Data Structures 1

NTINO66

Jifi Fink

https://kam.mff.cuni.cz/~fink/

Department of Theoretical Computer Science and Mathematical Logic
Faculty of Mathematics and Physics
Charles University in Prague

Winter semester 2015/16

Last change on February 3, 2016

License: Creative Commons BY-NC-SA 4.0

Jii Fink Data Structures 1

Jifi Fink: Data Structures 1

Plan of the lecture

@ Trees
o (a,b)-trees
o MFR-strategy for lists, Splay trees
o Other solutions: AVL trees, red-black trees, BB-alpha trees
@ Heaps
o Regular heaps
e Binomial heaps - amortized and worst-case complexity
o Fibonacci heaps
@ Techniques for memory hierarchy
@ /O model, cache-oblivious analysis, LRU-strategy for on-line paging
o Examples: matrix transposition and multiplication, van Emde Boas tree layout
@ Hashing
o Collisions and their resolution, analysis for uniformly distributed data
o Selecting a hash function: universal hashing, good hash functions
@ Cuckoo hashing
@ Multidimensional data structures
o KD trees
o Range trees

Jii Fink Data Structures 1 3

Jifi Fink: Data Structures 1

Literature
@ A. Koubkova, V. Koubek: Datové struktury |. MATFYZPRESS, Praha 2011.

@ T. H. Cormen, C.E. Leiserson, R. L. Rivest, C. Stein: Introduction to Algorithms.
MIT Press, 2009

@ K. Mehlhorn: Data Structures and Algorithms I: Sorting and Searching.
Springer-Verlag, Berlin, 1984

@ D. P. Mehta, S. Sahni eds.: Handbook of Data Structures and Applications.
Chapman & Hall/CRC, Computer and Information Series, 2005

@ E. Demaine: Cache-Oblivious Algorithms and Data Structures. 2002.
@ R. Pagh: Cuckoo Hashing for Undergraduates. Lecture note, 2006.
@ M. Thorup: High Speed Hashing for Integers and Strings. lecture notes, 2014.

@ M. Thorup: String hashing for linear probing (Sections 5.1-5.4). In Proc. 20th
SODA, 655-664, 2009.

Jifi Fink Data Structures 1 5

Dictionary problem

@ Entity is a pair of a key and a value
@ Keys are linearly ordered
@ Number of entities stored in a data structure is n

Basic operations

@ Insert a given entity
@ Find an entity of a given key
@ Delete an entity of a given key

Example of data structures

@ Array

@ Linked list

@ Searching trees (e.g. AVL, red-black)
@ Hash tables

Jii Fink Data Structures 1 7

(a,b)-tree
@ A-sort
Red-black tree
Splay tree
Heaps
@ d-ary heap
@ Binomial heap
@ Lazy binomial heap
@ Fibonacci heap
@ Dijkstra’s algorithm
Cache-oblivious algorithms
Hash tables
@ Separate chaining
@ Linear probing
@ Cuckoo hashing
@ Hash functions
° Geometry
@ Range trees
@ Interval trees
@ Segment trees
@ Priority search trees
© Bibliography

Jifi Fink: Data Structures 1

General information

E-mail fink@kam.mff.cuni.cz
Homepage http://kam.mff.cuni.cz/ fink/
Consultations Individual schedule

Examination

@ Successfully work out four out of five homeworks
@ Pass the exam

JiFi Fink Data Structures 1 4

Outline

0 (a,b)-tree

@ A-sort

JiFi Fink Data Structures 1 6

Binary search tree

@ Entities are stored in nodes (vertices) of a rooted tree
@ Each node contains a key and two sub-trees (children), the left and the right

@ The key in each node must be greater than all keys stored in the left sub-tree, and
smaller than all keys in right sub-tree

(10)

(5) (12)
® O (19
® @©®
@ Space: O(n)

@ Time: Linear in the depth of the tree
@ Height in the worst case: n

JiFi Fink Data Structures 1 8

https://kam.mff.cuni.cz/~fink/
https://creativecommons.org/licenses/by-nc-sa/4.0/

(a,b)-tree

Properties
@ a,bareintegers suchthata>2and b >2a—1
@ Allinternal nodes except the root have at least a and at most b children
@ The root has at most b children
@ All leaves are at the same depth
@ Entities are stored in leaves
@ Keys in leaves are ordered (left-to-right)
@ Internal nodes contain keys used to find leaves (e.g. the largest key)

Example: (2,4)-tree

Operation Find
Search from the root using keys stored in internal nodes

Jifi Fink Data Structures 1

(a,b)-tree: Insert

Algorithm

1 Find the proper parent v of the inserted entity
2 Add a new leaf into v
3 while deg(v) > bdo
Find parent U of node Vv
if v is the root then
| Create a new root with v as its only child
else
| v+« parentof v

N o a s

Split node V into V and V/

Create a new child v/ of u immediately to the right of v
Move the rightmost [(b + 1)/2] children of v to v/
Veu

© ®

o

Time complexity
Linear in height of the tree

Jii Fink Data Structures 1 1

(a,b)-tree: Delete

Algorithm

1 Find the leaf | containing the deleted key
2 v + parent of |
3 Delete |
4 while deg(v) < a and v is not the root do
u <+ an adjacent sibling of v
if deg(u) > athen
\ Move the proper child from u to v
else
Move all children of u to v
Remove u
if If v has no sibling then
\ Remove the root (= parent of v) and make v the new root
else
| v« parentof v

© ® N o a

2 o™ 3o

T
|

Jifi Fink Data Structures 1

(a,b)-tree: Join

Description
Union of two (a,b)-trees T; and T, assuming max key(T1) < min key(T2).

Algorithm

1 if height(Ty) > height(T2) then
u « last node of Ty in height height(T;) — height(Tz)
v < root of T
else
L u < last node of T2 in height height(Tz) — height(T;)
v < root of Ty
Move all children of v to u
if deg(u) > b then
L Recursively split u like in the operation insert

o o s @ N

© © N

Linear in the difference of heights of trees.

Jifi Fink Data Structures 1 15

(a,b)-tree: Insert

Insert 4 into the following (2,4)-tree

Jii Fink Data Structures 1 10

(a,b)-tree: Delete

Delete 4 from the following (2,4)-tree

Jii Fink Data Structures 1 12

(a,b)-tree: Analysis

@ (a,b)-tree of height d has at least 2%~ and at most b? leaves.
@ Height satisfies log, n < d <1+ log, n.

The time complexity of operations find, insert and delete is O(log n).

Jii Fink Data Structures 1 14

(a,b)-tree: Split

Given an (a,b)-tree T and a key k, split T to two (a,b)-trees Ts and Tg with keys
smaller and greater than k, respectively.

Algorithm (only for Ts)

Input: (a,b)-tree T, key x

Qs + an empty stack

t « the root of T

while ¢ is not a leaf do

L v « child of t according to the key x

Push all left brothers of v to Qs
t<v

IR T NI R CREN

7 Ts « an empty (a,b)-tree
8 while Qs is non-empty do
9 L Ts < JOIN(POP(Qs), Ts)

Time complexity
O(log n) since complexity of JOIN is linear in the difference of heights of trees.

Jii Fink Data Structures 1 16

(a,b)-tree: Ord

Description

Returns the i-th smallest key in the tree for given .

Approach

If every node stores the number of leaves in its sub-tree, the i-th smallest key can be
fount in O(log n)-time.

Updating the number of leaves does not influence the time complexity of operations
insert and delete.

Jifi Fink Data Structures 1 17

(a,b)-tree for parallel access

b>2a
Operation insert
Split every node with b children on path from the root to the inserted leaf.

Operation delete

Update (move a child or merge with a sibling) every node with a children on path from
the root to the deleted leaf.

Jifi Fink Data Structures 1 19

A-sort: Algorithm

Input: list X1, X2, ..., Xn

1 T + an empty (a,b)-tree

2 for i<+ nto 7do

Modified operation insert of X; to T

v «+ the leaf with the smallest key

while x; is greater than the maximal key in the sub-tree of v and v is not a root do
| v« parentof v

6 Insert x; but start searching for the proper parent at v
Output: Walk through whole (a,b)-tree T and print all leaves

o s oW

Jifi Fink Data Structures 1 21

The complexity of finding the starting point follows from
>ilogfi=log[];fi = nlog {/I[; fi < nIog% =nlog £.

Jifi Fink Data Structures 1 22

(a,b)-tree: The amortized number of balancing operations

b>2a

Statement (without proof)
The number of balancing operations for / inserts and k deletes is O(/ + k + log n).

The amortized number of balancing operations for one insert or delete is O(1).

Jifi Fink Data Structures 1 18

A-sort

Sort "almost sorted” list x1, X2, . . ., Xp.

Modification of (a,b)-tree
The (a,b)-tree also stores the pointer to the most-left leaf.

Idea: Insert x; = 16

Insert x; = 16 to
this subtree

The height of the subtree
is ©(log f;) where
fi=|{>ix<x}|

Minimal key

JiFi Fink Data Structures 1 20

A-sort: Complexity

The inequality of arithmetic and geometric means
If ay, ..., an are non-negative real numbers, then

Yiia S 0

Time complexity
@ Denote fi = | {j > i; x; < Xi}|
e F =37 fis the number of inversions
@ Finding the starting vertex v for one key x;: O(log f;)
@ Finding starting vertices for all keys: O(nlog(F/n))
@ Splitting nodes during all operations insert: O(n)
@ Total time complexity: O(n+ nlog(F/n))
@ Worst case complexity: O(nlog n) since F < (3)
o If F < nlog n, then the complexity is O(nloglog n)

JiFi Fink Data Structures 1 22

(a,b)-tree: Applications

Similar data structures

@ B-tree, B+ tree, B* tree
@ 2-4-tree, 2-3-4-tree, etc.

Applicatins

@ A-sort
@ File systems e.g. Ext4, NTFS, HFS+, FAT
@ Databases

Jifi Fink Data Structures 1 23

Outline Red-black tree: Definition

Definition
@ Binary search tree with elements stored in inner nodes

@ Every inner node has two children — inner nodes or NIL/NULL pointers
e Red-black tree L
@ A node is either red or black
@ Paths from the root to all leaves contain the same number of black nodes
@ If a node is red, then both its children are black
(]

Leaves are black

Example

e

/@) D
% 20 s

Jifi Fink Data Structures 1 24 Jifi Fink Data Structures 1 25

Red-black tree: Equivalence to (2,4)-tree Red-black tree: Properties

@ A node with no red child

Equivalence to (2,4)-tree

@ Recolour the root to be black
@ Combine every red node with its parent

o o
@ A node with one red child

o e
® o

@ A node with two red children

Applications

@ Associative array e.g. std::map and std::set in C++, TreeMap in Java
@ The Completely Fair Scheduler in the Linux kernel
@ Computational Geometry Data structures

Jii Fink Data Structures 1 26 JiFi Fink Data Structures 1 27

Red-black tree: Insert Red-black tree: Insert — uncle is red

Creating new node Schema

@ Find the position (NIL) of the new element n
@ Add a new node

s e o ©00 0000
¢ o oo oo

@ If the parent p is red, balance the tree

Notes
@ In the equivalent (2,4)-tree, node g has five children (1,2,3,4,5).
@ We "split” the node g by recolouring.
o [f the great-grandparent is red, the balancing continues.

When balancing

@ A node nand its parent p are red. Every other property is satisfied.
@ The grandparent g is black.
@ The uncle u is red or black.

Jifi Fink Data Structures 1 28 Jifi Fink Data Structures 1 29

Red-black tree: Insert — uncle is black Outline

The last balancing operation has two cases.

\ 5’%@
_—
‘&&
[2)

Jifi Fink Data Structures 1 30 Jifi Fink Data Structures 1 31

In the equivalent (2,4)-tree, node g has four children (1,2,3,u). J

Amortized analysis Splay tree

Amortized analysis

In an amortized analysis, the time required to perform a sequence of a data-structure
operations is averaged over all the operations performed. The common examples are

Worst-case | amortized
Incrementing a binary counter n O(n) o(1) Descrintion
Insert into a dynamic array O(n) o(1) P
Multi-pop from a stack O(n) oQ) o Binary search tree

o Elements are stored in all nodes (both internal and leaves)
@ Recently accessed elements are quick to access again
@ Operation splay moves a given node to the root

@ Aggregate analysis
@ Accounting method
@ Potential method

Jifi Fink Data Structures 1 32 Jifi Fink Data Structures 1 33

Splay tree: splay a given node x Splay tree: Amortized time

@ Zig step: If the parent p of x is the root

O O
ORA A ®

AW o\ £\ If a+ b < 1, then log,(a) + log,(b) < —2.
@ Zig-zig step: x and p are either both right children or are both left children

@) — O
® A M 2
S A o 2
AW 2 /o) Rank r(x) = log,(s(x))

© Zig-zag step: x is a right child and pis a left child or vice versa Potential ¢ is the sum of the ranks of all the nodes in the tree

@ - & s’ and r’ are size and rank functions after a splay step
(®) A (®) O) Ad is the change in the potential caused by a splay step
A 2 ANV

Jifi Fink Data Structures 1 34 JiFi Fink Data Structures 1 35

Size s(x) is the number of nodes in the sub-tree rooted at node x (including x)

Since 4ab = (a+ b)? — (a— b)? and (a— b)® > 0and a+ b < 1, it follows that
4ab < 1. Taking the logarithm of both sides, we derive log, 4 + log, a + log, b < 0, so
the lemma holds.

Splay tree: Zig step

(®) — ()

Observe

o r'(x) = r(p)
o r'(p) < r'(x)
0 Ad =3, r'(x) = X, r(x) = r'(p) — r(p) + r'(x) — r(x) < r'(x) — r(x)

Jifi Fink Data Structures 1 35 Jifi Fink Data Structures 1 36

Splay tree: Zig-zag step From the third point follows :Eﬁ; + z:((f{ < 1, so we use the lemma to obtain
s'(p) s'(9)
log, —7— +log, — < -2
e —_ ° 2 9(x) 2'5/(x)
log, s'(p) +log, s'(9) < 2logs'(x) - 2.
0 A 0 g Now, we replace log s'(.) by the rank function r'(.) to derive the fourth point.

ARp2 /a8y 6\ /o)
e\ o\

Observe

r'(x) =r(g)

r(x) < r(p)

s'(p) + 5'(g) < §'(x)

r'(p)+r'(g) <2r'(x)—2

Ad =r'(g) = r(g) +r'(p) = r(p) + r'(x) — r(x) < 2(r'(x) — r(x)) — 2

© 6 o o

Jifi Fink Data Structures 1 37 Jifi Fink Data Structures 1 37

Splay tree: Zig-zig step Splay tree: Analysis

(9) — () o
The amortized time

o A A o @ The amortized cost of one zig-zig or zig-zag step:

cost + AP < 2+ 3(r'(x) — r(x)) — 2 = 3(r'(x) — r(x))
° e @ The amortized cost of one zig step:
A A cost+ Ad < 1+ 3(r'(x) — r(x))

@ The amortized time of whole operation splay:

A A A A 5 epe (COST+ A®) < 14 3(r(r00t) — r(x)) < 1+ 3log, n = O(log 1)

@ The amortized time for a sequence of m operations:

O(mlog n)
@ The decrease in potential from the initial state ®; to the final state ®;:
r'(x) = r(g) ®; — &; = O(nlog n) since 0 < ¢ < nlog, n
@ r(x) < r(p)
e r'(x) > r'(p)
0 s(x)+5'(g) < s'(x) The actual time
o r(x)+r'(g)<2r(x)—2 The actual time for a sequence of m operations is O((n + m) log n).
° Ad=r'(g) —r(g) +r'(p) = r(p) +r'(x) — r(x) < 3(r'(x) — r(x)) — 2
Jifi Fink Data Structures 1 38 Jifi Fink Data Structures 1 39

Splay tree: Insert Splay tree: Delete

Algorithm

Insert key x Find and splay x

L < the left subtree of x
if L is empty then

| Remove node x
else

@ Find a node u with the closest key to x
@ Splay the node u

@ Insert a new node with key x
o —_ o Find and splay the largest key ain L
L' + the left subtree of a

o # a have no right child now
Merge nodes x and a

N o o s W N =

®

L is non-empty

. . B @ — & — @
Amortized complexity

@ Find and splay: O(log n) A A 0 A

@ The potential ¢ is increased by at most r(x) + r(u) < 2logn A

=
=

Jii Fink Data Structures 1 40 Jii Fink Data Structures 1 4

Outline Heap

Basic operations
o Insert
@ Find min
@ Delete min
@ Decrease key

© Heaps

@ d-ary heap
3 Eino"t‘)i_a' he_afih Properties
azy binomial heap - .
@ Fibonacci heap @ Entities are stored in all nodes of a tree

@ Dijkstra’s algorithm

@ The key of every node is always smaller than or equal to keys of its children

Applications

@ Priority queue

@ Heapsort

@ Dijkstra’s algorithm (find the shortest path between given two vertices)
@ Jarnik’s (Prim’s) algorithm (find the minimal spanning tree)

d-ary heap d-ary heap: Representation

d-ary heap Binary heap stored in a tree
@ Every node has at most d children
@ Every level except the last is completely filled
@ The last level is filled from the left

Binary heap
Binary heap is a 2-ary heap

Example of a binary heap Binary heap stored in an array

A node at index i has its parent at [(/ — 1)/2] and children at 2/ + 1 and 2/ + 2.

2 8 3 10 12 6 15 13 " 19

Children

Jii Fink Data Structures 1 a4 Jii Fink Data Structures 1 45

d-ary heap: Height of the tree

@ Nodes in an i-th level:

dl
@ Maximal number of nodes in the d-ary heap of height h:
Zh di _ dhﬂ 1
i=0 - d—1
@ Minimal number of nodes in the d-ary heap of height h:
=l
+1
d—1

@ The number of nod+es satisfies:

G H1<n< Gt

h<logy(1+(d—1)n) < h+1
@ The height of the d-ary heap is:

h=Tlog, (1+(d—1)n)] —1 = [log,(d — 1)n] = ©(log, n)
@ Specially, the height of the binary heap is:

h = |log, nJ

d-ary heap: Insert and decrease key

Insert: Algorithm

Jii Fink Data Structures 1 46

Input: A new element with a key x

v <+ the first empty block in the array

Store the new element to the block v

while v is not the root and the parent p of v has a key greater than x do
Swap elements v and p
Vep

a B wN =

\

Decrease key (of a given node)

Decrease the key and swap the element with parents when necessary (likewise in the
operation insert).

O(log n)

Jii Fink Data Structures 1 48

d-ary heap: Building
Initialize a heap from a given array of elements

1 for r < the last block to the first block do

Heapify likewise in the operation delete
Vr

while Some children of v has smaller key than v do

L u <+ the child of v with the smallest key

Swap elements u and v
Veu

o o s w N

After processing node r, its subtree satisfies the heap property.

Jifi Fink Data Structures 1 50

Binomial tree

Definition
@ A binomial tree By of order 0 is a single node.

@ A binomial tree By of order k has a root node whose children are roots of binomial
trees of orders 0,1,...,k — 1.

Alternative definition

A binomial tree of order k is constructed from two binomial trees of order k — 1 by
attaching one of them as the rightmost child of the root of the other tree.

Recursions for binomial heaps

By By Bi_2 B+
By

Jii Fink Data Structures 1 52

d-ary heap: Insert and decrease key

Example: Insert 5

Jii Fink Data Structures 1 47

d-ary heap: Delete min

O
® o
W @ & @
G @) 69

Move the last element to the root v
while Some children of v has smaller key than v do
L u « the child of v with the smallest key

Algorithm

Swap elements u and v
Veu

a s woN =

Complexity

If d is a fix parameter: O(log n)
If d is a part of the input: O(d log, n)

Jii Fink Data Structures 1 49

d-ary heap: Building

@ Heapify a subtree with height h: O(h)
@ The number of nodes at height h is at most [d*% "~"=1] = [dh’i‘1

@ Total time complexity is

[logy n]

> o) = (’)(n; %) - o(n)

Jii Fink Data Structures 1 51

Binomial tree: Example

Recursions for binomial heaps

By_1

Binomial trees of order 0, 1, 2 and 3
By O By B> .
& @& 6 @
O

Jii Fink Data Structures 1 53

Binomial tree: Properties Set of binomial trees

Observations

Recursions for binomial heaps ; I T
For every n there exists a set of binomial trees of pairwise different order such that the

total number of nodes is n.
Bi—1 Relation between a binary number and a set of binomial trees
Binarynumbern = 1 0 0 1 1 0 1 0
Bk—1 i

By B Bx—2 Bx1 B

Binomial heap contains: By By By B
Observations Example of a set of binomial trees on 10102 nodes
A binomial tree By has
@ 2% nodes, o e

height k, @ 9 e e

k children in the root,

(]
°
@ maximal degree k, @ 0
°

k
(%) nodes at depth d. @
Binomial heap Binomial heap: Height and size

Binomial heap
A binomial heap is a set of binomial trees that satisfies

@ Each binomial tree obeys the minimum-heap property: the key of a node is greater Observation
than or equal to the key of its parent. Binomial heap contains at most log,(n + 1) trees and each tree has height at most
@ There is at most one binomial tree for each order. log, n.

Example

Relation between a binary number and a set of binomial trees

®
OaOz0),

()

@-E

Binarynumbern = 1 0 0 1 1 0 1 0
e 0 Binomial heap contains: B; By Bs B

@
8

Binomial heap: Representation

Binomial heap: Operations Decrease-key and Simple join

Decrease the key and swap its element with parents when necessary
@ an element (key and value), (likewise in a binary heap).

@ apointer to its parent,

@ a pointer to its most-left child, Simple join

@ apointer to its right sibling and Two binomial trees By_ of order k — 1 can be joined into By in time O(1).
@ the number of children.

A node in a binomial tree contains

Binomial trees in a binomial heap

Binomial trees are stored in a linked list. o A
By By Bi_2 Bi_1

The following values need to be set:
@ the child pointer in the node v,

@ The child and the sibling pointers form a linked list of all children.
@ Sibling pointers of all roots are used for the linked list of all trees in a binomial

heap @ the parent and the sibling pointers in the node v and
@ the number of children in the node w.

Binomial heap: Operations Join and Insert Binomial heap: Operations Find-min and Delete-min
_

It works as an analogy to binary addition. We start from the lowest orders, and X . . X .

whenever we encounter two trees of the same order, we join them. O(1) if a pointer to the tree with the smallest key is stored, otherwise O(log n).

Binomial tree Bs Bs Bi Bs B B B Split the tree with the smallest key into a new heap by deleting its root and join the new
First binomial heap 0 1 1 0 1 1 0 heap with the rest of the original heap. The complexity is O(log n).

Second binomail heap | 0 1 1 0 1 0 0

Joined binomial heap 1 1 0 1 0 1 0

Complexity of operation Insert Minimal key

Complexity is O(log n) where nis the total number of nodes. ¢
B8 LA A
Insert is implemented as join with a new tree of order zero.

- 0 @@

Rest of the original heap

@ The worst-case complexity is O(log n).
@ The amortized complexity is O(1) — likewise increasing a binary counter.

Jifi Fink Data Structures 1 60 Jifi Fink Data Structures 1 61

Lazy binomial heap

Difference

Lazy binomial heap is a set of binomial trees, i.e. different orders of binomial trees in a
lazy binomial heap is not required.

Join and insert
Just concatenate lists of binomial trees, so the worst-case complexity is O(1).

Delete min

@ Delete the minimal node
@ Append its children to the list of heaps
@ Reconstruct to the proper binomial heap

Jifi Fink Data Structures 1 62

Lazy binomial heap: Reconstruction to the proper binomial heap

Worst-case complexity

@ The original number of trees is at most n.

@ Every iteration of the while-loop decreases the number of trees by one.
@ The while-loop is iterated at most n-times.

@ Therefore, the worst-case complexity is O(n).

Amortized complexity

@ Consider the potential function ® = the number of trees.

@ The insert takes O(1)-time and increases the potential by 1, so its amortized time
is O(1).

@ One iteration of the while-loop takes O(1)-time and decreases the potential by 1,
so its amortized time is zero.

@ The remaining steps takes O(log n)-time.

@ Therefore, the amortized time is O(log n).

Jifi Fink Data Structures 1 64

Fibonacci heap

@ Fibonacci heap is a set of trees.
@ Each tree obeys the minimum-heap property.
@ The structure of a Fibonacci heap follows from its operations.

Representation

Node of a Fibonacci heap contains

an element (key and value),

@ a pointer to its parent,

@ a pointer to its most-left child,

@ a pointer to its left and right sibling,
@ the number of children and

a flag which is set when the node losses a child.
Fibonacci heap is a linked list of trees.

Jifi Fink Data Structures 1 66

Fibonacci heap: Decrease-key

Example

Jifi Fink Data Structures 1 68

Lazy binomial heap: Reconstruction to the proper binomial heap

@ While the lazy binomial heap contains two heaps of the same order, join them.
@ Use an array indexed by the order to find heaps of the same order.

Algorithm

1 Initialize an array of pointers of size [log, n|
2 for each heap h in the lazy binomial heap do
0 < order of h
while arrayfo] is not NIL do
h <+ the join of h and array[o]
array[o] < NIL
o+ o+1

8 array[o] < h
9 Create a binomial heap from the array

N o o s

Jii Fink Data Structures 1

Heap: Overview

Complexity table
Binary Binomial Lazy binomial
worst | worst | amort | worst | amort
Insert logn | logn 1 1 1
Decrease-key | logn | logn | logn | logn | logn
Delete-min logn | logn | logn n logn

Can we develop a heap with faster delete-min than O(log n) and insert in time O(1)?
Next goal
We need faster operation Decrease-key.

If we relax the condition on trees in a binomial heap to be isomorphic to binomial trees,
is there a faster method to decrease the key of a given node?

Jii Fink Data Structures 1 65

Fibonacci heap: Operations
Concatenate lists of trees. Complexity O(1).

Append a single node tree to the list of trees. Complexity O(1).

Every node except roots can lose at most one child.

When a node u losses a child, the flag in u is set.

When u losses a second child, u is severed from its parent and whole subtree is
inserted to the list of trees.

This separation may lead to a cascading cut.
Every root is unmarked.

Jii Fink Data Structures 1 67

Fibonacci heap: Decrease-key

Algorithm

Input: A node u and new key k
1 Decrease key of the node u
2 if u is a root or the parent of u has key at most k then
3 L return # The minimal heap property is satisfied

4 p + the parent of u

s Unmark the flag in u

6 Remove u from its parent p and append u to the list of heaps

7 while p is not a root and the flag in p is set do

8 u«p

9 p < the parent of u

[} Unmark the flag in u

1 Remove u from its parent p and append u to the list of heaps

2 if p is not a root then
3 | Settheflagin p

Jii Fink Data Structures 1 69

Fibonacci heap: Delete-min

Idea from lazy binomial heaps

@ Binomial heap joins two binomial trees of the same order.
@ In Fibonacci heap, the order of a tree is the number of children of its root.

Algorithm

Input: A node u to be deleted
1 Delete the node u and append its children to the list of trees
Reconstruction likewise in lazy binomial heap
2 Initialize an array of pointers of a sufficient size
3 for each tree t in the Fibonacci heap do
¢ «+ the number of children of the root of ¢
while arrayfc] is not NIL do
t « the join of t and array|[c]
array[c] < NIL
c+c+1

® N @ o s

9 array[c] < t
10 Create a Fibonacci heap from the array

Jifi Fink Data Structures 1 70

Fibonacci heap: Structure

Invariant

For every node u and its i-th child v holds that v has at least
@ j— 2 children if v is marked and
@ i — 1 children if v is not marked.

Size of a subtree

Let sx be the minimal number of nodes in a subtree of a node with k children.
Observe that s > Sk_» + Sk_3 + Sk—a + -+ S2 + 81 + So + So + 1.

®

Jii Fink Data Structures 1 72

Fibonacci heap: Complexity

Worst-case complexity

@ Operation Insert: O(1)
@ Operation Decrease-key: O(log n)
@ Operation Delete-min: O(n)

ortized complexity: Potential

& = t+ 2m where t is the number of trees and m is the number of marked nodes

Amortized complexity: Insert

@ cost: O(1)
o Ad =1
@ Amortized complexity: O(1)

Jifi Fink Data Structures 1 74

Fibonacci heap: Amortized complexity of Delete-min

Delete root and append its children
@ Cost: O(log n)
e Ad < O(log n)
@ Amortized complexity: O(log n)

@ Cost: O(1)
o Ad=—-1
@ Amortized complexity: Zero

Remaining parts

@ Cost: O(log n)
@ Ad=0
@ Amortized complexity: O(log n)

Total amortized complexity
O(log n)

Jifi Fink Data Structures 1 76

Fibonacci heap: Fibonacci numbers

Definition
@ [R=0
e F=1

@ Fy=Fk_1+ Fcofork>2

Properties

® S Fi=Fipa—1
K_(1_ K
° F = (1+\/5)2k¢(% V5)

-2 ()’

A straightforward application of the mathematical induction.

Jii Fink Data Structures 1 7

Fibonacci heap: Structure

Size of a subtree

Let s, be the minimal number of nodes in a subtree of a node with k children.
Observe that sy > Sx_2 + Sk—3 + Sk—4 + -+ S2+ 81 + S0 + So + 1

_

Fibonacci numbers
(") Fg:OandF1 =1
@ Fy=Fy_1+ Fko
YK Fi=Fe—1
_ (VB —(1-VB)¥
° Fu="m

o i ()

@ Sk > Fii2

Corollary

k+2
A tree of order k has at least sk > F2 > (%) nodes. Therefore,

@ root of a tree on m nodes has O(log m) children and
@ Fibonacci heap has O(log n) trees after operation Delete-min.

Jii Fink Data Structures 1 73

Fibonacci heap: Amortized complexity of Decrease-key

Single iteration of the while-loop (unmark and cut)

@ Cost: O(1)
e AP=1-2=—1
@ Amortized complexity: Zero

Remaining parts

@ Cost: O(1)
e Ad <1
@ Amortized complexity: O(1)

Total amortized complexity
o(1)

Jii Fink Data Structures 1 75

Appending all children of the root can be done in O(1) by a simple concatenating of
linked lists. However, some of these children can be marked, so unmarking takes
O(log n)-time as required by our definition. In a practical implementation, it is not
important when flags of roots are unmarked.

Jii Fink Data Structures 1 76

Complexity table
Binary Binomial Lazy binomial Fibonacci
worst | worst | amort | worst | amort | worst | amort
Insert logn | logn 1 1 1 1 1
Decrease-key | logn | logn | logn | logn | logn | logn 1
Delete-min logn logn | logn n logn n logn

Jifi Fink Data Structures 1

Heaps: Dijkstra’s algorithm

Number of operations

Dijkstra’s algorithm may call
@ operation Insert for every vertex,
@ operation Delete-min for every vertex and

@ operation Decrease-key for every edge.
We assume that m > nwhere n = |V| and m = |E]|.

Complexity table
Array | Binary | Binomial | Fibonacci k-ary
Insert 1 logn 1 1 log, n
Delete-min n logn log n logn klog, n
Decrease-key 1 logn logn 1 log, n
Dijkstra’s [mlogn | mlogn | m+ nlogn | mlog,,,,n

Linear-time complexity
@ When m/n = ©(m) using an array.
@ When m/n = Q(n®) using a k-ary heap.
@ When m/n = Q(log n) using a Fibonacci heap.

Jifi Fink Data Structures 1

Outline

| |
| |
| 3

e Cache-oblivious algorithms

Jifi Fink Data Structures 1 80

Memory models: A trivial program

log, n

Jii Fink Data Structures 1 82

Heaps: Dijkstra’s algorithm

Problem

Given a graph G = (V, E) with non-negative weight on edges w and a starting vertex s,
find the shortest paths from s to all vertices.

Algorithm

1 Create an empty priority queue Q for vertices of G
2 for v < Vdo

3 distance[v] < 0 if v = s else co

4 Insert v with the key distance[v] into Q

while Q is non-empty do
Extract the vertex u with the smallest key (distance) from Q
for v < neighbour of u do
if distance[v] > distance[u] + w(u, v) then
distance[v] < distance[u] + w(u, v)
Decrease the key of vin Q

© ® N o a

°

Jii Fink Data Structures 1 78

@ The complexity for k-ary heap is O(nk log, n + mlog, n).
Both terms are equal for k = m/n.
The term log,,, , nis O(1) if m > n'** for some ¢ > 0.

@ Using a Fibonacci heap is inefficient in practice.

@ Monotonic heaps (e.g. Thorup heap) have Delete-min in time O(log log n), so
Dijkstra’s algorithm runs in O(m + log log n).

@ More details are presented in the course “Graph Algorithms” by Martin Mares.

Jifi Fink Data Structures 1
Techniques for memory hierarchy

Example of sizes and speeds of different types of memory

size speed
L1 cache 32 KB | 223 GB/s
L2 cache | 256 KB 96 GB/s
L3 cache 8 MB 62 GB/s

RAM 32GB | 23GB/s
HDD 1 112GB | 56 MB/s
HDD 2 2TB | 14 MB/s
Internet =9 10 MB/s

A trivial program
1 for (i=0; i+d<n; i+=d) do
2 | Alil=i+d
3 Ali]=0
for (j=0; j< 2%8; j++) do
| i=Al]

[LIFN

JiFi Fink Data Structures 1

Memory models

||

@ For simplicity, consider only two types of memory called a disk and a cache.
© Memory is split into pages of size B. ©

© The size of the cache is M, so it can store P = % pages.

© CPU can access data only in cache.

© The number of page transfers between disk and cache in counted. ®

Q@ For simplicity, the size of one element is unitary. ®

External memory model

Algorithms explicitly issues read and write requests to the disks, and explicitly
manages the cache.

Cache-oblivious model
Design external-memory algorithms without knowing M and B. Hence,

@ a cache oblivious algorithm works well between any two adjacent levels of the
memory hierarchy,

@ no parameter tuning is necessary which makes programs portable,
@ algorithms in the cache-oblivious model cannot explicitly manage the cache.
Cache is assumed to be fully associative.

Jifi Fink Data Structures 1 83

@ Also called a black or a line. Cache-oblivious analysis: Scanning
@ For simplicity, we consider only loading pages from disk to cache, which is also

called page faults.

respectively. ; -
Traverse all elements in an array, e.g. to compute sum or maximum.

Element Block Memory

|

@ The optimal number of page transfers is [n/B].
@ The number of page transfers is at most [n/B] + 1.

Array reversal

Assuming P > 2, the number of page transfers is the same. ©

Jifi Fink Data Structures 1 83 Jifi Fink Data Structures 1 84

@ We also assume that CPU has a constant number of registers that stores loop Cache-oblivious analysis: Mergesort
iterators, O(1) elements, etc.
Whole array fits into cache, so 2n/B + O(1) page are transfered. ©

Size of a block Height of the recursion tree
ni 1
n/2(I 1
n/41 T] log,(n/2)
: log, n
P4 —

] log, z
1

@ Let z be the maximal block in the recursion that can be sorted in cache.

Q Observe: z< ¥ <27

© Merging one level requires 24 + 22 + O(1) = O(§) page transfers. @

@ Hence, the number of page transfers is O(g) (1 +log, 2) = O(5log). @

Jii Fink Data Structures 1 84 Jii Fink Data Structures 1 85

@ Half cache is for two input arrays and the other half is for the merged array.

@ Merging all blocks in level i into blocks in level i — 1 requires reading whole array
and writing the merged array. Furthermore, misalignments may cause that some
pages contain elements from two blocks, so they are accessed twice.

© Funnelsort requires O (3 logp 3) page transfers. Beginning of the heap

Cache-oblivious analysis: Binary heap and search

Binary heap: A walk from the root to a leaf

Accessed nodes Page

c v T

@ The path has ©(log n) nodes.

@ First ©(log B) nodes on the path are stored in at most two pages. ©
© Remaining nodes are stored in pair-wise different pages.

@ O(log n — log B) pages are transfered. @

@ O(log n) elements are compared with a given key.

o Last ©(log B) nodes are stored in at most two pages.

@ Remaining nodes are stored in pair-wise different pages.
@ O(logn — log B) pages are transfered.

Jifi Fink Data Structures 1 85 Jifi Fink Data Structures 1 86

@ One page stores B nodes, so the one page stores a tree of height log,(B) + O(1), Cache-oblivious analysis: Cache-aware search
if the root is well aligned.

@ More precisely: ©(max {1,log n — log B})
Search in a balanced binary search tree

Height of a tree is ©(log n), so ©(log n) pages are transfered. ©

Cache-aware algorithm
Cache-aware algorithms use exact values of sizes of a page and cache.

Search in an (a,b)-tree and cache-aware binary tree

@ Choose a and b so that the size of one node of an (a,b)-tree is exactly B.

@ Height of the (a,b)-tree is at most log, n + O(1).

@ Search from the root to a leaf requires only ©(log, n) page transfers. @

@ Replace every node of the (a,b)-tree by a binary subtree stored in one memory
page. ®

@ A search in this binary tree requires also ©(logg n) page transfers. @

@ However, we would prefer to be independent on B.

Jifi Fink Data Structures 1 86 Jifi Fink Data Structures 1 87

@ When nodes are qllocated independently, nodes on a path from the root to a leaf Cache-oblivious analysis: Cache-aware representation
can be stored in different pages.

@ The height would be between log, n and 1 + log, n and these bounds would be atjaja2
equal to ©(logg n).

b1]b|b2 ci]c]c2 d1]d[d2 elefe2
@ Assuming whole subtree also fits into a single memory page. (o1]o]e2] Lot [e] ‘k' d‘ [o]2] [e1]e]e2]
@ This is also the best possible (the proof requires Information theory). [r]t]re] EMQ_ZI - SKpped.- M [21]z2]22]

alat]a2] b [b1]o2] ¢ [c1]c2| d [a1]oe] e [et]e2] ¢ [] | [z]z1]z2
N e — I I __
Path from the root to the leaf /2

Cache-oblivious analysis: The van Emde Boas layout Cache-oblivious analysis: The van Emde Boas layout

Recursive description

>
@ Van Emde Boas layout of order 0 is a single node.
h
@ The layout of order k has one “top” copy of the layout of order k — 1 and every leaf lz]
of the “top” copy has attached roots of two “bottom” copies of the layout of order
k — 1 as its children. h
All nodes of the tree are stored in an array so that the “top” copy is the first followed by B "ﬁ“
2

all “bottom” copies.

The order of nodes in the array

Number of page transfers

@ Let h = log, n be the height of the tree.

Let z be the maximal height of a subtree in the recursion that fits into one page.
Observe: z < log, B < 2z.

The number of subtrees of height z on the path from the root to a leaf is

? < 52 —2loggn

Hence, the number of page transfers is O(logg n).

Jifi Fink Data Structures 1 89 Jifi Fink Data Structures 1 920

@ What is the number of subtrees?
@ What is the number of nodes in each subtree?

o Is there a simple formula to determine indices of the parent and children for a Initialize of an array A to form the van Emde Boas layout ©
given index of an element in this array?

Cache-oblivious analysis: The van Emde Boas layout: Initialization

1 Function Init (A, n, root parent) @

@ Find algorithm which returns indices of the parent and children for a given index of 5 L + empty
an element. Is there a faster algorithm than O(loglog n)? 3 if n == 1 then
@ Find algorithm which for a given node u write all nodes of the path from u to the 4 A[0].parent « root_parent
root in time linear in the length of the path. 5 A[0].children[0], A[0].children[1] <— NULL
6 else
7 k < min, such that 2% > n ®
8 s<227 1@
9 P < Init (A, s, root.parent) ®
10 C+—A+s®
1 i«0®
12 while C< A +ndo
13 L.append(1nit (C, min{s,A+n— C}, P+ i/2]))
14 P[li/2]].children[i mod 2] +- C
15 C+C+s®
16 i+ i+1
17 return L

Jifi Fink Data Structures 1 90 Jifi Fink Data Structures 1 91

@ Every element of the array contains pointers to its parent and children. Cache-oblivious analysis: Matrix transposition: Simple approach
@ nis the size of array to be initialized

Returns a list of all leaves Page replacement strategies

© The minimal number of subdivision of the binary tree on n nodes to reach trivial Optimal: The future is known, off-line

o sNubtrI:es I o . baivisi LRU: Evicting the least recently used page
umber of noaes In every subtree arter one subaivision FIFO: Evicting the oldest page

@ |Initialize the top subtree. Leaves of the top subtree are roots of bottom subtrees.
@ The root of the first bottom subtree Simple algorithm for a transposing matrix A of size k x k
@ Index of bottom subtrees fori < 2to k d
o) 1 fori«+ 2to k do
Q Initialize the i-th bottom subtree L forj« i+ 1to k do

2
@ Move to the next subtree 3 | Swap(Aj, Aj)

For simplicity, we assume that B < kand P < k. ©

The number of page transfers by the simple algorithm

@ Optimal page replacement: Q ((k — P)?)
@ LRU or FIFO: Q(k?)

Jii Fink Data Structures 1 91 Jifi Fink Data Structures 1 92

@ One page stores at most one row of the matrix and cache cannot store all Cache-oblivious analysis: Matrix transposition: Simple approach
elements of one column at once.

Representation of a matrix 5 x 5 in memory and an example of memory pages

11]12]18]14] 15] 21| 22| 23 24] 25] 31 [32] 33] 34| 35] 41 [42 [43[44| 45] 51 | 52] 53] 54 55

Optimal page replacement

@ Transposing the first row requires at least k transfers.

@ Then, at most P elements of the second column is cached.

@ Therefore, transposing the second row requires at least k — P — 1 transfers.
@ Transposing the i-th row requires at least max {0, k — P — i} transfers.

@ The total number of transfers is at least 31577 = Q ((k — P)?).

LRU or FIFO page replacement

All the column values are evicted from the cache before they can be reused, so Q(k?)
pages are transfered.

Jifi Fink Data Structures 1 92 Jifi Fink Data Structures 1 93

Cache-oblivious analysis: Matrix transposition: Optimal approach How this matrix transposition can be implemented without recursion nor stack?

Recursively split the matrix into sub-matrices:

Air Ar2 T Al AL
A= A =
(Aot Az) (Al Ab

Number of page transfers

@ Tall cache assumption: M > B2

© Let z be the maximal size of a sub-matrix in the recursion that fit into cache.
@ Observe: z< B< 2z

@ There are (k/z)? sub-matrices of size z.

@ Transposition two such sub-matrices requires O(z) transfers.

@ The number of transfers is O (k?/B).

@ This approach is optimal up-to a constant factor.

Jii Fink Data Structures 1 94 JiFi Fink Data Structures 1

Cache-oblivious analysis: Comparison of LRU and OPT strategies Cache-oblivious analysis: Comparison of LRU and OPT strategies

Theorem (Sleator, Tarjan, 1985) Theorem (Sleator, Tarjan, 1985)

||

@ Let sy, ..., sk be a sequence of pages accessed by an algorithm. @ Lets,..., s, be asequence of pages accessed by an algorithm.
@ Let nopr and niry be the number of pages in cache for OPT and LRU, resp. @ Let nopr and nigy be the number of pages in cache for OPT and LRU, resp.
@ Let Fopr and Firy be the number of page faults during the algorithm. @ Let Fopr and Fpy be the number of page faults during the algorithm.

Then, Fry < ,Mgl'_iﬁngOPT =+ Nopr- Then, Flry < ﬁ’:ow + Nopr-

Corollary Proof

If LRU can use twice as many cache pages as OPT, then LRU transports at most twice
many pages than OPT does.

@ A subsequence of s, which LRU faults the same page twice, contains at least
nru + 1 different pages.
The asymptotic number of page faults for some algorithms @ If LRU faults f < Ncru pages during a subsequence of s, then the subsequence
accesses at least f different pages and OPT faults at least f — nopr pages during
In most cache-oblivious algorithms, doubling/halving cache size has no impact on the the subsequence.
asymptotic number of page faults, e.g.

@ Split the sequence of s into subsequences such that LRU has exactly n.ry page

@ Scanning: O(n/B) faults during each subsequence (except one).

@ Mergesort: O(T'; log ﬁ) © OPT has at least niry — nopr faults during each subsequence (except one).
@ Funnelsort: O(4logp 3) @ The additive term “+nopr” in the theorem is necessary for the exceptional
@ The van Emde Boas layout: O(logg n) subsequence in which LRU may have less than n.ry page faults.

Jifi Fink Data Structures 1 95 Jifi Fink Data Structures 1

Cache-oblivious analysis: Other algorithms and data structures Outline

°
8

@ Funnelsort

@ Long integer multiplication

@ Matrix multiplication

@ Fast Fourier transform e Hash tables

@ Dynamic B-trees @ Separate chaining
°
°

Priority queues : gﬂceféopﬁfﬂ%g

kd-tree @ Hash functions

Jii Fink Data Structures 1 97 Jifi Fink Data Structures 1 98

Hash tables Hash tables
@ Universe U ={0,1,...,u— 1} of all elements @ Find a good hash function
@ Represent a subset S C U of size n @ Handle collisions

@ Store Sin an array of size m using a hash function h: U — M where
M={0,1,....m—1}

@ Collision of two elements x, y € S means h(x) = h(y)

@ Hash function h is perfect on S if h has no collision on S

Simple hash function

h(x) =x mod m
+ Fast to compute
+ h~'(j) have almost the same size for all j € M

Adversary subset + Works well only if the input is random
If u > mn, then for every hashing function h there exists S C U of size n such that - The adversary subset is easily determined (DOS attack)
|h(S)| = 1.

Cryptographic hash function, e.g. MD5, SHA-1

Birthday paradox + Hard to deliberately find a collision
When n balls are (uniformly and independently) thrown into m > n bins, the probability - Slow and complex
that every bin has at most one ball is

Totally random hash function (assumed in analysis of hash tables)

n—1 .
m— i 2
~e m, Values h(x) for x € S are assumed to be independent random variables with the

i=1 uniform distribution on M.

Jifi Fink Data Structures 1 Jifi Fink Data Structures 1 100

Hash tables: Separate chaining Hash tables: Separate chaining: Example

°
8

Description
Bucket j stores all elements x € S with h(x) = j using some data structure, e.g. Using illustrative hash function h(x) = x mod 11
@ alinked Illsts 0.22.55
@ a dynamic array
@ a self-balancing tree 2
14, 80
5,27
: 17
Implemetations
@ std::unordered_map in C++ 8,30
@ Dictionary in C#
@ HashMap in Java 21
@ Dictionary in Python

Hash tables: Separate chaining: Analysis © 37% buckets are empty for a = 1

@ Successful search: The total number of comparison to find all elements in the
table is computed by summing over all buckets the number of comparisons to find

all elements in a bucket, thatis 37, 52/, k — 3, A4 Hence, the expected

® a = 7 is the load factor number of comparisons is
2
@ [; is a random variable indicating whether i-th element belongs into j-th bucket L jw =i+ A i+ iE[A/?] =14+g— 5.
@ A =35 ljis the number of elements in j-th bucket Unsuccessful search: Assuming that uniformly distributed random bucket is
search, the number of comparisons is E[Aj] = a.
Q@ EA]l=«

Q E[A]=o(1+a—1/m)
Q Var(A) =a(1 —1/m)
Q limps P[A=0] =€ > @

Number of comparisons in operation Find

The expected number of key comparisons is « for the unsuccessful search and
4% = zi for the successful search. Hence, the average complexity of Find is

m

O(1+a). ®

Jii Fink Data Structures 1 103 Jii Fink Data Structures 1 103

Hash tables: Separate chaining: Analysis Lete>0andc=(1+ 5)%. We have to estimate P[max; A; > cy]. Observe that
Plmax; A; > cu] < 37, P[A; > cu] = mP[A; > cu]. We apply Chernoff bound on

variables f o ootain

An event E, whose probability depends on a number n occurs with high probability if P[A; > cu] < e " eenloac
A i 1
t:e;re;emsts a constant ¢ > 0 and an integer o such that P[E,] > 1 — . for every _ o) 0 (1) o og (Sl ar
= e

_ ewe(we)m';[%f(ue)mg n+(1+¢) ,uf;lgcgn log(£ log log n)

Suppose Xi, .. ., X, are independent random variables taking values in {0,1}. Let X =3 e+~ &) giogn +(1+) —Toggn
denote their sum and let = E[X] denote the sum’s expected value. Then for any 9
¢ > 1 holds < 7=
gle—1n n'tz
A < con log(4 loglog)
‘ Indeed, both m and % converge to zero, so for sufficiently large n the
Upper bound on the longest chain power of nis negative. Hence, P[max; A; < (1 + e),o';,%] >1-— n"% .

Assuming « = ©(1), every bucket has O(,o';%) elements with high probability.

Expected length of the longest chain (without a proof)

Assuming o = ©(1), the expected length of the longest chain is ©(z23") elements.

loglog n

Jii Fink Data Structures 1 104 Jii Fink Data Structures 1 104

Hash tables: Separate chaining: Example Hash tables: Separate chaining: Analysis

12, The worst case search time for one element

10 T*}L/
81 W Amortized complexity of searching is O(1) with high probability.
/>(Probability of k comparisons for searching one element

logn
loglogn /*

The expected time for operations Find in the worst case is O(

liMnsoo PIA; = K] = g @

4 i
?// Lemma: Number of elements in ©(log n) buckets

Assuming « = ©(1) and given dlog n buckets T where d > 0, the number of elements
in T is at most ead log n with high probability. @

The maximal number of elements in a bucket
[}

0 ‘ ‘ : ‘ ‘ ‘ ‘ | Amortized complexity for searching Q(log n) elements (Patrascu [7])
10" 10? 10° 10* 10° 108 107 108 10° . . ; n
Assuming o = ©(1) and a cache of size ©(log n), the amortized complexity for
Total number of elements = the number of buckets searching Q(log n) elements is O(1) with high probability. ® @
Jifi Fink Data Structures 1 105 Jifi Fink Data Structures 1 106
@ A; = k if k elements from S falls into the bucket j and others n — k elements falls Hash tables: Separate chaining: Multiple-choice hashing
into other buckets. Therefore,
n\ 1 1\ n* a\n" o¥ " "
PIA = k] = <k> — (1 - E) ~ (1 - E) ~ o 2-choice hashing

Element x can be stored in buckets hy(x) or hz(x) and Insert chooses the one with

@ Let the indicator variable X; is 1 if h(i) € T for i € S. The number of elements in T smaller number of elements where hy and h, are two hash functions.

is X =37, X with o = E[X] = E[}];cr A]] = | T|E[A] = adlog n. Using Chernoff
bound we obtain

2-choice hashing: Lon hain (with roof
P[X > cu] < exp{dalogn(c —1— clogc)} = n?*(c~1-ca0) _ p=do dlbleglislinedionosaticia il wiie ezl
The expected length of the longest chain is O(log log n).
forc=e.
@ A sequence of Q(log n) operations Find can be split into subsequences of length
log n. Furthermore, we use a cache for last log n elements to avoid repetitive d-choice hashing

searching of elements in the same bucket.

o) Element x can be stored in buckets h(x), ..., hq(x) and Insert chooses the one with
@ Iflog n searched elements are chosen randomly, they belong to pair-wise different smallest number of elements where h, . .., hy are d hash functions.

buckets with high probability (see the birthday paradox).

d-choice hashing: Longest chain (without a proof)

The expected length of the longest chain is 2297 4 O(1).

Jifi Fink Data Structures 1 106 Jifi Fink Data Structures 1 107

Hash tables: Linear probing Hash tables: Linear probing: Analysis

Memory consumption for separate chaining

Separate chaining uses memory for n element and Complexity of Insert and unsuccessful Find

@ m+ npointers if buckets are implemented using linked list, or For every o < 1, the expected number of key comparisons in operations Insert and

@ m pointers and m integers if buckets use dynamic arrays. unsuccessful Find is O(1).
Store elements directly in the table. Chernoff Bound

Suppose Xi, ..., X, are independent random variables taking values in {0, 1}. Let X

Linear probing denote their sum and let . = E[X] denote the sum’s expected value. Then for any
Insert a new element x into the empty bucket h(x) +i mod m with minimal i > 0 @2 il ele-—1u
assuming n < m. PIX > cu] < =

Operation Find
Iterate until the given key or empty bucket is fount. Better estimates (Knuth [4]) (without a proof)

The expected number of key comparisons is at most %(1 1= ﬁ) in a successful search

Operation Delete

4 4 . .
Flag the bucket of deleted element to ensure that the operation Find continues 2 (1 + <1—a)2> in a unsuccessful search and insert.

searching.

Jifi Fink Data Structures 1 108 JiFi Fink Data Structures 1 109

oletO<a<iandi<c<landg= ("‘;1)n. Observe 0 < g < 1. Hash tables: Other methods

@ First, we estimate the probability p; that t elements of S are hashed into T for
given subset of buckets T of size t, that is pr = P[|h(S) N T| = k]. In order to

apply Chernoff bound, let X; be the indicator variable that h(i) € T forall i € S. Quadratic probing

Then, o = ta. Hence, py = P[X = t] < P[X > cu] < ¢ Insert a new element x into the empty bucket h(x) -+ ai + bi® mod m with minimal
@ Next, we estimate the probability pj that we need k probings to find an empty i > 0 where a, b are fix constants.

space. The inserted or searched element is hashed into a bucket b. Let k and s

are numbers such that buckets b — s — 1 and b + k are empty buckets and all

buckets between b — s and b + k — 1 are occupied. Hence, Double hashing

/ oo koo s gt
P;f <X Ps+.k <q YS9 = =g) o Insert a new element x into the empty bucket hi(x) + ih2(x) mod m with minimal / > 0
@ Finally, we estimate the expected number of probings which is at most where h; and ho are two hash functions.

oo 2—
Sio ke < vig S0k = s

Brent’s variation for operation Insert

If the bucket
@ b = hy(x) + ih2(x) mod mis occupied by an element y and
@ b+ hx(x) mod mis also occupied but
@ c=b+ h(y) mod misempty,
then move element y to ¢ and insert x to b. This reduces the average search time.

Jifi Fink Data Structures 1 109 Jifi Fink Data Structures 1 110

Hash tables: Cuckoo hashing

Insert an element x into a

1 pos + hi(x)
2 for n times do
3 if T[pos] is empty then

Rasmus Pagh and Flemming Friche Rodler [6]

I e
Given two hash functions hy and h,, a key x can be stored in hi(x) or ho(x). 5 L return
Therefore, operations Find and Delete are trivial. s swap(x, T[pos])

7 if pos == hi(x) then
Insert: Example 8 e\ls‘I:OS < ha(x)
9
@ Successful insert of element x into hy(x) after three reallocations. 10 | pos + hi(x)

@ Impossible insert of element y into hy(y). e
1

12 insert(x)
hi(x) hi(y)

(
¢ o
u ”C\LL/M\HJ\;H/« | k H Qy | M @ Choose new hash functions hy and h,

hi(a) or ho(a) @ Increase the size of the table if necessary
@ Insert all elements to the new table

Jifi Fink Data Structures 1 m Jifi Fink Data Structures 1 112

Hash tables: Cuckoo hashing: Analysis Proof of the lemma by induction on :
k =1 For one element, the probability that it forms an edge ij is % So, the probability

Undirected cuckoo graph G that there is an edge jj is at most 23 < 1.

@ Vertices are positions in the hash table. k > 1 There exists a path between i and j of length k if there exists a path from i to u of
length kK — 1 and an edge uj. For one position u, the i-u path exists with probability
%. The conditional probability that there exists the edge uj if there exists i-u

Properties of the cuckoo graph path is at most - because some elements are used for the i-u path. By summing

 Operation Insert follows a path from Ay (x) to an empty position. over all posmoqs u, the probability that there exists i-j path is at most

mmc:‘*‘ mic = mck-
@ New element cannot be inserted into a cycle.
@ When the path from hy(x) goes to a cycle, rehash is needed.

@ Edges are pairs {h(x), h2(x)} for all x € S.

Insert without rehashing:

@ Using the previous lemma for all length k and all end vertices j, the expected
k

: : : n 1 oo —
enh of the paih duing operaton Insertfs M 2kes K < L 2 = oy

Let ¢ > 1 and m > 2cn. For given positions i and j, the probability that there exists a Number of rehashes:

path from i to j and the shortest one has length k is at most -1 @ Using the previous lemma for all length k and all vertices i = j, the probability that
e the graph contains a cycle is at most m3~° | —tr = 5.

Complexity of operation Insert without rehashing @ The probability that inserting rehashes z times is at most ﬁ

Let ¢ > 1 and m > 2cn. The expected length of the path is O(1). o The expected number of rehashes is at most 327 2y = -

Number of rehashes
Let ¢ > 2 and m > 2c¢n. The expected number of rehashes is O(1).

Jifi Fink Data Structures 1 113 Jii Fink Data Structures 1 13

Hash tables: Cuckoo hashing: Analysis Hash tables: Hash functions

Ay Operao EST Wi NG

Let ¢ > 1 and m > 2cn. The expected length of the path is O(1). @ Universe U = {0,1,...,u— 1} of all elements
@ Represent a subset S C U of size n

Amortized complexity of rehashing ° ?/}o_re{\g i? an a;rqaz :f}size musing a hash function h: U — M where

Let ¢ > 2 and m > 2cn. The expected number of rehashes is O(1).

Therefore, operation Insert has the expected amortized complexity O(1). .
Hashing random data
" — - " Every reasonable function f : U — S is sufficient for hashing random data,
The estimation in the proof is not optimal e.g. f(x) = x mod m

@ The probability that the cuckoo graph has a cycle is overestimated.

@ Rehashing is not necessary if the cuckoo graph has a cycle. Random hash function
In fact, the expected number of rehashes is O(1) even for ¢ > 1. ulog, m bits are necessary to represent a random hash function.
Adversary subsel
Find and Delete: O(1) worst case complexity If u > mn, then for every hashing function h there exists S C U of size n such that
Insert: O(1) expected amortized complexity for v < 0.5 [h(S)| = 1.

Jifi Fink Data Structures 1 114 Jii Fink Data Structures 1 115

Hash tables: Universal hashing Q Plh(x) = ziforevery i=1,....k—1]
= P[h(x;)) = ziforevery i=1,....,k —1and 3z, : h(xx) = z]

=3, cu Plh(x) = zforevery i=1,... . k] < m%
Q Plh(x1) = h(x2)] = P[3z € M : h(x) = z and h(xz) = 2]
= Zizem Plh(x1) = zand h(x) = z] < m#

@ Consider H = {x +— a; a€ M}. Then, P[ha(x) = z] = Pla=z] = 1; but
Plha(x1) = ha(x)] = Pla= a] = 1.

Universal hashing

A set H of hash functions is universal if randomly chosen h € H satisfies
Plh(x1) = h(x2)] < for every x; # x; elements of U.

2-universal hashing
A set #H of hash functions is 2-universal if randomly chosen h € H satisfies
P[h(x1) = z1 and h(x2) = 2] < 5 for every x; # xo elements of U and z;, z, € M.

S

k-universal hashing (also call k-wise independent)

A set H of hash functions is k-universal if randomly chosen h € H satisfies
Plh(x;) = zi forevery i=1,... k] < # for every pair-wise different elements
Xi,...,Xxk € Uand zq,...,2 € M.

@ If a function is k-universal, then it is also k — 1 universal. ®

o If a function is 2-universal, then it is also universal. ®

@ 1-universal function may not be universal. ®

Jii Fink Data Structures 1 116 Jii Fink Data Structures 1 116

Hash tables: Universal hashing: Multiply-mod-prime

Definition
@ pis a prime greater than u
@ hap(x) = (ax + b mod p) mod m
@ H={hap;ac{1,....,p—-1},be{0,....p—1}}

Lemma

For every prime p, let [p] = {0,...,p — 1}. For every different x1, xo € [p], equations
yi=axi+b modp
Y2 =axa+b mod p

define a bijection between (a, b) € [p]? and (y1, y2) € [p]?. @
Furthermore, these equations define a bijection between {(a, b) € [p]*; a# 0} and

{0n.y2) € [0 11 # y2}. @

4

The multiply-mod-prime set of functions # is universal. ®

Jifi Fink Data Structures 1 117

Hash tables: Universal hashing: Multiply-mod-prime

@ pis a prime greater than u

@ hap(x) = (ax + b mod p) mod m
© H={hap;a€{0,...,p—1},b€{0,....,p—1}}

For every prime p, let [p] = {0,...,p — 1}. For every different x1, x2 € [p], equations

yi=axi +b modp
Yo=axs+b mod p

define a bijection between (a, b) € [p]? and (y1, y2) € [p]?.

2-universality

For every x1, X2 € U, X1 # X2, and y1, y» € M it holds

2
Plhap(x1) = z1 and hap(x1) = 22] < ﬂ

P2
So, the multiply-mod-prime set of functions # is not 2-universal. ©® @

Hash tables: Universal hashing: Multiply-shift

Bits selection

For positive integers a, b, x, let bit, »(x) = L%ﬁzw

@ Assume u=2"and m=2'

@ ha(x) = bity_;w(ax)
@ 1 = {ha; aodd w-bit integer }

uint64_t hash(uint64_t x, uint64_t 1, uint64_t a)
{ return (axx) >> (64-1); }

Universality (without a proof)

For every x1, x2 € [2"], x1 # X2 it holds P[ha(x1) = ha(x2)] < %

Jifi Fink Data Structures 1 119

@ Consider xi, X2,y € [8] such that y = ax; = axz (mod). Then, 3 divides
a(x2 — x1). Since a and 3 are relatively prime, 3 divides x> — x4 which implies
X1 = Xo.

Jifi Fink Data Structures 1 120

@ Subtracting these equations, we get a(x; — x2) = y1 — y» mod p. Hence, for given
pair (1, y2) there exists exactly one a= (y1 — y2)(x1 — x2) ™' in the field GF(p).
Similarly, there exists exactly one b = y; — axy in the field GF(p).

@ Indeed, y; = y» if and only if a = 0.

@ For x1 # xo we have a collision ha p(x1) = hap(x2) iff y1 = y» (mod m). Note that
¥1 # ¥a. For given y; there are at most [2] — 1 values y, such that y; = y,
(mod m) and y1 # y». So, the total number of colliding pairs from
{0, y2) € [PF; y1 # e} is atmost p([2] — 1) < (2= — 1) < 22D The
bijection implies that there are at most 222 pairs from {(a, b) € [p]?; a # 0}

causing a collision hyp(x1) = has(xe). Hence, P[hap(x1) = hap(e)] < B2 <

1
e

Jii Fink Data Structures 1 17

@ There are at most [%}2 pairs (y1, y2) such that z; = y; mod mand z> = y»
mod m. The bijection implies that there are at most (%]2 pairs (a, b) such that
hap(x1) = z1 and hap(X2) = Z.

@ Considering a € {1,...,p — 1} leads to probability

[a1°
P[ha‘b(X1) = z; and hayb(X1) = Zg] < ﬁ

Jii Fink Data Structures 1 118

Hash tables: Universal hashing: Multiply-shift

Bits selection

For positive integers a, b, x, let bit, »(X) = [%Szbj

o Assumeu=2"andm=2'andv>w+/—1.
® hap(x) = bit,_;v(ax + b)
o H={hsp; a,be[2"]}

If « and 3 are relatively prime, then x — ax mod 3 is a bijection on [5]. ©

H is 2-universal, that is or every xi, Xz € [2"], x1 # X2 and 21, zz € M it holds
Plh(xi) = z1 and h(x:) = 2] < 5.

Jii Fink Data Structures 1 120

Hash tables: Universal hashing: Multiply-shift: 2-universality

H = {x > bit,_;,(ax + b); a,b € [2"]} is 2-universal where v > w + | — 1

@ Let s be the index of the least significant 1-bit in (X2 — x7)

@ Let 0 be the odd number such that x> — x; = 02°

© a~ ao mod 2" = bity,,(a0) is a bijection on [2'] ©

Q ar~ bits,v+s(a02°%) = bits,vs(a(x> — x1)) is a bijection on [2"]

Q aw— bitsy(a(xe — x1)) is a 2°-to-1 mapping [2"] — [2'~7]

Q@ b bits,v(ax; + b2°) is a bijection on [2"~°] for every a € [2"]

@ b bits,y(axi + b) is a 2°-to-1 mapping [2"] — [2"~°] for every a € [2"]

Q (a b) — (bitsy(axs + b), bits v (a(xe — x1))) is a 2%°-to-1 mapping [2']? — [2'~5]?
Q %its,w(axfrb) = bits, o ((aX1 +b)+a(x2 — X1)) = bits o0 (aX1 +b) +bits, o (@(X2 — X1))

@ (a b) — (bits,y(axs + b), bits v (axe + b)) is a 22°-to-1 mapping [2']*> — [2"~5]* ®
@ Sincew+/—-1<vands<w,itfollowsthats<w-—-1<v—/

@ (a,b) — (bit,—,(ax1 + b), bity_,,(axs + b)) is a 22~)-to-1 mapping [2']* — [2/]?
@ If a, b are independently uniformly distributed on [2"], then

Plh(x1) = 21 and h(xe) = z2] = Lot = .

Jifi Fink Data Structures 1 121

@ Follows from lemma for o = o and 3 = 2".
@ The second equality uses bity s(a(x2 — x1)) = 0.
@ Since («a,8) — (o, + B) is a bijection.

Jifi Fink Data Structures 1 121

@ Xx,..., Xy are coefficients of a polynomial of degree d.

@ Two different polynomials of degree at most d have at most d + 1 common points,
so there are at most d + 1 colliding values a.

Jifi Fink Data Structures 1 122

Outline

° Geometry
@ Range trees
@ Interval trees
@ Segment trees
@ Priority search trees

Jifi Fink Data Structures 1 124

Geometry: Range query in R!

Example of 1D range tree
For simplicity, consider a binary search tree containing points only in leaves.

Drawn subtrees contain points exactly points between aand b. @
How to determine the number of points in a given interval in O(log n)? ®

Jii Fink Data Structures 1 126

Hash tables: Universal hashing: Multiply-shift for vectors

Multiply-shift for fix-length vectors

@ Hash a vector xi,...,xq € U=[2"]into S=[2]and letv > w +/ — 1
© Ny, b(Xiy -+ Xa) = bity_1v(b+ YL, aixi)

® H ={ha, a6 a,-..,3,bc 2]}

@ H is 2-universal (without a proof)

Multiply-shift for variable-length string

@ Hash a string xo, ..., xqg € U into [p] where p > u is a prime.

® ha(xo, ..., Xa) = X%, xi@ mod p @

® H = {ha ac [p]}

® Plha(Xo, ..., Xa) = ha(Xg, ..., Xg)] < % for two different strings with d’ < d. ®

Multiply-shift for variable-length string Il
@ Hash a string Xo, ..., Xg € U into [m] where p > mis a prime.
® hapc(Xo,- .., Xd) = (b+ X%, xia mod p) mod m
® H = {hapc: ab,c e [p]}
@ Plhapc(X0,---sXd) = hapo(Xgs- -, Xy)] < % for different strings with o’ < d < £.

Jifi Fink Data Structures 1 122

Hash tables: Universal hashing: Multiply-shift for vectors

Tabulation hashing

@ Random tabular T1,... Ty
o Ti(x) - & Tu(Xq)

Mersenne prime

@ Prime in the form p = 27 — 1 is called Mersenne prime.
@ Eg.22 1,28 1,28 9,261 _ 1 28 _1 2107 _4
@ x = (x&p) + (x >> a) (mod p)

JiFi Fink Data Structures 1 123

Types of problems

@ Given set S of points (or other geometrical objects) in RY.
@ Find the nearest point of S for a given point.
@ Find all points of S which lie in a given region, e.g. d-dimensional rectangle.

Nearest point in R’

Given set of points S in R of size n, find the nearest point of S to a given point x.
Static Array: query in O(log n)
Dynamic Balanced search tree: query and update in O(log n)

Range query in R’

Given a finite set of points S in R, find all points of S in a given interval (a, b)
where k is the number of points in the interval.

Static Array: query in O(k + log n)
Dynamic Balanced search tree: query and update in O(k + log n)

JiFi Fink Data Structures 1 125

@ Nodes a and b are actually the successor of a and the predecessor of b,
respectively.

@ Remember the number of leaves in every subtree.

Jifi Fink Data Structures 1 126

Gel 2D range trees

@ Search tree for x-coordinates with points in leaves (x-tree).

@ Every inner node u contains in its subtree of all points S, C S with x-coordinate in
some interval.

@ Furthermore, the inner node u also contains a search tree of points S, ordered by
y-coordinates (y-tree).

Example
x-tree y-trees

Contains the same points as the subtree of u.
Q

Contains the same points as the subtree of w.
o

Contains the same points as the subtree of v.
(o]

Contains the same points as the subtree of z.

Et cetera.

Jii Fink Data Structures 1 127

Geometry: 2D range trees: Range query
Range query

@ Search for keys ax and by in the x-tree.

@ Identify all inner nodes in the x-tree which store points with x-coordinate in the
interval (ax, bx).

@ Run (ay, by)-query in all corresponding y-trees.

Q

(illustrative) y-trees

O(k + log? n), since (ay, by)-query is run in O(log n) y-trees.

Jifi Fink Data Structures 1 129

@ Given an array of sorted elements, most balanced search trees can be built in

O(n)-time.
© Use master theorem, or observe that building one level of x-tree takes O(n)-time.

Jii Fink Data Structures 1 130

@ Dimension d is assumed to be a fix parameter.

Jifi Fink Data Structures 1 131

Geometry: 2D range trees: Space complexity

Vertical point of view
Every point p stored in exactly one leaf / of the x-tree; and moreover, p is also stored in
all y-trees corresponding to all nodes on the path from the x-root to /.

Horizontal point of view
Every level of x-tree decomposes the set of points by x-coordinates. Therefore, y-trees
corresponding to one level of x-tree contain every point exactly once.

Space complexity
Since every point is stored in O(log n) y-trees, the space complexity is O(nlog n).

Jifi Fink Data Structures 1 128

Geometry: 2D range trees: Build

Straightforward approach

Create x-tree and then all y-trees using operation insert. Complexity is O(nlog2 n).

Faster approach

First, create two arrays of points sorted by x and y coordinates. Then, recursively ...
@ Let x-root be the medium of all points by x-coordinate.
@ Create y-tree for the x-root. ©
@ Split both sorted arrays by x-root.
©Q Recursively create both children of x-root.

Complexity

@ Recurrence formula T(n) = 2T(n/2) + O(n) ®
@ Complexity is O(nlog n).

Jii Fink Data Structures 1 130

Geometry: Higher dimensional range trees

3D range trees

@ Create 2D range tree for x and y coordinates.
@ For every node u in every y-tree, create a search tree ordered z-coordinate
containing all points of the subtree of u.

d-dimensional range trees
Add dimensions one by one likewise in 3D range tree.

Complexity ©
Space: (’)(nlogf"1 n) since every point is stored in © (Iog2 n) Zz-trees, etc.

Query: (9(k + log® n) since (a, b,)-query is run in O(Iog2 n) z-trees, etc.
Build: O(nlog” n) if dimension-trees are created one-by-one by insertion.

O(nlog"’1 n) if we use the faster approach likewise in 2D.

Jii Fink Data Structures 1 131

Geometry: Layered range trees

Replace y-trees by sorted arrays.

x-tree y-arrays
u

1]

1]

1

Et cetera.
Higher dimension
Replace trees of the last dimension by sorted arrays.
Jifi Fink Data Structures 1 132

Geome Fractional cascadi

Motivative problem

Given sets Sy C --- C S, where |Sn| = n, create a data structure for fast searching
elements x € Sy inallsets Si,...,Syn. ©

Fractional cascading

Every set S; is sorted. Furthermore, every element in the array of S; has a pointer to
the same elementin S;_. @

[1]2]sf4als]el7]a]e] =

S:

Complexity of a search in m sets
O(m + log n)

Jifi Fink Data Structures 1 133

Geometry: Layered range trees and fractional cascading

Using fractional cascading

Use fractional cascading for the last dimension arrays, e.g. d = 2:

x-tree Fractional cascading

%@giﬁﬁ?

Complexity of one range query in 2D
@ Search in the x-tree takes O(log n).
@ Binary search for a, and by in y-arrays takes O(log n).

Complexity of one range query in d dimensions

O(k + log?~" n)

Jii Fink Data Structures 1 134

@ Clearly, 0 < < % The term “—1” is important only for small subtrees when their
size is odd.

@ ltis possible to use rotations to keep the BB[«]-tree balanced. However in range
trees, a rotation in the x-tree leads to rebuilding many y-trees.

@ This proof can be directly reformulated into potential method as follows. We define
a potential ®(u) of a node u to be

d>(u) _ 0 if Sysen = Su.right = %"
Sy if min {Sy jett, Su.rignt} = aSu

and all other cases are defined using the linear interpolation of these two cases,
that is

®(u) = 7 (Su— 2min {Sy.ieft, Su.right}) -

1
—2a
This potential gives enough money when reconstruction is needed and zero after
the reconstruction. Observe that the change of potential A®(u) is at most O(1)
when an element is inserted or deleted in the subtree of u. The total potential ¢ is
the sum of potentials of all nodes and its change is at most O(log n) for an
operation Insert or Delete (excluding reconstruction).

Jifi Fink Data Structures 1 135

@ Without fractional cascading.
@ Balancing the x-tree requires reconstruction of trees in all dimensions.

Jifi Fink Data Structures 1 136

@ A straightforward solution gives complexity O(mlog n).
@ Elements S;\ S;_1 point to their predecessors or successors.

Jifi Fink Data Structures 1 133

Geometry: Intermezzo: Weight balanced trees: BB[«]-tree

Description (Jirg Nievergelt, Edward M. Reingold [5])
A binary search tree is BB[a]-tree if for every node u

@ Syen > asy, — 1 and

@ Syright > asy —1

where the size s, is the number of leaves in the subtree of u. ©

The height of a BB[a]-tree is at most log 1 (n) + O(1) = O(log n).

1
T—a

Balancing after operations Insert and Delete
When a node u violates the weight condition, rebuild whole subtree in time O(s,). @

Amortized cost

@ Another rebuild of a node u occurs after Q(su) updates in the subtree of u.
@ Therefore, amortized cost of rebuilding subtree is O(1), and
@ update contributes to amortized costs of all nodes on the path from the root to leaf.

The amortized cost of operations Insert and Delete is O(log n). ®

Jii Fink Data Structures 1 35

Geometry: Range trees using BB[«]-trees

Dynamic range trees

@ For simplicity, consider BB[a]-tree for every dimension including the last one. ©
@ Rotations in range trees are hard.

@ However, reconstruction of a (sub)tree on n points takes (’)(nlog"‘1 n). ®

2D case

@ Reconstruction in the y-subtree of a node u takes O(s,) time and another
reconstruction occurs after Q(s,) updates in the y-subtree of u, so the amortized
cost of rebuilding one y-subtree is O(1).

@ Reconstruction in the x-subtree of a node u and following y-trees takes
O(sulog sy) time and another reconstruction occurs after Q(s,) updates time in
the x-subtree of u, so the amortized cost of rebuilding one x-subtree is O(log sy).

@ One update contributes to amortized costs in (log n) x-subtrees and Q(log? n)
y-trees.

@ Amortized cost of operations Insert and Delete is O(Iog2 n).

Jii Fink Data Structures 1 136

Geometry: Range trees using BB[«]-trees

3D case

@ Reconstruction in the z-subtree of a node u takes O(sy) time and another reconstruction
occurs after (sy) updates in the y-subtree of u, so the amortized cost of rebuilding one
y-subtree is O(1).

@ Reconstruction in the y-subtree of a node u and following z-trees takes O(sy log sy) time
and another reconstruction occurs after Q(sy) updates time in the y-subtree of u, so the
amortized cost of rebuilding one y-subtree is O(log sy).

@ Reconstruction in the x-subtree of a node u and following y-trees and z-trees takes
(@) (su log? su) time and another reconstruction occurs after Q(sy) updates time in the

x-subtree of u, so the amortized cost of rebuilding one x-subtree is © (Iog2 su).

@ One update contributes to amortized costs in 2(log n) x-subtrees and 2(log® n) y-trees and
Q(log® n) z-trees.

@ Amortized cost of operations Insert and Delete is 0(Iog3 n).

d-dimensional range trees using BB[a]-trees

@ Range query in (’)(k + log® n) worst case. ©

@ Insert and Delete in O(Iogd n) amortized cost. @

Jii Fink Data Structures 1 137

@ When we apply fractional cascading on leaves of a tree instead of arrays, we Geometry: Range trees: Further improvements

obtain query in O(k +log?~! n) without changing the complexity for updates.

@ The actual time for m updates is O(nlogd’1 n+ mlog? n).

Bernard Chazelle [1, 2]

. . X . ‘ d—1
d-dimensional range query in O(k +log?™! n) time and O(n (%) > space.

Bernard Chazelle, Leonidas J. Guibas [3]

d-dimensional range query in O(k +log?2 n) time and O(nlog” n) space.

Jifi Fink Data Structures 1 137 Jifi Fink Data Structures 1 138

Geo Interval trees @ If S or S, is empty, then there is no left or right child, respectively.

@ There are at most n end-points smaller than m, so S; contains at most 3 intervals.
Therefore, the time complexity satisfies the recurrence formula
T(n) <2T(3)+©(n).

@ Every interval is stored in exactly one node. If S, is empty, then nis even and both
S;and S; contains 7 intervals. There are at most n — 1 such nodes. Therefore, the
tree has at most 2n — 1 nodes.

Set of intervals S = {1, ..., I} where [, = (a;, b;).

Recursive contruction of interval trees

Interval tree is a binary tree. Let
@ m be the medium of 2n endpoints a1, b, ..., an, bn,

@ Sy = {li; a < m < b} be intervals containing m,
@ S = {l; b < m} be intervals smaller than m and
@ S, = {l; m < a;} be intervals greater than m.
The root of the tree contains
@ two arrays of intervals Sy, sorted by left and right end-points,
@ interval trees for intervals S; as the left child and
@ interval trees for intervals S; as the right child. ©

Complexity

o Time complexity for construction is O(nlog n). ®
@ Space complexity is O(n). ®

Jii Fink Data Structures 1 139 Jii Fink Data Structures 1 139

Geometry: Interval trees: Intersection interval query Geometry: Segment trees
Problem description
Given query interval Q = (aq, bg), find all intervals intersecting with Q. Set of intervals S = {k, ..., I} where I; = (a;, b;).
Recursive algorithm
if a; < m < by then Given point p, find all intervals of S containing p.

1
2 Write all intervals Sy,
3 Recursively process both children Trivial approach
4 else if by < mthen .) -
5 Use the array of intervals Sp, sorted by left end-points to find all intervals of Sy, o Let.x1, o »Xm be sorted end-points {a, br, ..., an, bn} without duplicities.
intersecting with Q @ Split R into blocks (—oco, 1), {xi}, (x1,%), {x2}, ..., {Xm}, (Xm, 00).
6 Recursively process the left child © For every block, store all intervals of S containing the block.
7 else
8 Use the array of intervals S, sorted by right end-points to find all intervals of S, Complexity
intersecting with Q -
9 | Recursively process the right child o Time for query: O(k + log n)
@ Time for construction: O(r?)
@ Space: O(r?)
O(k + log n) Useful only for counting queries where every block contains the number of intervals.

Jifi Fink Data Structures 1 140 Jii Fink Data Structures 1 141

Geometry: Segment trees Geometry: Priority search tree
Idea of segment trees Heap and search tree in one binary tree

@ Let blocks (—oo, x1), {x1}, ..., (Xm, c0) be leaves of a binary tree. If every element e has a key e.key and a priority e.priority, is it possible to store a set
@ Every node stores the union of all blocks in its subtree. of elements in a binary tree so that

@ If two siblings store the same interval, store the interval in their parent instead. @ the min-heap property is satisfied for priorities and

@ In the query, walk from the root to a leaf with a block containing a given point and o the search-tree property is satisfied for keys? ©

print all intervals stored in all nodes on the path.

Relax the search tree property
Space complexity Priority search tree is a binary tree having one element in every node so that

Every interval is stored in at most two nodes of every level of the tree. @ the min-heap property is satisfied for priorities and
Therefore, space complexity is O(nlog n). @ elements can be fount by their keys in O(log n) time.

Time complexity of a construction Top-down recursive construction of a priority search tree

First, sort all end-points and create the binary tree. Then, add all intervals using a
top-down recursion.
Therefore, time complexity is O(nlog n).

The root of the priority search tree storing a set of elements S contains

o the element e of S with the smallest priority,

@ the median key m of all elements of S, ®
Time complexity of a query @ the left subtree stores all elements with keys smaller than m (except e) and
O(k + log n). @ the right subtree stores all elements with keys greater than m (except €). ®

Jii Fink Data Structures 1 142 Jii Fink Data Structures 1 143

@ Observe that if all keys and all priorities are pair-wise different, then there exists a

unique binary tree storing all elements.

@ Note that mis not the key of the element e (unless e coincidently has the median

key).

@ Observe that this tree does not satisfies the search-tree condition in general.

Jifi Fink

Data Structures 1

@ After a deletion, nodes do not store the median keys of their subtree. Although the
height of the tree is not increased by an operation delete, the tree may degenerate.

Jii Fink

[1] Bernard Chazelle.

Data Structures 1

Lower bounds for orthogonal range searching: I. the reporting case.

Journal of the ACM (JACM), 37(2):200-21
[2] Bernard Chazelle.

Lower bounds for orthogonal range searching: part ii. the arithmetic model.

2,1990.

Journal of the ACM (JACM), 37(3):439-463, 1990.

[3] Bernard Chazelle and Leonidas J Guibas.
Fractional cascading: |. a data structuring
Algorithmica, 1(1-4):133-162, 1986.

[4] Donald Ervin Knuth.
Notes on "open” addressing.
http://algo.inria.fr/AofA/R
[5] Jurg Nievergelt and Edward M Reingold.
Binary search trees of bounded balance.

technique.

~h/11-97.html, 1963.

SIAM journal on Computing, 2(1):33-43, 1973.

[6] Rasmus Pagh and Flemming Friche Rodler.

Cuckoo hashing.

Journal of Algorithms, 51(2):122—144, 2004.

[7] Mihai Patragcu.

Better guarantees for chaining and linear probing.

Jifi Fink

Data Structures 1

Geometry: Priority search tree

@ Space complexity is O(n)

@ Construction in O(nlog n)-time

@ Find the element with the smallest priority in O(1)-time

@ Find the element with a given key in O(log n)-time

@ Delete the element with the smallest priority in O(log n)-time @

Applications

@ Find the element with key in a given range and the smallest priority.

@ Grounded 2D range search problem: Given a set of points in R?, find points in the
range (ax, bx) x (—oo, by).

JiFi Fink Data Structures 1 144

Outline

o Bibliography

JiFi Fink Data Structures 1 145

better—-guarantees

blogspot, February 2, 2010.

JiFi Fink Data Structures 1 145

http://algo.inria.fr/AofA/Research/11-97.html
http://infoweekly.blogspot.cz/2010/02/better-guarantees-for-chaining-and.html
http://infoweekly.blogspot.cz/2010/02/better-guarantees-for-chaining-and.html

	(a,b)-tree
	A-sort

	Red-black tree
	Splay tree
	Heaps
	d-ary heap
	Binomial heap
	Lazy binomial heap
	Fibonacci heap
	Dijkstra's algorithm

	Cache-oblivious algorithms
	Hash tables
	Separate chaining
	Linear probing
	Cuckoo hashing
	Hash functions

	Geometry
	Range trees
	Interval trees
	Segment trees
	Priority search trees

	Bibliography

