq 2+3\left(r^{\prime}(x)-r(x)\right)-2=3\left(r^{\prime}(x)-r(x)\right)$
- The amortized cost of one zig step:
cost $+\Delta \Phi \leq 1+3\left(r^{\prime}(x)-r(x)\right)$
- The amortized time of whole operation splay:
$\sum_{\text {steps }}($ cost $+\Delta \Phi) \leq 1+3(r($ root $)-r(x)) \leq 1+3 \log _{2} n=\mathcal{O}(\log n)$
- The amortized time for a sequence of m operations:
$\mathcal{O}(m \log n)$
- The decrease in potential from the initial state Φ_{i} to the final state Φ_{f} : $\Phi_{i}-\Phi_{f}=\mathcal{O}(n \log n)$ since $0 \leq \Phi \leq n \log _{2} n$

The actual time

The actual time for a sequence of m operations is $\mathcal{O}((n+m) \log n)$.

Properties

- Entities are stored in all nodes of a tree
- The key of every node is always smaller than or equal to keys of its children

Applications

- Priority queue
- Heapsort
- Dijkstra's algorithm (find the shortest path between given two vertices)
- Jarník's (Prim's) algorithm (find the minimal spanning tree)

Jiti Fink Data Structures 1

d-ary heap: Representation

Binary heap stored in a tree

Binary heap stored in an array
A node at index i has its parent at $\lfloor(i-1) / 2\rfloor$ and children at $2 i+1$ and $2 i+2$.

- Nodes in an i-th level
d^{i}
- Maximal number of nodes in the d-ary heap of height h : $\sum_{i=0}^{h} d^{i}=\frac{d^{h+1}-1}{d-1}$
- Minimal number of nodes in the d-ary heap of height h : $\frac{d^{h}-1}{d-1}+1$
- The number of nodes satisfies:
$\frac{d^{n}-1}{d-1}+1 \leq n \leq \frac{d^{n+1}-1}{d-1}$
$h<\log _{d}(1+(d-1) n) \leq h+1$
- The height of the d-ary heap is:
$h=\left\lceil\log _{d}(1+(d-1) n)\right\rceil-1=\left\lfloor\log _{d}(d-1) n\right\rfloor=\Theta\left(\log _{d} n\right)$
- Specially, the height of the binary heap is:
$h=\left\lfloor\log _{2} n\right\rfloor$

Nifi Fink Data Structures 1

d-ary heap: Insert and decrease key

Insert: Algorithm
Input: A new element with a key x
$1 \quad v \leftarrow$ the first empty block in the array
2 Store the new element to the block v
3 while v is not the root and the parent p of v has a key greater than x do
4
$5 \quad$ Swap elements v and p
$5 \leftarrow p$

Decrease key (of a given node)

Decrease the key and swap the element with parents when necessary (likewise in the operation insert).
Complexity
$\mathcal{O}\left(\log _{d} n\right)$

Jifi Fink Data Structures 1

d-ary heap: Building

Correctness

After processing node r, its subtree satisfies the heap property.

Jifi Fink Data Structures 1

Binomial tree

Definition

- A binomial tree B_{0} of order 0 is a single node.
- A binomial tree B_{k} of order k has a root node whose children are roots of binomial trees of orders $0,1, \ldots, k-1$.

Alternative definition

A binomial tree of order k is constructed from two binomial trees of order $k-1$ by attaching one of them as the rightmost child of the root of the other tree.

Recursions for binomial heaps

Example: Insert 5

d-ary heap: Delete min

Algorithm
1 Move the last element to the root v
2 while Some children of v has smaller key than v do
$u \leftarrow$ the child of v with the smallest key
Swap elements u and v
$v \leftarrow u$

Complexity

If d is a fix parameter: $\mathcal{O}(\log n)$
If d is a part of the input: $\mathcal{O}\left(d \log _{d} n\right)$

Jififink Data Structures 1

d-ary heap: Building

Lemma

$$
\sum_{h=0}^{\infty} \frac{h}{d^{h}}=\frac{d}{(d-1)^{2}}
$$

Complexity

- Heapify a subtree with height $h: \mathcal{O}(h)$
- The number of nodes at height h is at most $\left\lceil d^{\log _{d} n-h-1}\right\rceil=\left\lceil\frac{n}{d^{n+1}}\right\rceil$
- Total time complexity is

$$
\sum_{h=0}^{\left\lceil\log _{g} \eta\right\rceil} \frac{n}{d^{h+1}} \mathcal{O}(h)=\mathcal{O}\left(n \sum_{h=0}^{\infty} \frac{h}{d^{h}}\right)=\mathcal{O}(n)
$$

Binomial tree: Example

Binomial trees of order 0, 1, 2 and 3

Observations
A binomial tree B_{k} has
2 ${ }^{k}$ nodes,
oneight k,
o children in the root,
maximal degree k,
($\left.\begin{array}{l}k \\ d\end{array}\right)$ nodes at depth d.
Binomial heap
Binomial heap
A binomial heap is a set of binomial trees that satisfies
- Each binomial tre obeys the minimum-heap property: the key of a node is greater
than or equal to the ekey of its parent.
- There is at most one binomial tree for each order.

Example		
		$\begin{aligned} & (5) \\ & 9 \end{aligned}$

Binomial heap: Representation
Dala structures 1 .
A node in a binomial tree contains
- an element (key and value),
- a pointer to its parent,
- a pointer to its most-left child,
- a pointer to its right sibling and
- the number of children.
Binomial trees in a binomial heap
Binomial trees are stored in a linked list.
Remarks
- The child and the sibling pointers form a linked list of all children.
- Sibling pointers of all roots are used for the linked list of all trees in a binomial
heap.

Jifi Fink Data Stuctures 1
Binomial heap: Operations Join and Insert
Join
It works as an analogy to binary addition. We start from the lowest orders, and whenever we encounter two trees of the same order, we join them.

Example
\qquadBinomial tree B_{6} B_{5} B_{4} B_{3} B_{2} B_{1} B_{0} First binomial heap 0 1 1 0 1 1 0 Second binomail heap 0 1 1 0 1 0 0 Joined binomial heap 1 1 0 1 0 1

Complexity of operation Insert

Complexity is $\mathcal{O}(\log n)$ where n is the total number of nodes.

Insert

Insert is implemented as join with a new tree of order zero.

- The worst-case complexity is $\mathcal{O}(\log n)$.
- The amortized complexity is $\mathcal{O}(1)$ - likewise increasing a binary counter.

Observations

For every n there exists a set of binomial trees of pairwise different order such that the total number of nodes is n.

\section*{Relation between a binary number and a set of binomial trees
 | Binary number $n=$ | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | \downarrow | | \downarrow | \downarrow | | \downarrow | | |
| Binomial heap contains: | B_{7} | | | B_{4} | B_{3} | | B_{1} | |}

Example of a set of binomial trees on 1010_{2} nodes

Jifi Fink Data Structures 1
Binomial heap: Height and size

Observation

Binomial heap contains at most $\log _{2}(n+1)$ trees and each tree has height at most $\log _{2} n$.

Relation between a binary number and a set of binomial trees

Binary number $n=$	1	0	0	1	1	0	1	0	
	\downarrow		\downarrow	\downarrow		\downarrow			
Binomial heap contains:		B_{7}			B_{4}	B_{3}		B_{1}	

Binomial heap: Operations Decrease-key and Simple join

Decrease-key

Decrease the key and swap its element with parents when necessary (likewise in a binary heap).

Simple join

Two binomial trees B_{k-1} of order $k-1$ can be joined into B_{k} in time $\mathcal{O}(1)$.

The following values need to be set:

- the child pointer in the node u,
- the parent and the sibling pointers in the node v and
- the number of children in the node u.

Binomial heap: Operations Find-min and Delete-min

Find-min

$\mathcal{O}(1)$ if a pointer to the tree with the smallest key is stored, otherwise $\mathcal{O}(\log n)$.

Delete-min

Split the tree with the smallest key into a new heap by deleting its root and join the new heap with the rest of the original heap. The complexity is $\mathcal{O}(\log n)$.

Difference
Lazy binomial heap is a set of binomial trees, i.e. different orders of binomial trees in a
lazy binomial heap is not required.

Join and insert
Just concatenate lists of binomial trees, so the worst-case complexity is $\mathcal{O}(1)$.
Delete min
- Delete the minimal node
- Append its children to the list of heaps
- Reconstruct to the proper binomial heap

Jifif Fink Data Stuctures 1

Lazy binomial heap: Reconstruction to the proper binomial heap

Worst-case complexity

- The original number of trees is at most n.
- Every iteration of the while-loop decreases the number of trees by one.
- The while-loop is iterated at most n-times.
- Therefore, the worst-case complexity is $\mathcal{O}(n)$.
Amortized complexity
- Consider the potential function $\Phi=$ the number of trees.
- The insert takes $\mathcal{O}(1)$-time and increases the potential by 1 , so its amortized time
is $\mathcal{O}(1)$.
- One iteration of the while-loop takes $\mathcal{O}(1)$-time and decreases the potential by 1 ,
so its amortized time is zero.
- The remaining steps takes $\mathcal{O}(\log n)$-time.
- Therefore, the amortized time is $\mathcal{O}(\log n)$.

Jifi Fink Data Stucurus 1

Fibonacci heap

Description

- Fibonacci heap is a set of trees.
- Each tree obeys the minimum-heap property.
- The structure of a Fibonacci heap follows from its operations.
Representation
Node of a Fibonacci heap contains
a a element (key and value),
a pointer to its parent,
a pointer to its most-left child,
a pointer to its left and right sibling,
- the number of children and
Fibonacci heap is a linked list of trees.

Jifi Fink Data Stucutures 1
Fibonacci heap: Decrease-key

- While the lazy binomial heap contains two heaps of the same order, join them.
- Use an array indexed by the order to find heaps of the same order.

Jifi Fink \quad Data Structures 1
Fibonacci heap: Operations

Join

Concatenate lists of trees. Complexity $\mathcal{O}(1)$.

Insert
 Append a single node tree to the list of trees. Complexity $\mathcal{O}(1)$.

Flag

- Every node except roots can lose at most one child.
- When a node u losses a child, the flag in u is set.
- When u losses a second child, u is severed from its parent and whole subtree is inserted to the list of trees.
- This separation may lead to a cascading cut.
- Every root is unmarked.

Fibonacci heap: Decrease-key

Algorithm

Input: A node u and new key k
1 Decrease key of the node u
${ }_{2}$ if u is a root or the parent of u has key at most k then
3 return \# The minimal heap property is satisfied
${ }_{4} p \leftarrow$ the parent of u
5 Unmark the flag in u
6 Remove u from its parent p and append u to the list of heaps
7 while p is not a root and the flag in p is set do
8 $u \leftarrow p$
$9 \quad p \leftarrow$ the parent of u
10 Unmark the flag in u
11 Remove u from its parent p and append u to the list of heaps
12 if p is not a root then
${ }^{13}\lfloor$ Set the flag in p

Idea from lazy binomial heaps

- Binomial heap joins two binomial trees of the same order.
- In Fibonacci heap, the order of a tree is the number of children of its root.

Algorithm

Input: A node u to be deleted

1 Delete the node u and append its children to the list of trees
\# Reconstruction likewise in lazy binomial heap
2 Initialize an array of pointers of a sufficient size
3 for each tree t in the Fibonacci heap do
$c \leftarrow$ the number of children of the root of t
while array[c] is not NIL do
$t \leftarrow$ the join of t and array[c]
$\operatorname{array}[c] \leftarrow \mathrm{NIL}$
$c \leftarrow c+1$
array $[c] \leftarrow t$
10 Create a Fibonacci heap from the array
Fibonacci heap: Structure
Invariant
For every node u and its i-th child v holds that v has at least

- $i-2$ children if v is marked and
- $i-1$ children if v is not marked.
Size of a subtree 1
Let s_{k} be the minimal number of nodes in a subtree of a node with k children.
Observe that $s_{k} \geq s_{k-2}+s_{k-3}+s_{k-4}+\cdots+s_{2}+s_{1}+s_{0}+s_{0}+1$.
Example
$\underbrace{}_{\text {Jifi Fink }}$ Data Structures 1_{72}^{7}

Fibonacci heap: Complexity
Worst-case complexity

- Operation Insert: $\mathcal{O}(1)$
- Operation Decrease-key: $\mathcal{O}(\log n)$
- Operation Delete-min: $\mathcal{O}(n)$

Amortized complexity: Potential
 $\Phi=t+2 m$ where t is the number of trees and m is the number of marked nodes

Amortized complexity: Insert

- cost: $\mathcal{O}(1)$
- $\Delta \Phi=1$
- Amortized complexity: $\mathcal{O}(1)$

Fibonacci heap: Amortized complexity of Delete-min

Delete root and append its children

- Cost: $\mathcal{O}(\log n)$

- $\Delta \Phi \leq \mathcal{O}(\log n)$
- Amortized complexity: $\mathcal{O}(\log n)$

Single iteration of the while-loop (join)

- Cost: $\mathcal{O}(1)$
- $\Delta \Phi=-1$
- Amortized complexity: Zero

Remaining parts

- Cost: $\mathcal{O}(\log n)$
- $\Delta \Phi=0$
- Amortized complexity: $\mathcal{O}(\log n)$

Total amortized complexity $\mathcal{O}(\log n)$

Complexity table

	Binary	Binomial		Lazy binomial		Fibonacci	
	worst	worst	amort	worst	amort	worst	amort
Insert	$\log n$	$\log n$	1	1	1	1	1
Decrease-key	$\log n$	1					
Delete-min	$\log n$	$\log n$	$\log n$	n	$\log n$	n	$\log n$

Jifi Fink Data Structures 1

Number of operations					
Dijkstra's algorithm may call - operation Insert for every vertex, - operation Delete-min for every vertex and - operation Decrease-key for every edge. We assume that $m \geq n$ where $n=\|V\|$ and $m=\|E\|$.					
Complexity table					
	Array	Binary	Binomial	Fibonacci	k-ary
Insert	1	$\log n$	1	1	$\log _{k} n$
Delete-min	n	$\log n$	$\log n$	$\log n$	$k \log _{k} n$
Decrease-key	1	$\log n$	$\log n$	1	$\log _{k} n$
Dijkstra's	n^{2}	$m \log n$	$m \log n$	$m+n \log n$	$m \log _{m / n} n$
Linear-time complexity					
- When $m / n=\Theta(m)$ using an array. - When $m / n=\Omega\left(n^{\epsilon}\right)$ using a k-ary heap. - When $m / n=\Omega(\log n)$ using a Fibonacci heap.					

Outline

5 Cache-oblivious algorithms

Problem
Given a graph $G=(V, E)$ with non-negative weight on edges ω and a starting vertex s, find the shortest paths from s to all vertices.

```
Algorithm
Create an empty priority queue Q for vertices of }
2 for v}\leftarrowV\mathrm{ do
distance[v]}\leftarrow0\mathrm{ if v}=s\mathrm{ else }
    Insert v}\mathrm{ with the key distance[v] into Q
while Q is non-empty do
    Extract the vertex }u\mathrm{ with the smallest key (distance) from Q
    for v}\leftarrow\mathrm{ neighbour of }u\mathrm{ do
        if distance[v]> distance[u]+\omega(u,v) then
            distance[v] \leftarrow distance[u] +\omega(u,v)
            Decrease the key of vin Q
```

- The complexity for k-ary heap is $\mathcal{O}\left(n k \log _{k} n+m \log _{k} n\right)$. Both terms are equal for $k=m / n$.
The term $\log _{m / n} n$ is $\mathcal{O}(1)$ if $m \geq n^{1+\epsilon}$ for some $\epsilon>0$.
- Using a Fibonacci heap is inefficient in practice.
- Monotonic heaps (e.g. Thorup heap) have Delete-min in time $\mathcal{O}(\log \log n)$, so Dijkstra's algorithm runs in $\mathcal{O}(m+\log \log n)$.
- More details are presented in the course "Graph Algorithms" by Martin Mareš.

Jififink			Dala Structures 1	79
Techniques for memory hierarchy				
Example of sizes and speeds of different types of memory				
		size	speed	
	L1 cache	32 KB	$223 \mathrm{~GB} / \mathrm{s}$	
	L2 cache	256 KB	$96 \mathrm{~GB} / \mathrm{s}$	
	L3 cache	8 MB	$62 \mathrm{~GB} / \mathrm{s}$	
	RAM	32 GB	$23 \mathrm{~GB} / \mathrm{s}$	
	HDD 1	112 GB	$56 \mathrm{MB} / \mathrm{s}$	
	HDD 2	2 TB	$14 \mathrm{MB} / \mathrm{s}$	
	Internet	∞	$10 \mathrm{MB} / \mathrm{s}$	
A trivial program				
$\begin{aligned} & 1 \text { for }(i=0 ; i+d<n ; i+=d) \text { dc } \\ & 2\lfloor A[i]=i+d \\ & 2 A[i]=0 \\ & \text { a for }\left(j=0 ; j<2^{28} ; j++\right) \text { do } \\ & 5\lfloor A=A[i] \end{aligned}$				

Memory models
(1) For simplicity, consider only two types of memory called a disk and a cache.
(2) Memory is split into pages of size B. (1)
(0) The size of the cache is M, so it can store $P=\frac{M}{B}$ pages.

- CPU can access data only in cache.
(The number of page transfers between disk and cache in counted. (2)
($)$ For simplicity, the size of one element is unitary. (3)

External memory model

Algorithms explicitly issues read and write requests to the disks, and explicitly manages the cache.

Cache-oblivious model

Design external-memory algorithms without knowing M and B. Hence,

- a cache oblivious algorithm works well between any two adjacent levels of the memory hierarchy,
- no parameter tuning is necessary which makes programs portable,
- algorithms in the cache-oblivious model cannot explicitly manage the cache. Cache is assumed to be fully associative.
- Also called a block or a line.
(2) For simplicity, we consider only loading pages from disk to cache, which is also called page faults.
(0) Therefore, B and M are the maximal number of elements in a page and cache, respectively.

Cache-oblivious analysis: Scanning

Scanning

Traverse all elements in an array, e.g. to compute sum or maximum.

- The optimal number of page transfers is $\lceil n / B\rceil$.
- The number of page transfers is at most $\lceil n / B\rceil+1$.

Array reversal

Assuming $P \geq 2$, the number of page transfers is the same. (1)

Binary search

- $\Theta(\log n)$ elements are compared with a given key.
- Last $\Theta(\log B)$ nodes are stored in at most two pages.
- Remaining nodes are stored in pair-wise different pages.
- $\Theta(\log n-\log B)$ pages are transfered.

Cache-oblivious analysis: Cache-aware search

Search in a balanced binary search tree
Height of a tree is $\Theta(\log n)$, so $\Theta(\log n)$ pages are transfered. (1)

Cache-aware algorithm

Cache-aware algorithms use exact values of sizes of a page and cache.

Search in an (a,b)-tree and cache-aware binary tree

- Choose a and b so that the size of one node of an (a, b)-tree is exactly B.
- Height of the (a, b)-tree is at most $\log _{a} n+\mathcal{O}(1)$.
- Search from the root to a leaf requires only $\Theta\left(\log _{B} n\right)$ page transfers. (2)
- Replace every node of the (a, b)-tree by a binary subtree stored in one memory page. (3)
- A search in this binary tree requires also $\Theta\left(\log _{B} n\right)$ page transfers. (4)
- However, we would prefer to be independent on B.
(1) When nodes are allocated independently, nodes on a path from the root to a leaf can be stored in different pages.
(2) The height would be between $\log _{b} n$ and $1+\log _{a} n$ and these bounds would be equal to $\Theta\left(\log _{B} n\right)$.
- Assuming whole subtree also fits into a single memory page.
(- This is also the best possible (the proof requires Information theory).
Cache-oblivious analysis: The van Emde Boas layout
Recursive description
- Van Emde Boas layout of order 0 is a single node.
- The layout of order k has one "top" copy of the layout of order k - 1 and every leaf
of the "top" copy has attached roots of two "bottom" copies of the layout of order
$k-1$ as its children.
All nodes of the tree are stored in an array so that the "top" copy is the first followed by
all "bottom" copies.
The order of nodes in the array
- What is the number of subtrees?
- What is the number of nodes in each subtree?
- Is there a simple formula to determine indices of the parent and children for a given index of an element in this array?
- Find algorithm which returns indices of the parent and children for a given index of an element. Is there a faster algorithm than $\mathcal{O}(\log \log n)$?
- Find algorithm which for a given node u write all nodes of the path from u to the root in time linear in the length of the path.

Cache-oblivious analysis: Cache-aware representation a1 a a2]

Cache-oblivious analysis: The van Emde Boas layout

Number of page transfers

- Let $h=\log _{2} n$ be the height of the tree.
- Let z be the maximal height of a subtree in the recursion that fits into one page.
- Observe: $z \leq \log _{2} B \leq 2 z$.
- The number of subtrees of height z on the path from the root to a leaf is
$\frac{h}{2} \leq \frac{2 \log _{2} n}{\log _{2} B}=2 \log _{B} n$
- Hence, the number of page transfers is $\mathcal{O}\left(\log _{B} n\right)$.

Cache-oblivious analysis: The van Emde Boas layout: Initialization

Initialize of an array A to form the van Emde Boas layout (1)

1 Function Init (A, n, root_parent) (2)
$\mathrm{L} \leftarrow$ empty

if $n==1$ then

A [0]. parent \leftarrow root_parent
A[0].children[0], A[0].children[1] $\leftarrow \mathrm{NULL}$
else
$\mathrm{k} \leftarrow \min _{z}$ such that $2^{2^{z}}>n$ (3)
$\mathrm{s} \leftarrow 2^{2^{k-1}}-1$ (4)
$\mathrm{P} \leftarrow$ Init (A, s, root_parent) (5)
$\mathrm{C} \leftarrow \mathrm{A}+\mathrm{s}$ (6)
$\mathrm{i} \leftarrow 0$ (7)
while $C<A+n$ do
L.append(Init ($C, \min \{s, A+n-C\}, P+\lfloor i / 2\rfloor)$) (8)
$\mathrm{P}[i / 2 \mathrm{2}]$].children[i $\bmod 2] \leftarrow \mathrm{C}$
$\mathrm{C} \leftarrow \mathrm{C}+\mathrm{s}$ (9)
$\mathrm{i} \leftarrow \mathrm{i}+1$
return L

Jifi Fink Data Stuctures 1

(1) Every element of the array contains pointers to its parent and children.
(2) n is the size of array to be initialized Returns a list of all leaves
(0) The minimal number of subdivision of the binary tree on n nodes to reach trivial subtrees
(-) Number of nodes in every subtree after one subdivision
(0) Initialize the top subtree. Leaves of the top subtree are roots of bottom subtrees.

- The root of the first bottom subtree
(1) Index of bottom subtrees
- Initialize the i-th bottom subtree
- Move to the next subtree

Optimal page replacement

(1) Transposing the first row requires at least k transfers.
(2) Then, at most P elements of the second column is cached.
(3) Therefore, transposing the second row requires at least $k-P-1$ transfers.

Transposing the i-th row requires at least $\max \{0, k-P-i\}$ transfers.
The total number of transfers is at least $\sum_{i=1}^{k-P} i=\Omega\left((k-P)^{2}\right)$.

LRU or FIFO page replacement

All the column values are evicted from the cache before they can be reused, so $\Omega\left(k^{2}\right)$ pages are transfered.

How this matrix transposition can be implemented without recursion nor stack?

Idea

Recursively split the matrix into sub-matrices:

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right) \quad A^{T}=\left(\begin{array}{ll}
A_{11}^{T} & A_{21}^{T} \\
A_{12}^{T} & A_{22}^{T}
\end{array}\right)
$$

Number of page transfers

(1) Tall cache assumption: $M \geq B^{2}$
(2) Let z be the maximal size of a sub-matrix in the recursion that fit into cache.
(0) Observe: $z \leq B \leq 2 z$
(- There are $(k / z)^{2}$ sub-matrices of size z.

- Transposition two such sub-matrices requires $\mathcal{O}(z)$ transfers.
(0) The number of transfers is $\mathcal{O}\left(k^{2} / B\right)$.
(This approach is optimal up-to a constant factor.

Juifink	Data Structures 1
Cache-oblivious analysis: Comparison of LRU and OPT strategies	
Theorem (Sleator, Tarjan, 1985)	
- Let s_{1}, \ldots, s_{k} be a sequence of pages accessed by an algorithm. - Let $n_{\text {OPT }}$ and $n_{\text {LRU }}$ be the number of pages in cache for OPT and LRU, resp. - Let $F_{\text {OPT }}$ and $F_{\text {LRU }}$ be the number of page faults during the algorithm. Then, $F_{\text {LRU }} \leq \frac{n_{\text {RU }}}{n_{\text {LRU }}-n_{\text {OPT }}} F_{\text {OPT }}+n_{\text {OPT }}$.	
Corollary	
If LRU can use twice as many cache pages as OPT, then LRU transports at most twice many pages than OPT does.	
The asymptotic number of page faults for some algorithms	
In most cache-oblivious algorithms, doubli asymptotic number of page faults, e.g. - Scanning: $\mathcal{O}(n / B)$ - Mergesort: $\mathcal{O}\left(\frac{n}{B} \log \frac{n}{M}\right)$ - Funnelsort: $\mathcal{O}\left(\frac{n}{B} \log _{P} \frac{n}{B}\right)$ - The van Emde Boas layout: $\mathcal{O}\left(\log _{B} n\right)$	halving cac

Jiri Fink Data Structures 1
Cache-oblivious analysis: Other algorithms and data structures

- Funnelsort

- Long integer multiplication
- Matrix multiplication
- Fast Fourier transform
- Dynamic B-trees
- Priority queues
- kd-tree

Cache-oblivious analysis: Comparison of LRU and OPT strategies

Theorem (Sleator, Tarjan, 1985)

(1) Let s_{1}, \ldots, s_{k} be a sequence of pages accessed by an algorithm.
(2) Let $n_{\text {OPT }}$ and $n_{\text {LRU }}$ be the number of pages in cache for OPT and LRU, resp.
(3) Let $F_{\text {OPT }}$ and $F_{\text {LRU }}$ be the number of page faults during the algorithm.

Then, $F_{\text {LRU }} \leq \frac{n_{\text {RU }}}{n_{\text {LRU }}-n_{\text {OPT }}} F_{\text {OPT }}+n_{\text {OPT }}$.

Proof

(1) A subsequence of s, which LRU faults the same page twice, contains at least $n_{\text {LRU }}+1$ different pages.
(3) If LRU faults $f \leq n_{\text {LRU }}$ pages during a subsequence of s, then the subsequence accesses at least f different pages and OPT faults at least f - $n_{\text {OPT }}$ pages during the subsequence.
(0) Split the sequence of s into subsequences such that LRU has exactly $n_{\text {LRU }}$ page faults during each subsequence (except one).

- OPT has at least $n_{\text {LRU }}$ - $n_{\text {OPT }}$ faults during each subsequence (except one).
- The additive term " $+n_{\text {OPT" }}$ in the theorem is necessary for the exceptional subsequence in which LRU may have less than $n_{\text {LRU }}$ page faults.

Outline

(a) (a,b)-tree
(2) Red-black tree
(3) Splay tree
(4) Heaps
©

6 Hash tables

- Separate chaining
- Linear probing
- Cuckoo hashing
- Hash functions

Hash tables
Hash tables

Basic issues

- Find a good hash function
- Handle collisions

Simple hash function

$h(x)=x \bmod m$

+ Fast to compute
$+h^{-1}(j)$ have almost the same size for all $j \in M$
+ Works well only if the input is random
- The adversary subset is easily determined (DOS attack)

Cryptographic hash function, e.g. MD5, SHA-1

+ Hard to deliberately find a collision
- Slow and complex

Totally random hash function (assumed in analysis of hash tables)
Values $h(x)$ for $x \in S$ are assumed to be independent random variables with the uniform distribution on M.

Hash tables: Separate chaining: Example

Using illustrative hash function $h(x)=x \bmod 11$
$\qquad$$0,22,55$ 2 14,80 5,27 17 8,30 21

(1) 37% buckets are empty for $\alpha=1$
(2) Successful search: The total number of comparison to find all elements in the table is computed by summing over all buckets the number of comparisons to find all elements in a bucket, that is $\sum_{j} \sum_{k=1}^{A_{j}} k=\sum_{j} \frac{A_{j}\left(A_{j}+1\right)}{2}$. Hence, the expected number of comparisons is
$\frac{1}{n} \sum_{j} \frac{A_{j}\left(A_{j}+1\right)}{2}=\frac{1}{2}+\frac{m}{2 n} \frac{\sum_{j} A_{j}^{2}}{m}=\frac{1}{2}+\frac{1}{2 \alpha} E\left[A_{j}^{2}\right]=1+\frac{\alpha}{2}-\frac{1}{2 m}$.
Unsuccessful search: Assuming that uniformly distributed random bucket is search, the number of comparisons is $E\left[A_{j}\right]=\alpha$.

Basic observations

(1) $E\left[A_{j}\right]=\alpha$
(2) $E\left[A_{j}^{2}\right]=\alpha(1+\alpha-1 / m)$
($\operatorname{Var}\left(A_{j}\right)=\alpha(1-1 / m)$
($\lim _{n \rightarrow \infty} P\left[A_{j}=0\right]=e^{-\alpha}$ (1)

Number of comparisons in operation Find

The expected number of key comparisons is α for the unsuccessful search and $1+\frac{\alpha}{2}-\frac{1}{2 m}$ for the successful search. Hence, the average complexity of Find is $\mathcal{O}(1+\alpha)$. (2)

Hash tables: Separate chaining: Analysis

Definition

An event E_{n} whose probability depends on a number n occurs with high probability if there exists a constant $c>0$ and an integer n_{0} such that $P\left[E_{n}\right] \geq 1-\frac{1}{n^{c}}$ for every $n \geq n_{0}$.

Chernoff Bound

Suppose X_{1}, \ldots, X_{n} are independent random variables taking values in $\{0,1\}$. Let X denote their sum and let $\mu=E[X]$ denote the sum's expected value. Then for any $c>1$ holds

$$
P[X>c \mu]<\frac{e^{(c-1) \mu}}{c^{c \mu}} .
$$

Upper bound on the longest chain

Assuming $\alpha=\Theta(1)$, every bucket has $\mathcal{O}\left(\frac{\log n}{\log \log n}\right)$ elements with high probability.

Expected length of the longest chain (without a proof)

Assuming $\alpha=\Theta(1)$, the expected length of the longest chain is $\Theta\left(\frac{\log n}{\log \log n}\right)$ elements.

Let $\epsilon>0$ and $c=(1+\epsilon) \frac{\log n}{\mu \log \log n}$. We have to estimate $P\left[\max _{j} A_{j}>c \mu\right]$. Observe that $P\left[\max _{j} A_{j}>c \mu\right] \leq \sum_{j} P\left[A_{j}>c \mu\right]=m P\left[A_{1}>c \mu\right]$. We apply Chernoff bound on variables $I_{1 i}$ to obtain
$P\left[A_{1}>c \mu\right]<e^{-\mu} e^{c \mu-c \mu \log c}$
$=e^{-\mu} e^{(1+\epsilon) \frac{\log n}{\log \log n}-(1+\epsilon) \frac{\log n}{\log \log n} \log \left(\frac{(1+c) \log n}{\mu \log \log n}\right)}$
$=e^{-\mu} e^{(1+\epsilon) \frac{\log n}{\log \log n}-(1+\epsilon) \log n+(1+\epsilon) \frac{\log n}{\log \log n} \log \left(\frac{\mu}{1+\epsilon} \log \log n\right)}$
$=\frac{1}{n^{1+\frac{\epsilon}{2}}} e^{-\mu} n^{-\frac{\epsilon}{2}+(1+\epsilon) \frac{1}{\log \log n}+(1+\epsilon)} \frac{\log \left(\frac{\mu}{1+\epsilon} \log \log n\right)}{\log \log n}$
$<\frac{1}{n^{1+\frac{\epsilon}{2}}}$
Indeed, both $\frac{1}{\log \log n}$ and $\frac{\log \left(\frac{\mu}{1+\log \log n)}\right.}{\log \log n}$ converge to zero, so for sufficiently large n the power of n is negative. Hence, $P\left[\max _{j} A_{j} \leq(1+\epsilon) \frac{\log n}{\log \log n}\right]>1-\frac{\alpha}{n^{\frac{\varepsilon}{2}}}$.

Hash tables: Separate chaining: Example
Hash tables: Separate chaining: Analysis
The worst case search time for one element
The expected time for operations Find in the worst case is $\mathcal{O}\left(\frac{\log n}{\log \log n}\right)$.

Goal

Amortized complexity of searching is $\mathcal{O}(1)$ with high probability.
Probability of k comparisons for searching one element
$\lim _{n \rightarrow \infty} P\left[A_{j}=k\right]=\frac{\alpha^{k}}{\text { k!ea }}$ (1)
Lemma: Number of elements in $\Theta(\log n)$ buckets
Assuming $\alpha=\Theta(1)$ and given $d \log n$ buckets T where $d>0$, the number of elements in T is at most ead $\log n$ with high probability. (2)

Amortized complexity for searching $\Omega(\log n)$ elements (Pätraşcu [7])
Assuming $\alpha=\Theta(1)$ and a cache of size $\Theta(\log n)$, the amortized complexity for searching $\Omega(\log n)$ elements is $\mathcal{O}(1)$ with high probability. (3) (4)

Hash tables: Separate chaining: Multiple-choice hashing

2-choice hashing

Element x can be stored in buckets $h_{1}(x)$ or $h_{2}(x)$ and Insert chooses the one with smaller number of elements where h_{1} and h_{2} are two hash functions.

2-choice hashing: Longest chain (without a proof)

The expected length of the longest chain is $\mathcal{O}(\log \log n)$.

d-choice hashing

Element x can be stored in buckets $h_{1}(x), \ldots, h_{d}(x)$ and Insert chooses the one with smallest number of elements where h_{1}, \ldots, h_{d} are d hash functions.

d-choice hashing: Longest chain (without a proof)

The expected length of the longest chain is $\frac{\log \log n}{\log d}+\mathcal{O}(1)$.

Jifi Fink Data Structures 1
Hash tables: Linear probing: Analysis

Complexity of Insert and unsuccessful Find

For every $\alpha<1$, the expected number of key comparisons in operations Insert and unsuccessful Find is $\mathcal{O}(1)$.

Chernoff Bound

Suppose X_{1}, \ldots, X_{n} are independent random variables taking values in $\{0,1\}$. Let X denote their sum and let $\mu=E[X]$ denote the sum's expected value. Then for any $c>1$ holds

$$
P[X>c \mu]<\frac{e^{(c-1) \mu}}{c^{c \mu}} .
$$

Better estimates (Knuth [4]) (without a proof)

The expected number of key comparisons is at most $\frac{1}{2}\left(1+\frac{1}{1-\alpha}\right)$ in a successful search $\frac{1}{2}\left(1+\frac{1}{(1-\alpha)^{2}}\right)$ in a unsuccessful search and insert.

Hash tables: Other methods

Quadratic probing

Insert a new element x into the empty bucket $h(x)+a i+b i^{2} \bmod m$ with minimal $i \geq 0$ where a, b are fix constants.

Double hashing

Insert a new element x into the empty bucket $h_{1}(x)+i h_{2}(x) \bmod m$ with minimal $i \geq 0$ where h_{1} and h_{2} are two hash functions.

Brent's variation for operation Insert

If the bucke

- $b=h_{1}(x)+i h_{2}(x) \bmod m$ is occupied by an element y and
- $b+h_{2}(x) \bmod m$ is also occupied but
- $c=b+h_{2}(y) \bmod m$ is empty,
then move element y to c and insert x to b. This reduces the average search time.

Insert an element x into a hash table T

pos $\leftarrow h_{1}(x)$

2 for n times do
${ }_{3}$ if T[pos] is empty then
T [pos] $\leftarrow x$
return
$\operatorname{swap}(x, \mathrm{~T}[\mathrm{pos}])$
if pos $==h_{1}(x)$ then
| $\mathrm{pos} \leftarrow h_{2}(x)$
else
$\left\lfloor\operatorname{pos} \leftarrow h_{1}(x)\right.$
rehash()
12 insert(x)

Rehashing

- Choose new hash functions h_{1} and h_{2}
- Increase the size of the table if necessary
- Insert all elements to the new table

Proof of the lemma by induction on k :
$k=1$ For one element, the probability that it forms an edge $i j$ is $\frac{2}{m^{2}}$. So, the probability that there is an edge $i j$ is at most $\frac{2 n}{m^{2}} \leq \frac{1}{m c}$.
$k>1$ There exists a path between i and j of length k if there exists a path from i to u of length $k-1$ and an edge $u j$. For one position u, the i - u path exists with probability $\frac{1}{m c^{k-1}}$. The conditional probability that there exists the edge $u j$ if there exists $i-u$ path is at most $\frac{1}{m c}$ because some elements are used for the $i-u$ path. By summing over all positions u, the probability that there exists $i-j$ path is at most
$m \frac{1}{m c^{k-1}} \frac{1}{m c}=\frac{1}{m c^{k}}$.
Insert without rehashing:

- Using the previous lemma for all length k and all end vertices j, the expected length of the path during operation Insert is $m \sum_{k=1}^{n} k \frac{1}{m c^{k}} \leq \sum_{k=1}^{\infty} \frac{k}{c^{k}}=\frac{c}{(c-1)^{2}}$ Number of rehashes:
- Using the previous lemma for all length k and all vertices $i=j$, the probability that the graph contains a cycle is at most $m \sum_{k=1}^{\infty} \frac{1}{m c^{k}}=\frac{1}{c-1}$.
- The probability that inserting rehashes z times is at most $\frac{1}{(c-1)^{2}}$.
- The expected number of rehashes is at most $\sum_{z=0}^{\infty} z \frac{1}{(c-1)^{2}}=\frac{c-1}{(c-2)^{2}}$.

Number of rehashes

Let $c>2$ and $m \geq 2 c n$. The expected number of rehashes is $\mathcal{O}(1)$.

Hash tables: Cuckoo hashing: Analysis
Complexity operation Insert without rehashing
Let $c>1$ and $m \geq 2 c n$. The expected length of the path is $\mathcal{O}(1)$.

Amortized complexity of rehashing

Let $c>2$ and $m \geq 2 c n$. The expected number of rehashes is $\mathcal{O}(1)$.
Therefore, operation Insert has the expected amortized complexity $\mathcal{O}(1)$.

The estimation in the proof is not optimal

- The probability that the cuckoo graph has a cycle is overestimated.
- Rehashing is not necessary if the cuckoo graph has a cycle.

In fact, the expected number of rehashes is $\mathcal{O}(1)$ even for $c>1$.

Summary

Find and Delete: $\mathcal{O}(1)$ worst case complexity
Insert: $\mathcal{O}(1)$ expected amortized complexity for $\alpha<0.5$

Hash tables: Universal hashing

Universal hashing

A set \mathcal{H} of hash functions is universal if randomly chosen $h \in \mathcal{H}$ satisfies $P\left[h\left(x_{1}\right)=h\left(x_{2}\right)\right] \leq \frac{1}{m}$ for every $x_{1} \neq x_{2}$ elements of U.

2-universal hashing

A set \mathcal{H} of hash functions is 2-universal if randomly chosen $h \in \mathcal{H}$ satisfies $P\left[h\left(x_{1}\right)=z_{1}\right.$ and $\left.h\left(x_{2}\right)=z_{2}\right] \leq \frac{1}{m^{2}}$ for every $x_{1} \neq x_{2}$ elements of U and $z_{1}, z_{2} \in M$.

k-universal hashing (also call k-wise independent)

A set \mathcal{H} of hash functions is k-universal if randomly chosen $h \in \mathcal{H}$ satisfies $P\left[h\left(x_{i}\right)=z_{i}\right.$ for every $\left.i=1, \ldots, k\right] \leq \frac{1}{m^{k}}$ for every pair-wise different elements $x_{1}, \ldots, x_{k} \in U$ and $z_{1}, \ldots, z_{k} \in M$.

Relations

- If a function is k-universal, then it is also $k-1$ universal. (1)
- If a function is 2 -universal, then it is also universal. (2)
- 1-universal function may not be universal. (3)

Hash tables: Universal hashing: Multiply-mod-prime
(1) Subtracting these equations, we get $a\left(x_{1}-x_{2}\right) \equiv y_{1}-y_{2} \bmod p$. Hence, for given pair $\left(y_{1}, y_{2}\right)$ there exists exactly one $a=\left(y_{1}-y_{2}\right)\left(x_{1}-x_{2}\right)^{-1}$ in the field $\operatorname{GF}(p)$. Similarly, there exists exactly one $b=y_{1}-a x_{1}$ in the field $\operatorname{GF}(p)$.
(3) Indeed, $y_{1}=y_{2}$ if and only if $a=0$.
(3) For $x_{1} \neq x_{2}$ we have a collision $h_{a, b}\left(x_{1}\right)=h_{a, b}\left(x_{2}\right)$ iff $y_{1} \equiv y_{2}(\bmod m)$. Note that $y_{1} \neq y_{2}$. For given y_{1} there are at most $\left\lceil\frac{p}{m}\right\rceil-1$ values y_{2} such that $y_{1} \equiv y_{2}$ $(\bmod m)$ and $y_{1} \neq y_{2}$. So, the total number of colliding pairs from
$\left\{\left(y_{1}, y_{2}\right) \in[p]^{2} ; y_{1} \neq y_{2}\right\}$ is at most $p\left(\left\lceil\frac{p}{m}\right\rceil-1\right) \leq p\left(\frac{p+m-1}{m}-1\right) \leq \frac{p(p-1)}{m}$. The bijection implies that there are at most $\frac{p(p-1)}{m}$ pairs from $\left\{(a, b) \in[p]^{2} ; a \neq 0\right\}$ causing a collision $h_{a, b}\left(x_{1}\right)=h_{a, b}\left(x_{2}\right)$. Hence, $P\left[h_{a, b}\left(x_{1}\right)=h_{a, b}\left(x_{2}\right)\right] \leq \frac{p(p-1)}{m|\mathcal{H}|} \leq \frac{1}{m}$.
For every prime p, let $[p]=\{0, \ldots, p-1\}$. For every different $x_{1}, x_{2} \in[p]$, equations

$$
y_{1}=a x_{1}+b \bmod p
$$

$$
y_{2}=a x_{2}+b \bmod p
$$

define a bijection between $(a, b) \in[p]^{2}$ and $\left(y_{1}, y_{2}\right) \in[p]^{2}$. (1)
Furthermore, these equations define a bijection between $\left\{(a, b) \in[p]^{2} ; a \neq 0\right\}$ and $\left\{\left(y_{1}, y_{2}\right) \in[p]^{2} ; y_{1} \neq y_{2}\right\}$. (2)

Universality
The multiply-mod-prime set of functions \mathcal{H} is universal. (3)

Jifi Fink Data Stuctures 1
Hash tables: Universal hashing: Multiply-mod-prime

Definition

- p is a prime greater than u
- $h_{a, b}(x)=(a x+b \bmod p) \bmod m$
- $\mathcal{H}=\left\{h_{a, b} ; a \in\{0, \ldots, p-1\}, b \in\{0, \ldots, p-1\}\right\}$

Lemma

For every prime p, let $[p]=\{0, \ldots, p-1\}$. For every different $x_{1}, x_{2} \in[p]$, equations
$y_{1}=a x_{1}+b \bmod p$
$y_{2}=a x_{2}+b \bmod p$
define a bijection between $(a, b) \in[p]^{2}$ and $\left(y_{1}, y_{2}\right) \in[p]^{2}$.

2-universality

For every $x_{1}, x_{2} \in U, x_{1} \neq x_{2}$, and $y_{1}, y_{2} \in M$ it holds
$P\left[h_{a, b}\left(x_{1}\right)=z_{1}\right.$ and $\left.h_{a, b}\left(x_{1}\right)=z_{2}\right] \leq \frac{\left\lceil\frac{p}{m}\right\rceil^{2}}{p^{2}}$
So, the multiply-mod-prime set of functions \mathcal{H} is not 2 -universal. (1) (2)

Jifi Fink Data Structures 1	118
Hash tables: Universal hashing: Multiply-shift	
Bits selection	
For positive integers a, b, x, let bit a $_{\text {a }}(x)=\left\lfloor\frac{x \bmod 2^{b}}{2^{a}}\right\rfloor$.	
Multiply-shift	
- Assume $u=2^{w}$ and $m=2$ - $h_{a}(x)=\operatorname{bit}_{w-l, w}(a x)$ - $\mathcal{H}=\left\{h_{a} ; \boldsymbol{a}\right.$ odd w-bit integer $\}$	
Example is C	
uint64_t hash (uint 64_t x, uint64_t l, uint64_t a) \{ return (a*x) >> (64-1); \}	
Universality (without a proof)	
For every $x_{1}, x_{2} \in\left[2^{w}\right], x_{1} \neq x_{2}$ it holds $P\left[h_{a}\left(x_{1}\right)=h_{a}\left(x_{2}\right)\right] \leq \frac{2}{m}$.	

Jifi Fink Dala Structures 1

(1) Consider $x_{1}, x_{2}, y \in[\beta]$ such that $y \equiv \alpha x_{1} \equiv \alpha x_{2}(\bmod \beta)$. Then, β divides $\alpha\left(x_{2}-x_{1}\right)$. Since α and β are relatively prime, β divides $x_{2}-x_{1}$ which implies $x_{1}=x_{2}$.
(1) There are at most $\left\lceil\frac{p}{m}\right\rceil^{2}$ pairs $\left(y_{1}, y_{2}\right)$ such that $z_{1}=y_{1} \bmod m$ and $z_{2}=y_{2}$ $\bmod m$. The bijection implies that there are at most $\left\lceil\frac{p}{m}\right\rceil^{2}$ pairs (a, b) such that $h_{a, b}\left(x_{1}\right)=z_{1}$ and $h_{a, b}\left(x_{2}\right)=z_{2}$.
(2) Considering a $\in\{1, \ldots, p-1\}$ leads to probability

$$
P\left[h_{a, b}\left(x_{1}\right)=z_{1} \text { and } h_{a, b}\left(x_{1}\right)=z_{2}\right] \leq \frac{\left\lceil\frac{p}{m}\right\rceil^{2}}{p(p-1)} .
$$

Jififink ${ }^{\text {dala Stuctures } 1}$	${ }^{118}$
Hash tables: Universal hashing: Multiply-shift	
Bits selection	
For positive integers a, b, x, let bit ${ }_{a, b}(x)=\left\lfloor\frac{x \bmod 2^{b}}{2^{a}}\right\rfloor$.	
Multiply-shift	
- Assume $u=2^{w}$ and $m=2^{\prime}$ and $v \geq w+I-1$. - $h_{a, b}(x)=\operatorname{bit}_{v-I, v}(a x+b)$ - $\mathcal{H}=\left\{h_{a, b} ; a, b \in\left[2^{v}\right]\right\}$	

Lemma

If α and β are relatively prime, then $x \mapsto \alpha x \bmod \beta$ is a bijection on $[\beta]$. (1)

2-universality

\mathcal{H} is 2-universal, that is or every $x_{1}, x_{2} \in\left[2^{w}\right], x_{1} \neq x_{2}$ and $z_{1}, z_{2} \in M$ it holds $P\left[h\left(x_{1}\right)=z_{1}\right.$ and $\left.h\left(x_{2}\right)=z_{2}\right] \leq \frac{1}{m^{2}}$.

	jurifi	a stucturs	
Hash tables: Universal hashing: Multiply-shift: 2-universali			
$\mathcal{H}=\left\{x \mapsto \operatorname{bit}_{v-l, v}(a x+b) ; a, b \in\left[2^{v}\right]\right\}$ is 2-universal where $v \geq w+1-1$			
Let s be the index of the least significant 1 -bit in $\left(x_{2}-x_{1}\right)$ Let o be the odd number such that $x_{2}-x_{1}=02^{s}$ $a \mapsto a o \bmod 2^{v}=$ bit $_{0, v}(a o)$ is a bijection on $\left[2^{v}\right]$ (1) $a \mapsto \operatorname{bit}_{s, v+s}\left(a o 2^{s}\right)=\operatorname{bit}_{s, v+s}\left(a\left(x_{2}-x_{1}\right)\right)$ is a bijection on $\left[2^{v}\right]$ $a \mapsto \operatorname{bit}_{s, v}\left(a\left(x_{2}-x_{1}\right)\right)$ is a 2^{s}-to- 1 mapping $\left[2^{v}\right] \rightarrow\left[2^{v-s}\right]$ $b \mapsto$ bit $_{s, v}\left(a x_{1}+b 2^{s}\right)$ is a bijection on $\left[2^{v-s}\right]$ for every $a \in\left[2^{v}\right]$ $b \mapsto \operatorname{bit}_{s, v}\left(a x_{1}+b\right)$ is a 2^{s}-to-1 mapping $\left[2^{v}\right] \rightarrow\left[2^{v-s}\right]$ for every $a \in\left[2^{v}\right]$ $(a, b) \mapsto\left(\operatorname{bit}_{s, v}\left(a x_{1}+b\right)\right.$, bit $\left._{s, v}\left(a\left(x_{2}-x_{1}\right)\right)\right)$ is a $2^{2 s}$-to-1 mapping $\left[2^{v}\right]^{2} \rightarrow\left[2^{v-s}\right]^{2}$ bit $_{s, \infty}\left(a x_{2}+b\right)=$ bit $_{s, \infty}\left(\left(a x_{1}+b\right)+a\left(x_{2}-x_{1}\right)\right)=$ bits $_{s, \infty}\left(a x_{1}+b\right)+$ bit $_{s, \infty}\left(a\left(x_{2}-x_{1}\right)\right)$ (2) $(a, b) \mapsto\left(\right.$ bit $_{s, v}\left(a x_{1}+b\right)$, bit $\left._{s, v}\left(a x_{2}+b\right)\right)$ is a $2^{2 s}$-to-1 mapping $\left[2^{v}\right]^{2} \rightarrow\left[2^{v-s}\right]^{2}$ (3) Since $w+I-1 \leq v$ and $s<w$, it follows that $s \leq w-1 \leq v-I$ $(a, b) \mapsto\left(\right.$ bit $_{v-1, v}\left(a x_{1}+b\right)$, bit $\left._{v-1, v}\left(a x_{2}+b\right)\right)$ is a $2^{2(v-1)}$-to-1 mapping $\left[2^{v}\right]^{2} \rightarrow\left[2^{\prime}\right]^{2}$ If a, b are independently uniformly distributed on $\left[2^{\nu}\right]$, then $P\left[h\left(x_{1}\right)=z_{1}\right.$ and $\left.h\left(x_{2}\right)=z_{2}\right]=\frac{2^{2(v-1)}}{2^{2 v}}=\frac{1}{m^{2}}$.			

(1) Follows from lemma for $\alpha=0$ and $\beta=2^{v}$.
(2) The second equality uses bit $\mathrm{t}_{, s}\left(a\left(x_{2}-x_{1}\right)\right)=0$.
(0) Since $(\alpha, \beta) \mapsto(\alpha, \alpha+\beta)$ is a bijection.

Hash tables: Universal hashing: Multiply-shift for vectors

Multiply-shift for fix-length vectors

- Hash a vector $x_{1}, \ldots, x_{d} \in U=\left[2^{w}\right]$ into $S=\left[2^{\prime}\right]$ and let $v \geq w+I-1$
- $h_{a_{1}, \ldots, a_{d}, b}\left(x_{1}, \ldots, x_{d}\right)=\operatorname{bit}_{v-l, v}\left(b+\sum_{i=1}^{d} a_{i} x_{i}\right)$
- $\mathcal{H}=\left\{h_{a_{1}, \ldots, a_{d}, b} ; a_{1}, \ldots, a_{d}, b \in\left[2^{\vee}\right]\right\}$
- \mathcal{H} is 2-universal (without a proof)

Mutitiply-shift for variable-length string

- Hash a string $x_{0}, \ldots, x_{d} \in U$ into $[p]$ where $p \geq u$ is a prime
- $h_{a}\left(x_{0}, \ldots, x_{d}\right)=\sum_{i=0}^{d} x_{i} a^{i} \bmod p(1)$
- $\mathcal{H}=\left\{h_{a} ; a \in[p]\right\}$
- $P\left[h_{a}\left(x_{0}, \ldots, x_{d}\right)=h_{a}\left(x_{0}^{\prime}, \ldots, x_{d^{\prime}}^{\prime}\right)\right] \leq \frac{d+1}{p}$ for two different strings with $d^{\prime} \leq d$. (2)

Multiply-shift for variable-length string II

- Hash a string $x_{0}, \ldots, x_{d} \in U$ into $[m]$ where $p \geq m$ is a prime.
- $h_{a, b, c}\left(x_{0}, \ldots, x_{d}\right)=\left(b+c \sum_{i=0}^{d} x_{i} a^{i} \bmod p\right) \bmod m$
- $\mathcal{H}=\left\{h_{a, b, c} ; a, b, c \in[p]\right\}$
- $P\left[h_{a, b, c}\left(x_{0}, \ldots, x_{d}\right)=h_{a, b, c}\left(x_{0}^{\prime}, \ldots, x_{d^{\prime}}^{\prime}\right)\right] \leq \frac{2}{p}$ for different strings with $d^{\prime} \leq d \leq \frac{p}{m}$.

Jifi Fink Data Structures 1

(1) x_{0}, \ldots, x_{d} are coefficients of a polynomial of degree d.
(2) Two different polynomials of degree at most d have at most $d+1$ common points, so there are at most $d+1$ colliding values α.

Hash tables: Universal hashing: Multiply-shift for vectors

Tabulation hashing

- Random tabular $T_{1}, \ldots T_{d}$
- $T_{1}\left(x_{1}\right) \oplus \cdots \oplus T_{d}\left(x_{d}\right)$

Mersenne prime

- Prime in the form $p=2^{a}-1$ is called Mersenne prime.
- E.g. $2^{2}-1,2^{3}-1,2^{31}-1,2^{61}-1,2^{89}-1,2^{107}-1$
- $x \equiv(x \& p)+(x \gg a)(\bmod p)$

Geometry

Types of problems

- Given set S of points (or other geometrical objects) in \mathbb{R}^{d}.
- Find the nearest point of S for a given point
- Find all points of S which lie in a given region, e.g. d-dimensional rectangle.

Nearest point in \mathbb{R}^{1}

Given set of points S in \mathbb{R} of size n, find the nearest point of S to a given point x. Static Array: query in $\mathcal{O}(\log n)$
Dynamic Balanced search tree: query and update in $\mathcal{O}(\log n)$

Range query in \mathbb{R}^{1}

Given a finite set of points S in \mathbb{R}, find all points of S in a given interval $\langle a, b\rangle$ where k is the number of points in the interval.

Static Array: query in $\mathcal{O}(k+\log n)$
Dynamic Balanced search tree: query and update in $\mathcal{O}(k+\log n)$

Geometry: Range query in \mathbb{R}^{1}

Example of $1 D$ range tree

For simplicity, consider a binary search tree containing points only in leaves.

Drawn subtrees contain points exactly points between a and b. (1) How to determine the number of points in a given interval in $\mathcal{O}(\log n)$? (2)

Jifif Fink Data Structures 1
(1) Nodes a and b are actually the successor of a and the predecessor of b, respectively.
(2) Remember the number of leaves in every subtree.

Description

- Search tree for x-coordinates with points in leaves (x-tree).
- Every inner node u contains in its subtree of all points $S_{u} \subset S$ with x-coordinate in some interval.
- Furthermore, the inner node u also contains a search tree of points S_{u} ordered by y-coordinates (y-tree).
Example

Jifi Fink Data Stuctures 1

Geometry: 2D range trees: Range query

Range query

(1) Search for keys a_{x} and b_{x} in the x-tree.
(2) Identify all inner nodes in the x-tree which store points with x-coordinate in the interval $\left\langle a_{x}, b_{x}\right\rangle$.
(3) Run $\left\langle a_{y}, b_{y}\right\rangle$-query in all corresponding y-trees.

Complexity
$\mathcal{O}\left(k+\log ^{2} n\right)$, since $\left\langle a_{y}, b_{y}\right\rangle$-query is run in $\mathcal{O}(\log n) y$-trees.
(1) Given an array of sorted elements, most balanced search trees can be built in $\mathcal{O}(n)$-time.
(2) Use master theorem, or observe that building one level of x-tree takes $\mathcal{O}(n)$-time.
(1) Dimension d is assumed to be a fix parameter.

Vertical point of view

Every point p stored in exactly one leaf / of the x-tree; and moreover, p is also stored in all y-trees corresponding to all nodes on the path from the x-root to l.

Horizontal point of view

Every level of x-tree decomposes the set of points by x-coordinates. Therefore, y-trees corresponding to one level of x-tree contain every point exactly once.

Space complexity

Since every point is stored in $\mathcal{O}(\log n) y$-trees, the space complexity is $\mathcal{O}(n \log n)$.

Jifi Fink Data Structures 1

Geometry: 2D range trees: Build

Straightforward approach

Create x-tree and then all y-trees using operation insert. Complexity is $\mathcal{O}\left(n \log ^{2} n\right)$.

Faster approach

First, create two arrays of points sorted by x and y coordinates. Then, recursively
(1) Let x-root be the medium of all points by x-coordinate.
(2) Create y-tree for the x-root. (1)
(0) Split both sorted arrays by x-root.
(-) Recursively create both children of x-root.

Complexity

- Recurrence formula $T(n)=2 T(n / 2)+\mathcal{O}(n){ }^{2}$
- Complexity is $\mathcal{O}(n \log n)$.

Geometry: Higher dimensional range trees

3D range trees

- Create 2D range tree for x and y coordinates.
(2) For every node u in every y-tree, create a search tree ordered z-coordinate containing all points of the subtree of u.

d-dimensional range trees

Add dimensions one by one likewise in 3D range tree.

Complexity ©

Space: $\mathcal{O}\left(n \log ^{d-1} n\right)$ since every point is stored in $\mathcal{O}\left(\log ^{2} n\right) z$-trees, etc.
Query: $\mathcal{O}\left(k+\log ^{d} n\right)$ since $\left\langle a_{z}, b_{z}\right\rangle$-query is run in $\mathcal{O}\left(\log ^{2} n\right) z$-trees, etc.
Build: $\mathcal{O}\left(n \log ^{\alpha} n\right)$ if dimension-trees are created one-by-one by insertion.
$\mathcal{O}\left(n \log ^{d-1} n\right)$ if we use the faster approach likewise in 2 D .

Geometry: Layered range trees
2D case
Replace y-trees by sorted arrays.
Example

Higher dimension

Replace trees of the last dimension by sorted arrays.

Geometry: Fractional cascading
(1) A straightforward solution gives complexity $\mathcal{O}(m \log n)$.
(0) Elements $S_{i} \backslash S_{i-1}$ point to their predecessors or successors.

Motivative problem

Given sets $S_{1} \subseteq \cdots \subseteq S_{m}$ where $\left|S_{m}\right|=n$, create a data structure for fast searching elements $x \in S_{1}$ in all sets S_{1}, \ldots, S_{m}. (1)

Fractional cascading

Every set S_{i} is sorted. Furthermore, every element in the array of S_{i} has a pointer to the same element in S_{i-1}. (2)

Complexity of a search in m sets

$\mathcal{O}(m+\log n)$

Geometry: Layered range trees and fractional cascading

Using fracional cascading

Use fractional cascading for the last dimension arrays, e.g. $d=2$:

Complexity of one range query in 2D

- Search in the x-tree takes $\mathcal{O}(\log n)$.
- Binary search for a_{y} and b_{y} in y-arrays takes $\mathcal{O}(\log n)$.

Complexity of one range query in d dimensions
 $\mathcal{O}\left(k+\log ^{d-1} n\right)$

(1) Clearly, $0<\alpha<\frac{1}{2}$. The term " -1 " is important only for small subtrees when their size is odd.
(2) It is possible to use rotations to keep the $\mathrm{BB}[\alpha]$-tree balanced. However in range trees, a rotation in the x-tree leads to rebuilding many y-trees.
(This proof can be directly reformulated into potential method as follows. We define a potential $\Phi(u)$ of a node u to be

$$
\Phi(u)= \begin{cases}0 & \text { if } s_{u . l \text { left }}=s_{u . \text { right }}=\frac{s_{u}}{2} \\ s_{u} & \text { if } \min \left\{s_{u . l \text { left },}, s_{u . \text { right } t}\right\}=\alpha s_{u}\end{cases}
$$

and all other cases are defined using the linear interpolation of these two cases, that is

$$
\Phi(u)=\frac{1}{1-2 \alpha}\left(s_{u}-2 \min \left\{s_{u . l e f t}, s_{u, \text { right }}\right\}\right) .
$$

This potential gives enough money when reconstruction is needed and zero after the reconstruction. Observe that the change of potential $\Delta \Phi(u)$ is at most $\mathcal{O}(1)$ when an element is inserted or deleted in the subtree of u. The total potential Φ is the sum of potentials of all nodes and its change is at most $\mathcal{O}(\log n)$ for an operation Insert or Delete (excluding reconstruction).

Geometry: Intermezzo: Weight balanced trees: BB[$\alpha]$-tree

Description (Jürg Nievergelt, Edward M. Reingold [5])

A binary search tree is $\mathrm{BB}[\alpha]$-tree if for every node u

- $s_{u . l \text { left }} \geq \alpha s_{u}-1$ and
- $s_{u . \text { right }} \geq \alpha s_{u}-1$
where the size s_{u} is the number of leaves in the subtree of u. (1)

Height

The height of a $\mathrm{BB}[\alpha]$-tree is at most $\log _{\frac{1}{1-\alpha}}(n)+\mathcal{O}(1)=\mathcal{O}(\log n)$.

Balancing after operations Insert and Delete

When a node u violates the weight condition, rebuild whole subtree in time $\mathcal{O}\left(s_{u}\right)$. (2)

Amortized cost

- Another rebuild of a node u occurs after $\Omega\left(s_{u}\right)$ updates in the subtree of u.
- Therefore, amortized cost of rebuilding subtree is $\mathcal{O}(1)$, and
- update contributes to amortized costs of all nodes on the path from the root to leaf.

The amortized cost of operations Insert and Delete is $\mathcal{O}(\log n)$. (3)

Geometry: Range trees using BB[$\alpha]$-trees

Dynamic range trees

- For simplicity, consider $\mathrm{BB}[\alpha]$-tree for every dimension including the last one. (1)
- Rotations in range trees are hard.
- However, reconstruction of a (sub)tree on n points takes $\mathcal{O}\left(n \log ^{d-1} n\right)$. (2)

2D case

- Reconstruction in the y-subtree of a node u takes $\mathcal{O}\left(s_{u}\right)$ time and another reconstruction occurs after $\Omega\left(s_{u}\right)$ updates in the y-subtree of u, so the amortized cost of rebuilding one y-subtree is $\mathcal{O}(1)$.
- Reconstruction in the x-subtree of a node u and following y-trees takes $\mathcal{O}\left(s_{u} \log s_{u}\right)$ time and another reconstruction occurs after $\Omega\left(s_{u}\right)$ updates time in the x-subtree of u, so the amortized cost of rebuilding one x-subtree is $\mathcal{O}\left(\log s_{u}\right)$.
- One update contributes to amortized costs in $\Omega(\log n) x$-subtrees and $\Omega\left(\log ^{2} n\right)$ y-trees.
- Amortized cost of operations Insert and Delete is $\mathcal{O}\left(\log ^{2} n\right)$.
(1) Without fractional cascading.
(2) Balancing the x-tree requires reconstruction of trees in all dimensions.

Jifif Fink Data Structures 1

Geometry: Range trees using BB[$\alpha]$-trees

3D case

- Reconstruction in the z-subtree of a node u takes $\mathcal{O}\left(s_{u}\right)$ time and another reconstruction occurs after $\Omega\left(s_{u}\right)$ updates in the y-subtree of u, so the amortized cost of rebuilding one y-subtree is $\mathcal{O}(1)$.
- Reconstruction in the y-subtree of a node u and following z-trees takes $\mathcal{O}\left(s_{u} \log s_{u}\right)$ time and another reconstruction occurs after $\Omega\left(s_{u}\right)$ updates time in the y-subtree of u, so the amortized cost of rebuilding one y-subtree is $\mathcal{O}\left(\log s_{u}\right)$.
- Reconstruction in the x-subtree of a node u and following y-trees and z-trees takes $\mathcal{O}\left(s_{u} \log ^{2} s_{u}\right)$ time and another reconstruction occurs after $\Omega\left(s_{u}\right)$ updates time in the x-subtree of u, so the amortized cost of rebuilding one x-subtree is $\mathcal{O}\left(\log ^{2} s_{u}\right)$.
- One update contributes to amortized costs in $\Omega(\log n) x$-subtrees and $\Omega\left(\log ^{2} n\right) y$-trees and $\Omega\left(\log ^{3} n\right) z$-trees.
- Amortized cost of operations Insert and Delete is $\mathcal{O}\left(\log ^{3} n\right)$.
- Range query in $\mathcal{O}\left(k+\log ^{d} n\right)$ worst case. (1)
- Insert and Delete in $\mathcal{O}\left(\log ^{d} n\right)$ amortized cost. (2)
(1) When we apply fractional cascading on leaves of a tree instead of arrays, we obtain query in $\mathcal{O}\left(k+\log ^{d-1} n\right)$ without changing the complexity for updates.
(2) The actual time for m updates is $\mathcal{O}\left(n \log ^{d-1} n+m \log ^{d} n\right)$.

Bernard Chazelle [1, 2]

d-dimensional range query in $\mathcal{O}\left(k+\log ^{d-1} n\right)$ time and $\mathcal{O}\left(n\left(\frac{\log n}{\log \log n}\right)^{d-1}\right)$ space.

Bernard Chazelle, Leonidas J. Guibas [3]

d-dimensional range query in $\mathcal{O}\left(k+\log ^{d-2} n\right)$ time and $\mathcal{O}\left(n \log ^{d} n\right)$ space.
(1) If S_{l} or S_{r} is empty, then there is no left or right child, respectively.
(2) There are at most n end-points smaller than m, so S, contains at most $\frac{n}{2}$ intervals. Therefore, the time complexity satisfies the recurrence formula $T(n) \leq 2 T\left(\frac{n}{2}\right)+\Theta(n)$.

- Every interval is stored in exactly one node. If S_{m} is empty, then n is even and both S_{l} and S_{r} contains $\frac{n}{2}$ intervals. There are at most $n-1$ such nodes. Therefore, the tree has at most $2 n-1$ nodes.

Jififink Dala Structues 1	139
Geometry: Segment trees	
Input	
Set of intervals $S=\left\{I_{1}, \ldots, I_{n}\right\}$ where $I_{i}=\left\langle a_{i}, b_{i}\right\rangle$.	
Query	
Given point p, find all intervals of S containing p.	
Trivial approach	
(1) Let x_{1}, \ldots, x_{m} be sorted end-points $\left\{a_{1}, b_{1}, \ldots, a_{n}, b_{n}\right\}$ without duplicities. Split \mathbb{R} into blocks $\left(-\infty, x_{1}\right),\left\{x_{1}\right\},\left(x_{1}, x_{2}\right),\left\{x_{2}\right\}, \ldots,\left\{x_{m}\right\},\left(x_{m}, \infty\right)$. For every block, store all intervals of S containing the block.	

Complexity

- Time for query: $\mathcal{O}(k+\log n)$
- Time for construction: $\mathcal{O}\left(n^{2}\right)$
- Space: $\mathcal{O}\left(n^{2}\right)$

Useful only for counting queries where every block contains the number of intervals.
Jifirinn Data Structures 1

Geometry: Priority search tree

Heap and search tree in one binary tree

If every element e has a key e.key and a priority e.priority, is it possible to store a set of elements in a binary tree so that

- the min-heap property is satisfied for priorities and
- the search-tree property is satisfied for keys? (1)

Relax the search tree property

Priority search tree is a binary tree having one element in every node so that

- the min-heap property is satisfied for priorities and
- elements can be fount by their keys in $\mathcal{O}(\log n)$ time.

Top-down recursive construction of a priority search tree

The root of the priority search tree storing a set of elements S contains

- the element e of S with the smallest priority,
- the median key m of all elements of S, (2)
- the left subtree stores all elements with keys smaller than m (except e) and
- the right subtree stores all elements with keys greater than m (except e). (3)
(1) Observe that if all keys and all priorities are pair-wise different, then there exists a unique binary tree storing all elements.
(2) Note that m is not the key of the element e (unless e coincidently has the median key).
(3) Observe that this tree does not satisfies the search-tree condition in general.
(1) After a deletion, nodes do not store the median keys of their subtree. Although the
height of the tree is not increased by an operation delete, the tree may degenerate.

Geometry: Priority search tree

Complexity

- Space complexity is $\mathcal{O}(n)$
- Construction in $\mathcal{O}(n \log n)$-time
- Find the element with the smallest priority in $\mathcal{O}(1)$-time
- Find the element with a given key in $\mathcal{O}(\log n)$-time
- Delete the element with the smallest priority in $\mathcal{O}(\log n)$-time (1)

Applications

- Find the element with key in a given range and the smallest priority.
- Grounded 2D range search problem: Given a set of points in \mathbb{R}^{2}, find points in the range $\left\langle a_{x}, b_{x}\right\rangle \times\left(-\infty, b_{y}\right\rangle$.
[1] Bernard Chazelle.
Lower bounds for orthogonal range searching: I. the reporting case. Journal of the ACM (JACM), 37(2):200-212, 1990.
[2] Bernard Chazelle.
Lower bounds for orthogonal range searching: part ii. the arithmetic model.
Journal of the ACM (JACM), 37(3):439-463, 1990.
[3] Bernard Chazelle and Leonidas J Guibas.
Fractional cascading: I. a data structuring technique.
Algorithmica, 1(1-4):133-162, 1986.
[4] Donald Ervin Knuth.
Notes on "open" addressing.
http://algo.inria.fr/AofA/Research/11-97.html, 1963.
[5] Jürg Nievergelt and Edward M Reingold.
Binary search trees of bounded balance.
SIAM journal on Computing, 2(1):33-43, 1973.
[6] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing.
Journal of Algorithms, 51(2):122-144, 2004.
[7] Mihai Patraşcu.
Better guarantees for chaining and linear probing.
http://infoweekly.blogspot.cz/2010/02/
better-guarantees-for-chaining-and.html.
blogspot, February 2, 2010.

[^0]: Observe

 - $r^{\prime}(x)=r(g)$
 - $r(x)<r(p)$
 - $s^{\prime}(p)+s^{\prime}(g) \leq s^{\prime}(x)$
 - $r^{\prime}(p)+r^{\prime}(g) \leq 2 r^{\prime}(x)-2$
 - $\Delta \Phi=r^{\prime}(g)-r(g)+r^{\prime}(p)-r(p)+r^{\prime}(x)-r(x) \leq 2\left(r^{\prime}(x)-r(x)\right)-2$

