
Data Structures 1
NTIN066

Jiřı́ Fink
https://kam.mff.cuni.cz/˜fink/

Department of Theoretical Computer Science and Mathematical Logic
Faculty of Mathematics and Physics

Charles University in Prague

Winter semester 2015/16
Last change on February 3, 2016

License: Creative Commons BY-NC-SA 4.0

Jiřı́ Fink Data Structures 1 1

Content
1 (a,b)-tree

A-sort
2 Red-black tree
3 Splay tree
4 Heaps

d-ary heap
Binomial heap
Lazy binomial heap
Fibonacci heap
Dijkstra’s algorithm

5 Cache-oblivious algorithms
6 Hash tables

Separate chaining
Linear probing
Cuckoo hashing
Hash functions

7 Geometry
Range trees
Interval trees
Segment trees
Priority search trees

8 Bibliography
Jiřı́ Fink Data Structures 1 2

Jiřı́ Fink: Data Structures 1

Plan of the lecture
Trees

(a,b)-trees
MFR-strategy for lists, Splay trees
Other solutions: AVL trees, red-black trees, BB-alpha trees

Heaps
Regular heaps
Binomial heaps - amortized and worst-case complexity
Fibonacci heaps

Techniques for memory hierarchy
I/O model, cache-oblivious analysis, LRU-strategy for on-line paging
Examples: matrix transposition and multiplication, van Emde Boas tree layout

Hashing
Collisions and their resolution, analysis for uniformly distributed data
Selecting a hash function: universal hashing, good hash functions
Cuckoo hashing

Multidimensional data structures
KD trees
Range trees

Jiřı́ Fink Data Structures 1 3

Jiřı́ Fink: Data Structures 1

General information
E-mail fink@kam.mff.cuni.cz

Homepage http://kam.mff.cuni.cz/˜fink/

Consultations Individual schedule

Examination
Successfully work out four out of five homeworks

Pass the exam

Jiřı́ Fink Data Structures 1 4

Jiřı́ Fink: Data Structures 1

Literature
A. Koubková, V. Koubek: Datové struktury I. MATFYZPRESS, Praha 2011.

T. H. Cormen, C.E. Leiserson, R. L. Rivest, C. Stein: Introduction to Algorithms.
MIT Press, 2009

K. Mehlhorn: Data Structures and Algorithms I: Sorting and Searching.
Springer-Verlag, Berlin, 1984

D. P. Mehta, S. Sahni eds.: Handbook of Data Structures and Applications.
Chapman & Hall/CRC, Computer and Information Series, 2005

E. Demaine: Cache-Oblivious Algorithms and Data Structures. 2002.

R. Pagh: Cuckoo Hashing for Undergraduates. Lecture note, 2006.

M. Thorup: High Speed Hashing for Integers and Strings. lecture notes, 2014.

M. Thorup: String hashing for linear probing (Sections 5.1-5.4). In Proc. 20th
SODA, 655-664, 2009.

Jiřı́ Fink Data Structures 1 5

Outline

1 (a,b)-tree
A-sort

2 Red-black tree

3 Splay tree

4 Heaps

5 Cache-oblivious algorithms

6 Hash tables

7 Geometry

8 Bibliography

Jiřı́ Fink Data Structures 1 6

Dictionary problem

Entity
Entity is a pair of a key and a value

Keys are linearly ordered

Number of entities stored in a data structure is n

Basic operations
Insert a given entity

Find an entity of a given key

Delete an entity of a given key

Example of data structures
Array

Linked list

Searching trees (e.g. AVL, red-black)

Hash tables

Jiřı́ Fink Data Structures 1 7

Binary search tree

Properties
Entities are stored in nodes (vertices) of a rooted tree

Each node contains a key and two sub-trees (children), the left and the right

The key in each node must be greater than all keys stored in the left sub-tree, and
smaller than all keys in right sub-tree

Example

10

5

2 7

6 9

12

14

13

Complexity
Space: O(n)

Time: Linear in the depth of the tree

Height in the worst case: n

Jiřı́ Fink Data Structures 1 8

https://kam.mff.cuni.cz/~fink/
https://creativecommons.org/licenses/by-nc-sa/4.0/

(a,b)-tree

Properties
a, b are integers such that a ≥ 2 and b ≥ 2a− 1

All internal nodes except the root have at least a and at most b children

The root has at most b children

All leaves are at the same depth

Entities are stored in leaves

Keys in leaves are ordered (left-to-right)

Internal nodes contain keys used to find leaves (e.g. the largest key)

Example: (2,4)-tree

20

3 5 8

1 4 7 9

30 35

22 33 99

Operation Find
Search from the root using keys stored in internal nodes

Jiřı́ Fink Data Structures 1 9

(a,b)-tree: Insert

Insert 4 into the following (2,4)-tree

3

1

1 3

5 6 7

5 6 7 8

Add a new leaf into the proper parent

3

1

1 3

4 5 6 7

4 5 6 7 8

Recursively split node if needed

3 5

1

1 3

4

4 5

6 7

6 7 8

Jiřı́ Fink Data Structures 1 10

(a,b)-tree: Insert

Algorithm

1 Find the proper parent v of the inserted entity
2 Add a new leaf into v
3 while deg(v) > b do

Find parent u of node v
4 if v is the root then
5 Create a new root with v as its only child
6 else
7 u ← parent of v

Split node v into v and v ′

8 Create a new child v ′ of u immediately to the right of v
9 Move the rightmost b(b + 1)/2c children of v to v ′

10 v ← u

Time complexity
Linear in height of the tree

Jiřı́ Fink Data Structures 1 11

(a,b)-tree: Delete

Delete 4 from the following (2,4)-tree

3 5

1

1 3

4

4 5

6 7

6 7 8

Find and delete the proper leaf

3 5

1

1 3

.

5

6 7

6 7 8

Recursively either share nodes from a sibling or fuse the parent

3 6

1

1 3

5

5 6

7

7 8

5

1 3

1 3 5

6 7

6 7 8

Jiřı́ Fink Data Structures 1 12

(a,b)-tree: Delete

Algorithm

1 Find the leaf l containing the deleted key
2 v ← parent of l
3 Delete l
4 while deg(v) < a and v is not the root do
5 u ← an adjacent sibling of v
6 if deg(u) > a then
7 Move the proper child from u to v
8 else
9 Move all children of u to v

10 Remove u
11 if If v has no sibling then
12 Remove the root (= parent of v) and make v the new root
13 else
14 v ← parent of v

Jiřı́ Fink Data Structures 1 13

(a,b)-tree: Analysis

Height

(a,b)-tree of height d has at least ad−1 and at most bd leaves.

Height satisfies logb n ≤ d ≤ 1 + loga n.

Complexity
The time complexity of operations find, insert and delete is O(log n).

Jiřı́ Fink Data Structures 1 14

(a,b)-tree: Join

Description
Union of two (a,b)-trees T1 and T2 assuming max key(T1) < min key(T2).

Algorithm

1 if height(T1) ≥ height(T2) then
2 u ← last node of T1 in height height(T1)− height(T2)
3 v ← root of T2

4 else
5 u ← last node of T2 in height height(T2)− height(T1)
6 v ← root of T1

7 Move all children of v to u
8 if deg(u) > b then
9 Recursively split u like in the operation insert

Complexity
Linear in the difference of heights of trees.

Jiřı́ Fink Data Structures 1 15

(a,b)-tree: Split

Description
Given an (a,b)-tree T and a key k , split T to two (a,b)-trees TS and TG with keys
smaller and greater than k , respectively.

Algorithm (only for TS)

Input: (a,b)-tree T , key x
1 QS ← an empty stack
2 t ← the root of T
3 while t is not a leaf do
4 v ← child of t according to the key x
5 Push all left brothers of v to QS

6 t ← v

7 TS ← an empty (a,b)-tree
8 while QS is non-empty do
9 TS ← JOIN(POP(QS), TS)

Time complexity
O(log n) since complexity of JOIN is linear in the difference of heights of trees.

Jiřı́ Fink Data Structures 1 16

(a,b)-tree: Ord

Description
Returns the i-th smallest key in the tree for given i .

Approach
If every node stores the number of leaves in its sub-tree, the i-th smallest key can be
fount in O(log n)-time.

Note
Updating the number of leaves does not influence the time complexity of operations
insert and delete.

Jiřı́ Fink Data Structures 1 17

(a,b)-tree: The amortized number of balancing operations

Assumption
b ≥ 2a

Statement (without proof)
The number of balancing operations for l inserts and k deletes is O(l + k + log n).

Conclusion
The amortized number of balancing operations for one insert or delete is O(1).

Jiřı́ Fink Data Structures 1 18

(a,b)-tree for parallel access

Assumption
b ≥ 2a

Operation insert
Split every node with b children on path from the root to the inserted leaf.

Operation delete
Update (move a child or merge with a sibling) every node with a children on path from
the root to the deleted leaf.

Jiřı́ Fink Data Structures 1 19

A-sort

Goal
Sort ”almost sorted” list x1, x2, . . . , xn.

Modification of (a,b)-tree
The (a,b)-tree also stores the pointer to the most-left leaf.

Idea: Insert xi = 16

20 40

12

8

6 9

15

13 18

Insert xi = 16 to
this subtree

Minimal key The height of the subtree
is Θ(log fi) where
fi = | {j > i ; xj < xi} |

Jiřı́ Fink Data Structures 1 20

A-sort: Algorithm

Input: list x1, x2, . . . , xn

1 T ← an empty (a,b)-tree
2 for i ← n to 1 do

Modified operation insert of xi to T
3 v ← the leaf with the smallest key
4 while xi is greater than the maximal key in the sub-tree of v and v is not a root do
5 v ← parent of v

6 Insert xi but start searching for the proper parent at v
Output: Walk through whole (a,b)-tree T and print all leaves

Jiřı́ Fink Data Structures 1 21

A-sort: Complexity

The inequality of arithmetic and geometric means
If a1, . . . , an are non-negative real numbers, then

∑n
i=1 ai

n
≥ n

√√√√ n∏
i=1

ai .

Time complexity
Denote fi = | {j > i ; xj < xi} |
F =

∑n
i=1 fi is the number of inversions

Finding the starting vertex v for one key xi : O(log fi)

Finding starting vertices for all keys: O(n log(F/n))

Splitting nodes during all operations insert: O(n)

Total time complexity: O(n + n log(F/n))

Worst case complexity: O(n log n) since F ≤
(n

2

)
If F ≤ n log n, then the complexity is O(n log log n)

Jiřı́ Fink Data Structures 1 22

The complexity of finding the starting point follows from∑
i log fi = log

∏
i fi = n log n

√∏
i fi ≤ n log

∑
i fi

n = n log F
n .

Jiřı́ Fink Data Structures 1 22

(a,b)-tree: Applications

Similar data structures
B-tree, B+ tree, B* tree

2-4-tree, 2-3-4-tree, etc.

Applicatins
A-sort

File systems e.g. Ext4, NTFS, HFS+, FAT

Databases

Jiřı́ Fink Data Structures 1 23

Outline

1 (a,b)-tree

2 Red-black tree

3 Splay tree

4 Heaps

5 Cache-oblivious algorithms

6 Hash tables

7 Geometry

8 Bibliography

Jiřı́ Fink Data Structures 1 24

Red-black tree: Definition

Definition
Binary search tree with elements stored in inner nodes

Every inner node has two children — inner nodes or NIL/NULL pointers

A node is either red or black

Paths from the root to all leaves contain the same number of black nodes

If a node is red, then both its children are black

Leaves are black

Example

50

20

10

NIL NIL

25

22

NIL NIL

28

NIL NIL

80

66

NIL NIL

97

NIL 99

NIL NIL

Jiřı́ Fink Data Structures 1 25

Red-black tree: Equivalence to (2,4)-tree

A node with no red child

2

1 3

2

1 3

A node with one red child

10

5 20

15 25

10 20

5 15 25

A node with two red children

3 5 8

1 4 7 9

5

3

1 4

8

7 9

Jiřı́ Fink Data Structures 1 26

Red-black tree: Properties

Equivalence to (2,4)-tree
Recolour the root to be black

Combine every red node with its parent

Height
Height of a red-black tree is Θ(log n)

Applications
Associative array e.g. std::map and std::set in C++, TreeMap in Java

The Completely Fair Scheduler in the Linux kernel

Computational Geometry Data structures

Jiřı́ Fink Data Structures 1 27

Red-black tree: Insert

Creating new node
Find the position (NIL) of the new element n

Add a new node

p

NIL NIL

p

NIL n

NIL NIL

If the parent p is red, balance the tree

When balancing
A node n and its parent p are red. Every other property is satisfied.

The grandparent g is black.

The uncle u is red or black.

Jiřı́ Fink Data Structures 1 28

Red-black tree: Insert — uncle is red

Schema

g

p

n

1 2

3

u

4 5

g

p

n

1 2

3

u

4 5

Notes
In the equivalent (2,4)-tree, node g has five children (1,2,3,4,5).

We ”split” the node g by recolouring.

If the great-grandparent is red, the balancing continues.

Jiřı́ Fink Data Structures 1 29

Red-black tree: Insert — uncle is black

In the equivalent (2,4)-tree, node g has four children (1,2,3,u).
The last balancing operation has two cases.

g

p

n

1 2

3

u

4 5

p

n

1 2

g

3 u

4 5

g

p

1 n

2 3

u

4 5

n

p

1 2

g

3 u

4 5

Jiřı́ Fink Data Structures 1 30

Outline

1 (a,b)-tree

2 Red-black tree

3 Splay tree

4 Heaps

5 Cache-oblivious algorithms

6 Hash tables

7 Geometry

8 Bibliography

Jiřı́ Fink Data Structures 1 31

Amortized analysis

Amortized analysis
In an amortized analysis, the time required to perform a sequence of a data-structure
operations is averaged over all the operations performed. The common examples are

Worst-case amortized
Incrementing a binary counter n O(n) O(1)
Insert into a dynamic array O(n) O(1)
Multi-pop from a stack O(n) O(1)

Methods
Aggregate analysis

Accounting method

Potential method

Jiřı́ Fink Data Structures 1 32

Splay tree

Description
Binary search tree

Elements are stored in all nodes (both internal and leaves)

Recently accessed elements are quick to access again

Operation splay moves a given node to the root

Jiřı́ Fink Data Structures 1 33

Splay tree: splay a given node x

Zig step: If the parent p of x is the root
p

x

A B

C

x

A
p

B C

Zig-zig step: x and p are either both right children or are both left children
g

p

x

A B

C

D

x

A
p

B
g

C D

Zig-zag step: x is a right child and p is a left child or vice versa
g

p

A
x

B C

D

x

p

A B

g

C D

Jiřı́ Fink Data Structures 1 34

Splay tree: Amortized time

Lemma
If a + b ≤ 1, then log2(a) + log2(b) ≤ −2.

Notations
Size s(x) is the number of nodes in the sub-tree rooted at node x (including x)

Rank r(x) = log2(s(x))

Potential Φ is the sum of the ranks of all the nodes in the tree

s′ and r ′ are size and rank functions after a splay step

∆Φ is the change in the potential caused by a splay step

Jiřı́ Fink Data Structures 1 35

Since 4ab = (a + b)2 − (a− b)2 and (a− b)2 ≥ 0 and a + b ≤ 1, it follows that
4ab ≤ 1. Taking the logarithm of both sides, we derive log2 4 + log2 a + log2 b ≤ 0, so
the lemma holds.

Jiřı́ Fink Data Structures 1 35

Splay tree: Zig step

p

x

A B

C

x

A
p

B C

Observe
r ′(x) = r(p)

r ′(p) < r ′(x)

∆Φ =
∑

x r ′(x)−
∑

x r(x) = r ′(p)− r(p) + r ′(x)− r(x) ≤ r ′(x)− r(x)

Jiřı́ Fink Data Structures 1 36

Splay tree: Zig-zag step

g

p

A
x

B C

D

x

p

A B

g

C D

Observe
r ′(x) = r(g)

r(x) < r(p)

s′(p) + s′(g) ≤ s′(x)

r ′(p) + r ′(g) ≤ 2r ′(x)− 2

∆Φ = r ′(g)− r(g) + r ′(p)− r(p) + r ′(x)− r(x) ≤ 2(r ′(x)− r(x))− 2

Jiřı́ Fink Data Structures 1 37

From the third point follows s′(p)
s′(x)

+ s′(g)
s′(x)
≤ 1, so we use the lemma to obtain

log2
s′(p)

s′(x)
+ log2

s′(g)

s′(x)
≤ −2

log2 s′(p) + log2 s′(g) ≤ 2 log s′(x)− 2.

Now, we replace log s′(.) by the rank function r ′(.) to derive the fourth point.

Jiřı́ Fink Data Structures 1 37

Splay tree: Zig-zig step

g

p

x

A B

C

D

x

A
p

B
g

C D

Observe
r ′(x) = r(g)

r(x) < r(p)

r ′(x) > r ′(p)

s(x) + s′(g) ≤ s′(x)

r(x) + r ′(g) ≤ 2r ′(x)− 2

∆Φ = r ′(g)− r(g) + r ′(p)− r(p) + r ′(x)− r(x) ≤ 3(r ′(x)− r(x))− 2

Jiřı́ Fink Data Structures 1 38

Splay tree: Analysis

The amortized time
The amortized cost of one zig-zig or zig-zag step:
cost + ∆Φ ≤ 2 + 3(r ′(x)− r(x))− 2 = 3(r ′(x)− r(x))

The amortized cost of one zig step:
cost + ∆Φ ≤ 1 + 3(r ′(x)− r(x))

The amortized time of whole operation splay:∑
steps(cost + ∆Φ) ≤ 1 + 3(r(root)− r(x)) ≤ 1 + 3 log2 n = O(log n)

The amortized time for a sequence of m operations:
O(m log n)

The decrease in potential from the initial state Φi to the final state Φf :
Φi − Φf = O(n log n) since 0 ≤ Φ ≤ n log2 n

The actual time
The actual time for a sequence of m operations is O((n + m) log n).

Jiřı́ Fink Data Structures 1 39

Splay tree: Insert

Insert key x
1 Find a node u with the closest key to x
2 Splay the node u
3 Insert a new node with key x

u

L R

u

x

L

R

Amortized complexity
Find and splay: O(log n)

The potential Φ is increased by at most r(x) + r(u) ≤ 2 log n

Jiřı́ Fink Data Structures 1 40

Splay tree: Delete

Algorithm

1 Find and splay x
2 L← the left subtree of x
3 if L is empty then
4 Remove node x
5 else
6 Find and splay the largest key a in L
7 L′ ← the left subtree of a

a have no right child now
8 Merge nodes x and a

L is non-empty

x

L R

x

a

L’

R

a

L’ R

Jiřı́ Fink Data Structures 1 41

Outline

1 (a,b)-tree

2 Red-black tree

3 Splay tree

4 Heaps
d-ary heap
Binomial heap
Lazy binomial heap
Fibonacci heap
Dijkstra’s algorithm

5 Cache-oblivious algorithms

6 Hash tables

7 Geometry

8 Bibliography

Jiřı́ Fink Data Structures 1 42

Heap

Basic operations
Insert

Find min

Delete min

Decrease key

Properties
Entities are stored in all nodes of a tree

The key of every node is always smaller than or equal to keys of its children

Applications
Priority queue

Heapsort

Dijkstra’s algorithm (find the shortest path between given two vertices)

Jarnı́k’s (Prim’s) algorithm (find the minimal spanning tree)

Jiřı́ Fink Data Structures 1 43

d-ary heap

d-ary heap
Every node has at most d children

Every level except the last is completely filled

The last level is filled from the left

Binary heap
Binary heap is a 2-ary heap

Example of a binary heap

2

8

10

13 11

12

19

3

6 15

Jiřı́ Fink Data Structures 1 44

d-ary heap: Representation

Binary heap stored in a tree

2

8

10

13 11

12

19

3

6 15

Binary heap stored in an array
A node at index i has its parent at b(i − 1)/2c and children at 2i + 1 and 2i + 2.

2 8 3 10 12 6 15 13 11 19

Parent
Children

Jiřı́ Fink Data Structures 1 45

d-ary heap: Height of the tree

Nodes in an i-th level:
d i

Maximal number of nodes in the d-ary heap of height h:∑h
i=0 d i = dh+1−1

d−1

Minimal number of nodes in the d-ary heap of height h:
dh−1
d−1 + 1

The number of nodes satisfies:
dh−1
d−1 + 1 ≤ n ≤ dh+1−1

d−1

h < logd (1 + (d − 1)n) ≤ h + 1

The height of the d-ary heap is:
h = dlogd (1 + (d − 1)n)e − 1 = blogd (d − 1)nc = Θ(logd n)

Specially, the height of the binary heap is:
h = blog2 nc

Jiřı́ Fink Data Structures 1 46

d-ary heap: Insert and decrease key

Example: Insert 5

2

8

10

13 11

12

19 5

3

6 15

2 8 3 10 12 6 15 13 11 19 5

Jiřı́ Fink Data Structures 1 47

d-ary heap: Insert and decrease key

Insert: Algorithm

Input: A new element with a key x
1 v ← the first empty block in the array
2 Store the new element to the block v
3 while v is not the root and the parent p of v has a key greater than x do
4 Swap elements v and p
5 v ← p

Decrease key (of a given node)
Decrease the key and swap the element with parents when necessary (likewise in the
operation insert).

Complexity
O(logd n)

Jiřı́ Fink Data Structures 1 48

d-ary heap: Delete min

2

8

10

13 11

12

19

3

6 15

Algorithm

1 Move the last element to the root v
2 while Some children of v has smaller key than v do
3 u ← the child of v with the smallest key
4 Swap elements u and v
5 v ← u

Complexity
If d is a fix parameter: O(log n)
If d is a part of the input: O(d logd n)

Jiřı́ Fink Data Structures 1 49

d-ary heap: Building

Goal
Initialize a heap from a given array of elements

Algorithm

1 for r ← the last block to the first block do
Heapify likewise in the operation delete

2 v ← r
3 while Some children of v has smaller key than v do
4 u ← the child of v with the smallest key
5 Swap elements u and v
6 v ← u

Correctness
After processing node r , its subtree satisfies the heap property.

Jiřı́ Fink Data Structures 1 50

d-ary heap: Building

Lemma
∞∑

h=0

h
dh =

d
(d − 1)2

Complexity
Heapify a subtree with height h: O(h)

The number of nodes at height h is at most
⌈
d logd n−h−1⌉ =

⌈
n

dh+1

⌉
Total time complexity is

dlogd ne∑
h=0

n
dh+1O(h) = O

(
n
∞∑

h=0

h
dh

)
= O(n)

Jiřı́ Fink Data Structures 1 51

Binomial tree

Definition
A binomial tree B0 of order 0 is a single node.

A binomial tree Bk of order k has a root node whose children are roots of binomial
trees of orders 0, 1, . . . , k − 1.

Alternative definition
A binomial tree of order k is constructed from two binomial trees of order k − 1 by
attaching one of them as the rightmost child of the root of the other tree.

Recursions for binomial heaps

B0 B1

. . .

Bk−2 Bk−1

Bk−1

Bk−1

Jiřı́ Fink Data Structures 1 52

Binomial tree: Example

Recursions for binomial heaps

B0 B1

. . .

Bk−2 Bk−1

Bk−1

Bk−1

Binomial trees of order 0, 1, 2 and 3

B0 B1

B0

B2

B0 B1

B3

B0 B1 B2

Jiřı́ Fink Data Structures 1 53

Binomial tree: Properties

Recursions for binomial heaps

B0 B1

. . .

Bk−2 Bk−1

Bk−1

Bk−1

Observations
A binomial tree Bk has

2k nodes,

height k ,

k children in the root,

maximal degree k ,(k
d

)
nodes at depth d .

Jiřı́ Fink Data Structures 1 54

Set of binomial trees

Observations
For every n there exists a set of binomial trees of pairwise different order such that the
total number of nodes is n.

Relation between a binary number and a set of binomial trees

Binary number n

Binomial heap contains:

= 1

B7

0 0 1

B4

1

B3

0 1

B1

0

Example of a set of binomial trees on 10102 nodes

5

9

2

10 3

12

6

8 11

15

Jiřı́ Fink Data Structures 1 55

Binomial heap

Binomial heap
A binomial heap is a set of binomial trees that satisfies

Each binomial tree obeys the minimum-heap property: the key of a node is greater
than or equal to the key of its parent.

There is at most one binomial tree for each order.

Example

5

9

2

10 3

12

6

8 11

15

Jiřı́ Fink Data Structures 1 56

Binomial heap: Height and size

Observation
Binomial heap contains at most log2(n + 1) trees and each tree has height at most
log2 n.

Relation between a binary number and a set of binomial trees

Binary number n

Binomial heap contains:

= 1

B7

0 0 1

B4

1

B3

0 1

B1

0

Jiřı́ Fink Data Structures 1 57

Binomial heap: Representation

A node in a binomial tree contains
an element (key and value),

a pointer to its parent,

a pointer to its most-left child,

a pointer to its right sibling and

the number of children.

Binomial trees in a binomial heap
Binomial trees are stored in a linked list.

Remarks
The child and the sibling pointers form a linked list of all children.

Sibling pointers of all roots are used for the linked list of all trees in a binomial
heap.

Jiřı́ Fink Data Structures 1 58

Binomial heap: Operations Decrease-key and Simple join

Decrease-key
Decrease the key and swap its element with parents when necessary
(likewise in a binary heap).

Simple join
Two binomial trees Bk−1 of order k − 1 can be joined into Bk in time O(1).

u

B0 B1

. . .

Bk−2

v
Bk−1

The following values need to be set:

the child pointer in the node u,

the parent and the sibling pointers in the node v and

the number of children in the node u.

Jiřı́ Fink Data Structures 1 59

Binomial heap: Operations Join and Insert

Join
It works as an analogy to binary addition. We start from the lowest orders, and
whenever we encounter two trees of the same order, we join them.

Example

Binomial tree B6 B5 B4 B3 B2 B1 B0

First binomial heap 0 1 1 0 1 1 0
Second binomail heap 0 1 1 0 1 0 0
Joined binomial heap 1 1 0 1 0 1 0

Complexity of operation Insert
Complexity is O(log n) where n is the total number of nodes.

Insert
Insert is implemented as join with a new tree of order zero.

The worst-case complexity is O(log n).

The amortized complexity is O(1) — likewise increasing a binary counter.

Jiřı́ Fink Data Structures 1 60

Binomial heap: Operations Find-min and Delete-min

Find-min
O(1) if a pointer to the tree with the smallest key is stored, otherwise O(log n).

Delete-min
Split the tree with the smallest key into a new heap by deleting its root and join the new
heap with the rest of the original heap. The complexity is O(log n).

Example

Minimal key

New heap

Rest of the original heap

Jiřı́ Fink Data Structures 1 61

Lazy binomial heap

Difference
Lazy binomial heap is a set of binomial trees, i.e. different orders of binomial trees in a
lazy binomial heap is not required.

Join and insert
Just concatenate lists of binomial trees, so the worst-case complexity is O(1).

Delete min
Delete the minimal node

Append its children to the list of heaps

Reconstruct to the proper binomial heap

Jiřı́ Fink Data Structures 1 62

Lazy binomial heap: Reconstruction to the proper binomial heap

Idea
While the lazy binomial heap contains two heaps of the same order, join them.

Use an array indexed by the order to find heaps of the same order.

Algorithm

1 Initialize an array of pointers of size dlog2 ne
2 for each heap h in the lazy binomial heap do
3 o ← order of h
4 while array[o] is not NIL do
5 h← the join of h and array[o]
6 array[o]← NIL
7 o ← o + 1

8 array[o]← h

9 Create a binomial heap from the array

Jiřı́ Fink Data Structures 1 63

Lazy binomial heap: Reconstruction to the proper binomial heap

Worst-case complexity
The original number of trees is at most n.

Every iteration of the while-loop decreases the number of trees by one.

The while-loop is iterated at most n-times.

Therefore, the worst-case complexity is O(n).

Amortized complexity
Consider the potential function Φ = the number of trees.

The insert takes O(1)-time and increases the potential by 1, so its amortized time
is O(1).

One iteration of the while-loop takes O(1)-time and decreases the potential by 1,
so its amortized time is zero.

The remaining steps takes O(log n)-time.

Therefore, the amortized time is O(log n).

Jiřı́ Fink Data Structures 1 64

Heap: Overview

Complexity table

Binary Binomial Lazy binomial
worst worst amort worst amort

Insert log n log n 1 1 1
Decrease-key log n log n log n log n log n
Delete-min log n log n log n n log n

Question
Can we develop a heap with faster delete-min than O(log n) and insert in time O(1)?

Next goal
We need faster operation Decrease-key.

How?
If we relax the condition on trees in a binomial heap to be isomorphic to binomial trees,
is there a faster method to decrease the key of a given node?

Jiřı́ Fink Data Structures 1 65

Fibonacci heap

Description
Fibonacci heap is a set of trees.

Each tree obeys the minimum-heap property.

The structure of a Fibonacci heap follows from its operations.

Representation
Node of a Fibonacci heap contains

an element (key and value),

a pointer to its parent,

a pointer to its most-left child,

a pointer to its left and right sibling,

the number of children and

a flag which is set when the node losses a child.

Fibonacci heap is a linked list of trees.

Jiřı́ Fink Data Structures 1 66

Fibonacci heap: Operations

Join
Concatenate lists of trees. Complexity O(1).

Insert
Append a single node tree to the list of trees. Complexity O(1).

Flag
Every node except roots can lose at most one child.

When a node u losses a child, the flag in u is set.

When u losses a second child, u is severed from its parent and whole subtree is
inserted to the list of trees.

This separation may lead to a cascading cut.

Every root is unmarked.

Jiřı́ Fink Data Structures 1 67

Fibonacci heap: Decrease-key

Example

1

A
3

4

C
7

D
8

E F

B

1

A
3

B

4

C

7

D

6

E F

Decrease to 6

Jiřı́ Fink Data Structures 1 68

Fibonacci heap: Decrease-key

Algorithm

Input: A node u and new key k
1 Decrease key of the node u
2 if u is a root or the parent of u has key at most k then
3 return # The minimal heap property is satisfied

4 p ← the parent of u
5 Unmark the flag in u
6 Remove u from its parent p and append u to the list of heaps
7 while p is not a root and the flag in p is set do
8 u ← p
9 p ← the parent of u

10 Unmark the flag in u
11 Remove u from its parent p and append u to the list of heaps

12 if p is not a root then
13 Set the flag in p

Jiřı́ Fink Data Structures 1 69

Fibonacci heap: Delete-min

Idea from lazy binomial heaps
Binomial heap joins two binomial trees of the same order.

In Fibonacci heap, the order of a tree is the number of children of its root.

Algorithm

Input: A node u to be deleted
1 Delete the node u and append its children to the list of trees
Reconstruction likewise in lazy binomial heap

2 Initialize an array of pointers of a sufficient size
3 for each tree t in the Fibonacci heap do
4 c ← the number of children of the root of t
5 while array[c] is not NIL do
6 t ← the join of t and array[c]
7 array[c]← NIL
8 c ← c + 1

9 array[c]← t

10 Create a Fibonacci heap from the array

Jiřı́ Fink Data Structures 1 70

Fibonacci heap: Fibonacci numbers

Definition
F0 = 0

F1 = 1

Fk = Fk−1 + Fk−2 for k ≥ 2

Properties∑k
i=1 Fi = Fk+2 − 1

Fk = (1+
√

5)k−(1−
√

5)k

2k
√

5

Fk ≥
(

1+
√

5
2

)k

Proof
A straightforward application of the mathematical induction.

Jiřı́ Fink Data Structures 1 71

Fibonacci heap: Structure

Invariant
For every node u and its i-th child v holds that v has at least

i − 2 children if v is marked and

i − 1 children if v is not marked.

Size of a subtree
Let sk be the minimal number of nodes in a subtree of a node with k children.
Observe that sk ≥ sk−2 + sk−3 + sk−4 + · · ·+ s2 + s1 + s0 + s0 + 1.

Example

s4

s0 s0

M

s1

M

s2

M

M

Jiřı́ Fink Data Structures 1 72

Fibonacci heap: Structure

Size of a subtree
Let sk be the minimal number of nodes in a subtree of a node with k children.
Observe that sk ≥ sk−2 + sk−3 + sk−4 + · · ·+ s2 + s1 + s0 + s0 + 1

Fibonacci numbers
F0 = 0 and F1 = 1

Fk = Fk−1 + Fk−2∑k
i=1 Fi = Fk+2 − 1

Fk = (1+
√

5)k−(1−
√

5)k

2k
√

5

Fk ≥
(

1+
√

5
2

)k

sk ≥ Fk+2

Corollary

A tree of order k has at least sk ≥ Fk+2 ≥
(

1+
√

5
2

)k+2
nodes. Therefore,

root of a tree on m nodes has O(log m) children and

Fibonacci heap has O(log n) trees after operation Delete-min.

Jiřı́ Fink Data Structures 1 73

Fibonacci heap: Complexity

Worst-case complexity
Operation Insert: O(1)

Operation Decrease-key: O(log n)

Operation Delete-min: O(n)

Amortized complexity: Potential
Φ = t + 2m where t is the number of trees and m is the number of marked nodes

Amortized complexity: Insert
cost: O(1)

∆Φ = 1

Amortized complexity: O(1)

Jiřı́ Fink Data Structures 1 74

Fibonacci heap: Amortized complexity of Decrease-key

Single iteration of the while-loop (unmark and cut)
Cost: O(1)

∆Φ = 1− 2 = −1

Amortized complexity: Zero

Remaining parts

Cost: O(1)

∆Φ ≤ 1

Amortized complexity: O(1)

Total amortized complexity
O(1)

Jiřı́ Fink Data Structures 1 75

Fibonacci heap: Amortized complexity of Delete-min

Delete root and append its children
Cost: O(log n)

∆Φ ≤ O(log n)

Amortized complexity: O(log n)

Single iteration of the while-loop (join)
Cost: O(1)

∆Φ = −1

Amortized complexity: Zero

Remaining parts
Cost: O(log n)

∆Φ = 0

Amortized complexity: O(log n)

Total amortized complexity
O(log n)

Jiřı́ Fink Data Structures 1 76

Appending all children of the root can be done in O(1) by a simple concatenating of
linked lists. However, some of these children can be marked, so unmarking takes
O(log n)-time as required by our definition. In a practical implementation, it is not
important when flags of roots are unmarked.

Jiřı́ Fink Data Structures 1 76

Heap: Overview

Complexity table

Binary Binomial Lazy binomial Fibonacci
worst worst amort worst amort worst amort

Insert log n log n 1 1 1 1 1
Decrease-key log n log n log n log n log n log n 1
Delete-min log n log n log n n log n n log n

Jiřı́ Fink Data Structures 1 77

Heaps: Dijkstra’s algorithm

Problem
Given a graph G = (V ,E) with non-negative weight on edges ω and a starting vertex s,
find the shortest paths from s to all vertices.

Algorithm

1 Create an empty priority queue Q for vertices of G
2 for v ← V do
3 distance[v]← 0 if v = s else∞
4 Insert v with the key distance[v] into Q

5 while Q is non-empty do
6 Extract the vertex u with the smallest key (distance) from Q
7 for v ← neighbour of u do
8 if distance[v] > distance[u] + ω(u, v) then
9 distance[v]← distance[u] + ω(u, v)

10 Decrease the key of v in Q

Jiřı́ Fink Data Structures 1 78

Heaps: Dijkstra’s algorithm

Number of operations
Dijkstra’s algorithm may call

operation Insert for every vertex,

operation Delete-min for every vertex and

operation Decrease-key for every edge.

We assume that m ≥ n where n = |V | and m = |E |.

Complexity table

Array Binary Binomial Fibonacci k-ary
Insert 1 log n 1 1 logk n
Delete-min n log n log n log n k logk n
Decrease-key 1 log n log n 1 logk n
Dijkstra’s n2 m log n m log n m + n log n m logm/n n

Linear-time complexity
When m/n = Θ(m) using an array.

When m/n = Ω(nε) using a k -ary heap.

When m/n = Ω(log n) using a Fibonacci heap.

Jiřı́ Fink Data Structures 1 79

The complexity for k -ary heap is O(nk logk n + m logk n).
Both terms are equal for k = m/n.
The term logm/n n is O(1) if m ≥ n1+ε for some ε > 0.

Using a Fibonacci heap is inefficient in practice.

Monotonic heaps (e.g. Thorup heap) have Delete-min in time O(log log n), so
Dijkstra’s algorithm runs in O(m + log log n).

More details are presented in the course “Graph Algorithms” by Martin Mareš.

Jiřı́ Fink Data Structures 1 79

Outline

1 (a,b)-tree

2 Red-black tree

3 Splay tree

4 Heaps

5 Cache-oblivious algorithms

6 Hash tables

7 Geometry

8 Bibliography

Jiřı́ Fink Data Structures 1 80

Techniques for memory hierarchy

Example of sizes and speeds of different types of memory

size speed
L1 cache 32 KB 223 GB/s
L2 cache 256 KB 96 GB/s
L3 cache 8 MB 62 GB/s
RAM 32 GB 23 GB/s
HDD 1 112 GB 56 MB/s
HDD 2 2 TB 14 MB/s
Internet ∞ 10 MB/s

A trivial program

1 for (i=0; i+d<n; i+=d) do
2 A[i] = i+d

3 A[i]=0
4 for (j=0; j< 228; j++) do
5 i=A[i]

Jiřı́ Fink Data Structures 1 81

Memory models: A trivial program

10 12 14 16 18 20 22 24 26 28 30
0

5

10

15

log2 n

Ti
m

e
[s

]

d=211

d=210

d=512
d=256
d=128
d=64
d=32
d=16
d=8
d=4
d=2
d=1

Jiřı́ Fink Data Structures 1 82

Memory models

1 For simplicity, consider only two types of memory called a disk and a cache.
2 Memory is split into pages of size B. 1

3 The size of the cache is M, so it can store P = M
B pages.

4 CPU can access data only in cache.
5 The number of page transfers between disk and cache in counted. 2

6 For simplicity, the size of one element is unitary. 3

External memory model
Algorithms explicitly issues read and write requests to the disks, and explicitly
manages the cache.

Cache-oblivious model
Design external-memory algorithms without knowing M and B. Hence,

a cache oblivious algorithm works well between any two adjacent levels of the
memory hierarchy,

no parameter tuning is necessary which makes programs portable,

algorithms in the cache-oblivious model cannot explicitly manage the cache.

Cache is assumed to be fully associative.

Jiřı́ Fink Data Structures 1 83

1 Also called a block or a line.
2 For simplicity, we consider only loading pages from disk to cache, which is also

called page faults.
3 Therefore, B and M are the maximal number of elements in a page and cache,

respectively.

Jiřı́ Fink Data Structures 1 83

Cache-oblivious analysis: Scanning

Scanning
Traverse all elements in an array, e.g. to compute sum or maximum.

Element Block Memory

n
B

The optimal number of page transfers is dn/Be.
The number of page transfers is at most dn/Be+ 1.

Array reversal

Assuming P ≥ 2, the number of page transfers is the same. 1

Jiřı́ Fink Data Structures 1 84

1 We also assume that CPU has a constant number of registers that stores loop
iterators, O(1) elements, etc.

Jiřı́ Fink Data Structures 1 84

Cache-oblivious analysis: Mergesort

Case n ≤ M/2

Whole array fits into cache, so 2n/B +O(1) page are transfered. 1

Schema

n
n/2
n/4

...
z

...
1

Size of a block

log2 n

log2(n/z)

log2 z

Height of the recursion tree

Case n > M/2
1 Let z be the maximal block in the recursion that can be sorted in cache.
2 Observe: z ≤ M

2 < 2z
3 Merging one level requires 2 n

B + 2 n
z +O(1) = O

(n
B

)
page transfers. 2

4 Hence, the number of page transfers is O
(n

B

) (
1 + log2

n
z

)
= O

(n
B log n

M

)
. 3

Jiřı́ Fink Data Structures 1 85

1 Half cache is for two input arrays and the other half is for the merged array.
2 Merging all blocks in level i into blocks in level i − 1 requires reading whole array

and writing the merged array. Furthermore, misalignments may cause that some
pages contain elements from two blocks, so they are accessed twice.

3 Funnelsort requires O
(n

B logP
n
B

)
page transfers.

Jiřı́ Fink Data Structures 1 85

Cache-oblivious analysis: Binary heap and search

Binary heap: A walk from the root to a leaf

Accessed nodes PageBeginning of the heap

1 The path has Θ(log n) nodes.
2 First Θ(log B) nodes on the path are stored in at most two pages. 1

3 Remaining nodes are stored in pair-wise different pages.
4 Θ(log n − log B) pages are transfered. 2

Binary search
Θ(log n) elements are compared with a given key.

Last Θ(log B) nodes are stored in at most two pages.

Remaining nodes are stored in pair-wise different pages.

Θ(log n − log B) pages are transfered.

Jiřı́ Fink Data Structures 1 86

1 One page stores B nodes, so the one page stores a tree of height log2(B) +O(1),
if the root is well aligned.

2 More precisely: Θ(max {1, log n − log B})

Jiřı́ Fink Data Structures 1 86

Cache-oblivious analysis: Cache-aware search

Search in a balanced binary search tree

Height of a tree is Θ(log n), so Θ(log n) pages are transfered. 1

Cache-aware algorithm
Cache-aware algorithms use exact values of sizes of a page and cache.

Search in an (a,b)-tree and cache-aware binary tree
Choose a and b so that the size of one node of an (a,b)-tree is exactly B.

Height of the (a,b)-tree is at most loga n +O(1).

Search from the root to a leaf requires only Θ(logB n) page transfers. 2

Replace every node of the (a,b)-tree by a binary subtree stored in one memory
page. 3

A search in this binary tree requires also Θ(logB n) page transfers. 4

However, we would prefer to be independent on B.

Jiřı́ Fink Data Structures 1 87

1 When nodes are allocated independently, nodes on a path from the root to a leaf
can be stored in different pages.

2 The height would be between logb n and 1 + loga n and these bounds would be
equal to Θ(logB n).

3 Assuming whole subtree also fits into a single memory page.
4 This is also the best possible (the proof requires Information theory).

Jiřı́ Fink Data Structures 1 87

Cache-oblivious analysis: Cache-aware representation

a1 a a2

b1 b b2

f1 f f2 g1 g g2

c1 c c2 d1 d d2 e1 e e2

y1 y y2 z1 z z2. . . skipped . . .

a

a1 a2

b

b1 b2

c

c1 c2

d

d1 d2

e

e1 e2

f

f1 f2

g

g1 g2

y

y1 y2

z

z1 z2
. . . skipped . . .

a a1 a2 b b1 b2 c c1 c2 d d1 d2 e e1 e2 f f1 f2 ... z z1 z2

Path from the root to the leaf f2

Jiřı́ Fink Data Structures 1 88

Cache-oblivious analysis: The van Emde Boas layout

Recursive description
Van Emde Boas layout of order 0 is a single node.

The layout of order k has one “top” copy of the layout of order k − 1 and every leaf
of the “top” copy has attached roots of two “bottom” copies of the layout of order
k − 1 as its children.

All nodes of the tree are stored in an array so that the “top” copy is the first followed by
all “bottom” copies.

The order of nodes in the array

0

1 2

0

1

3

4 5

6

7 8

2

9

10 11

12

13 14

Jiřı́ Fink Data Structures 1 89

Cache-oblivious analysis: The van Emde Boas layout

. . .

h

⌊ h
2

⌋

⌈ h
2

⌉

Number of page transfers
Let h = log2 n be the height of the tree.

Let z be the maximal height of a subtree in the recursion that fits into one page.

Observe: z ≤ log2 B ≤ 2z.

The number of subtrees of height z on the path from the root to a leaf is
h
z ≤

2 log2 n
log2 B = 2 logB n

Hence, the number of page transfers is O(logB n).

Jiřı́ Fink Data Structures 1 90

What is the number of subtrees?

What is the number of nodes in each subtree?

Is there a simple formula to determine indices of the parent and children for a
given index of an element in this array?

Find algorithm which returns indices of the parent and children for a given index of
an element. Is there a faster algorithm than O(log log n)?

Find algorithm which for a given node u write all nodes of the path from u to the
root in time linear in the length of the path.

Jiřı́ Fink Data Structures 1 90

Cache-oblivious analysis: The van Emde Boas layout: Initialization

Initialize of an array A to form the van Emde Boas layout 1

1 Function Init(A, n, root parent) 2

2 L← empty
3 if n == 1 then
4 A[0].parent← root parent
5 A[0].children[0], A[0].children[1]← NULL
6 else
7 k← minz such that 22z

> n 3

8 s← 22k−1
− 1 4

9 P← Init(A, s, root parent) 5

10 C← A + s 6

11 i← 0 7

12 while C < A + n do
13 L.append(Init(C, min {s,A + n − C}, P + bi/2c)) 8

14 P[bi/2c].children[i mod 2]← C
15 C← C+s 9

16 i← i+1

17 return L

Jiřı́ Fink Data Structures 1 91

1 Every element of the array contains pointers to its parent and children.
2 n is the size of array to be initialized

Returns a list of all leaves
3 The minimal number of subdivision of the binary tree on n nodes to reach trivial

subtrees
4 Number of nodes in every subtree after one subdivision
5 Initialize the top subtree. Leaves of the top subtree are roots of bottom subtrees.
6 The root of the first bottom subtree
7 Index of bottom subtrees
8 Initialize the i-th bottom subtree
9 Move to the next subtree

Jiřı́ Fink Data Structures 1 91

Cache-oblivious analysis: Matrix transposition: Simple approach

Page replacement strategies
Optimal: The future is known, off-line

LRU: Evicting the least recently used page

FIFO: Evicting the oldest page

Simple algorithm for a transposing matrix A of size k × k

1 for i ← 2 to k do
2 for j ← i + 1 to k do
3 Swap(Aij , Aji)

Assumptions

For simplicity, we assume that B < k and P < k . 1

The number of page transfers by the simple algorithm

Optimal page replacement: Ω
(
(k − P)2)

LRU or FIFO: Ω(k2)

Jiřı́ Fink Data Structures 1 92

1 One page stores at most one row of the matrix and cache cannot store all
elements of one column at once.

Jiřı́ Fink Data Structures 1 92

Cache-oblivious analysis: Matrix transposition: Simple approach

Representation of a matrix 5× 5 in memory and an example of memory pages

11 12 13 14 15 21 22 23 24 25 31 32 33 34 35 41 42 43 44 45 51 52 53 54 55

Optimal page replacement
1 Transposing the first row requires at least k transfers.
2 Then, at most P elements of the second column is cached.
3 Therefore, transposing the second row requires at least k − P − 1 transfers.
4 Transposing the i-th row requires at least max {0, k − P − i} transfers.
5 The total number of transfers is at least

∑k−P
i=1 i = Ω

(
(k − P)2).

LRU or FIFO page replacement

All the column values are evicted from the cache before they can be reused, so Ω(k2)
pages are transfered.

Jiřı́ Fink Data Structures 1 93

Cache-oblivious analysis: Matrix transposition: Optimal approach

Idea
Recursively split the matrix into sub-matrices:

A =

(
A11 A12

A21 A22

)
AT =

(
AT

11 AT
21

AT
12 AT

22

)

Number of page transfers
1 Tall cache assumption: M ≥ B2

2 Let z be the maximal size of a sub-matrix in the recursion that fit into cache.
3 Observe: z ≤ B ≤ 2z
4 There are (k/z)2 sub-matrices of size z.
5 Transposition two such sub-matrices requires O(z) transfers.
6 The number of transfers is O

(
k2/B

)
.

7 This approach is optimal up-to a constant factor.

Jiřı́ Fink Data Structures 1 94

How this matrix transposition can be implemented without recursion nor stack?

Jiřı́ Fink Data Structures 1 94

Cache-oblivious analysis: Comparison of LRU and OPT strategies

Theorem (Sleator, Tarjan, 1985)
Let s1, . . . , sk be a sequence of pages accessed by an algorithm.

Let nOPT and nLRU be the number of pages in cache for OPT and LRU, resp.

Let FOPT and FLRU be the number of page faults during the algorithm.

Then, FLRU ≤ nLRU
nLRU−nOPT

FOPT + nOPT.

Corollary
If LRU can use twice as many cache pages as OPT, then LRU transports at most twice
many pages than OPT does.

The asymptotic number of page faults for some algorithms
In most cache-oblivious algorithms, doubling/halving cache size has no impact on the
asymptotic number of page faults, e.g.

Scanning: O(n/B)

Mergesort: O
(n

B log n
M

)
Funnelsort: O

(n
B logP

n
B

)
The van Emde Boas layout: O(logB n)

Jiřı́ Fink Data Structures 1 95

Cache-oblivious analysis: Comparison of LRU and OPT strategies

Theorem (Sleator, Tarjan, 1985)
1 Let s1, . . . , sk be a sequence of pages accessed by an algorithm.
2 Let nOPT and nLRU be the number of pages in cache for OPT and LRU, resp.
3 Let FOPT and FLRU be the number of page faults during the algorithm.

Then, FLRU ≤ nLRU
nLRU−nOPT

FOPT + nOPT.

Proof
1 A subsequence of s, which LRU faults the same page twice, contains at least

nLRU + 1 different pages.
2 If LRU faults f ≤ nLRU pages during a subsequence of s, then the subsequence

accesses at least f different pages and OPT faults at least f − nOPT pages during
the subsequence.

3 Split the sequence of s into subsequences such that LRU has exactly nLRU page
faults during each subsequence (except one).

4 OPT has at least nLRU − nOPT faults during each subsequence (except one).
5 The additive term “+nOPT” in the theorem is necessary for the exceptional

subsequence in which LRU may have less than nLRU page faults.

Jiřı́ Fink Data Structures 1 96

Cache-oblivious analysis: Other algorithms and data structures

Funnelsort

Long integer multiplication

Matrix multiplication

Fast Fourier transform

Dynamic B-trees

Priority queues

kd-tree

Jiřı́ Fink Data Structures 1 97

Outline

1 (a,b)-tree

2 Red-black tree

3 Splay tree

4 Heaps

5 Cache-oblivious algorithms

6 Hash tables
Separate chaining
Linear probing
Cuckoo hashing
Hash functions

7 Geometry

8 Bibliography

Jiřı́ Fink Data Structures 1 98

Hash tables

Basic terms
Universe U = {0, 1, . . . , u − 1} of all elements

Represent a subset S ⊆ U of size n

Store S in an array of size m using a hash function h : U → M where
M = {0, 1, . . . ,m − 1}
Collision of two elements x , y ∈ S means h(x) = h(y)

Hash function h is perfect on S if h has no collision on S

Adversary subset
If u ≥ mn, then for every hashing function h there exists S ⊆ U of size n such that
|h(S)| = 1.

Birthday paradox
When n balls are (uniformly and independently) thrown into m ≥ n bins, the probability
that every bin has at most one ball is

n−1∏
i=1

m − i
m
∼ e−

n2
2m .

Jiřı́ Fink Data Structures 1 99

Hash tables

Basic issues
Find a good hash function

Handle collisions

Simple hash function
h(x) = x mod m

+ Fast to compute

+ h−1(j) have almost the same size for all j ∈ M

+ Works well only if the input is random

- The adversary subset is easily determined (DOS attack)

Cryptographic hash function, e.g. MD5, SHA-1
+ Hard to deliberately find a collision

- Slow and complex

Totally random hash function (assumed in analysis of hash tables)
Values h(x) for x ∈ S are assumed to be independent random variables with the
uniform distribution on M.

Jiřı́ Fink Data Structures 1 100

Hash tables: Separate chaining

Description
Bucket j stores all elements x ∈ S with h(x) = j using some data structure, e.g.

a linked lists

a dynamic array

a self-balancing tree

Implemetations
std::unordered map in C++

Dictionary in C#

HashMap in Java

Dictionary in Python

Jiřı́ Fink Data Structures 1 101

Hash tables: Separate chaining: Example

Using illustrative hash function h(x) = x mod 11

0, 22, 55

2
14, 80

5, 27
17

8, 30

21

Jiřı́ Fink Data Structures 1 102

Hash tables: Separate chaining: Analysis

Definition
α = n

m is the load factor

Iij is a random variable indicating whether i-th element belongs into j-th bucket

Aj =
∑

i∈S Iij is the number of elements in j-th bucket

Basic observations
1 E [Aj] = α

2 E [A2
j] = α(1 + α− 1/m)

3 Var(Aj) = α(1− 1/m)

4 limn→∞ P[Aj = 0] = e−α 1

Number of comparisons in operation Find
The expected number of key comparisons is α for the unsuccessful search and
1 + α

2 −
1

2m for the successful search. Hence, the average complexity of Find is
O(1 + α). 2

Jiřı́ Fink Data Structures 1 103

1 37% buckets are empty for α = 1
2 Successful search: The total number of comparison to find all elements in the

table is computed by summing over all buckets the number of comparisons to find
all elements in a bucket, that is

∑
j

∑Aj
k=1 k =

∑
j

Aj (Aj +1)

2 . Hence, the expected
number of comparisons is
1
n

∑
j

Aj (Aj +1)

2 = 1
2 + m

2n

∑
j A2

j
m = 1

2 + 1
2αE [A2

j] = 1 + α
2 −

1
2m .

Unsuccessful search: Assuming that uniformly distributed random bucket is
search, the number of comparisons is E [Aj] = α.

Jiřı́ Fink Data Structures 1 103

Hash tables: Separate chaining: Analysis

Definition
An event En whose probability depends on a number n occurs with high probability if
there exists a constant c > 0 and an integer n0 such that P[En] ≥ 1− 1

nc for every
n ≥ n0.

Chernoff Bound
Suppose X1, . . . ,Xn are independent random variables taking values in {0, 1}. Let X
denote their sum and let µ = E [X] denote the sum’s expected value. Then for any
c > 1 holds

P[X > cµ] <
e(c−1)µ

ccµ .

Upper bound on the longest chain

Assuming α = Θ(1), every bucket has O
(

log n
log log n

)
elements with high probability.

Expected length of the longest chain (without a proof)

Assuming α = Θ(1), the expected length of the longest chain is Θ(log n
log log n) elements.

Jiřı́ Fink Data Structures 1 104

Let ε > 0 and c = (1 + ε) log n
µ log log n . We have to estimate P[maxj Aj > cµ]. Observe that

P[maxj Aj > cµ] ≤
∑

j P[Aj > cµ] = mP[A1 > cµ]. We apply Chernoff bound on
variables I1i to obtain

P[A1 > cµ] < e−µecµ−cµ log c

= e−µe(1+ε)
log n

log log n−(1+ε)
log n

log log n log
(

(1+ε) log n
µ log log n

)

= e−µe(1+ε)
log n

log log n−(1+ε) log n+(1+ε)
log n

log log n log(µ
1+ε

log log n)

=
1

n1+ ε
2

e−µn−
ε
2 +(1+ε) 1

log log n +(1+ε)
log(µ

1+ε
log log n)

log log n

<
1

n1+ ε
2

Indeed, both 1
log log n and

log(µ
1+ε

log log n)
log log n converge to zero, so for sufficiently large n the

power of n is negative. Hence, P[maxj Aj ≤ (1 + ε) log n
log log n] > 1− α

n
ε
2

.

Jiřı́ Fink Data Structures 1 104

Hash tables: Separate chaining: Example

101 102 103 104 105 106 107 108 109
0

2

4

6

8

10

12

Total number of elements = the number of buckets

Th
e

m
ax

im
al

nu
m

be
ro

fe
le

m
en

ts
in

a
bu

ck
et

Jiřı́ Fink Data Structures 1 105

Hash tables: Separate chaining: Analysis

The worst case search time for one element

The expected time for operations Find in the worst case is O
(

log n
log log n

)
.

Goal
Amortized complexity of searching is O(1) with high probability.

Probability of k comparisons for searching one element

limn→∞ P[Aj = k] = αk

k!eα
1

Lemma: Number of elements in Θ(log n) buckets

Assuming α = Θ(1) and given d log n buckets T where d > 0, the number of elements
in T is at most eαd log n with high probability. 2

Amortized complexity for searching Ω(log n) elements (Pätraşcu [7])

Assuming α = Θ(1) and a cache of size Θ(log n), the amortized complexity for
searching Ω(log n) elements is O(1) with high probability. 3 4

Jiřı́ Fink Data Structures 1 106

1 Aj = k if k elements from S falls into the bucket j and others n − k elements falls
into other buckets. Therefore,

P[Aj = k] =

(
n
k

)
1

mk

(
1− 1

m

)n−k

∼ nk

k !mk

(
1− α

n

)n
→ αk

k !eα
.

2 Let the indicator variable Xi is 1 if h(i) ∈ T for i ∈ S. The number of elements in T
is X =

∑
i Xi with µ = E [X] = E [

∑
j∈T Aj] = |T |E [Aj] = αd log n. Using Chernoff

bound we obtain

P[X > cµ] < exp{dα log n(c − 1− c log c)} = ndα(c−1−c log c) = n−dα

for c = e.
3 A sequence of Ω(log n) operations Find can be split into subsequences of length

log n. Furthermore, we use a cache for last log n elements to avoid repetitive
searching of elements in the same bucket.

4 If log n searched elements are chosen randomly, they belong to pair-wise different
buckets with high probability (see the birthday paradox).

Jiřı́ Fink Data Structures 1 106

Hash tables: Separate chaining: Multiple-choice hashing

2-choice hashing
Element x can be stored in buckets h1(x) or h2(x) and Insert chooses the one with
smaller number of elements where h1 and h2 are two hash functions.

2-choice hashing: Longest chain (without a proof)
The expected length of the longest chain is O(log log n).

d-choice hashing
Element x can be stored in buckets h1(x), . . . , hd (x) and Insert chooses the one with
smallest number of elements where h1, . . . , hd are d hash functions.

d-choice hashing: Longest chain (without a proof)

The expected length of the longest chain is log log n
log d +O(1).

Jiřı́ Fink Data Structures 1 107

Hash tables: Linear probing

Memory consumption for separate chaining
Separate chaining uses memory for n element and

m + n pointers if buckets are implemented using linked list, or

m pointers and m integers if buckets use dynamic arrays.

Goal
Store elements directly in the table.

Linear probing

Insert a new element x into the empty bucket h(x) + i mod m with minimal i ≥ 0
assuming n ≤ m.

Operation Find
Iterate until the given key or empty bucket is fount.

Operation Delete
Flag the bucket of deleted element to ensure that the operation Find continues
searching.

Jiřı́ Fink Data Structures 1 108

Hash tables: Linear probing: Analysis

Complexity of Insert and unsuccessful Find
For every α < 1, the expected number of key comparisons in operations Insert and
unsuccessful Find is O(1).

Chernoff Bound
Suppose X1, . . . ,Xn are independent random variables taking values in {0, 1}. Let X
denote their sum and let µ = E [X] denote the sum’s expected value. Then for any
c > 1 holds

P[X > cµ] <
e(c−1)µ

ccµ .

Better estimates (Knuth [4]) (without a proof)

The expected number of key comparisons is at most 1
2 (1 + 1

1−α) in a successful search
1
2

(
1 + 1

(1−α)2

)
in a unsuccessful search and insert.

Jiřı́ Fink Data Structures 1 109

Let 0 < α < 1 and 1 < c < 1
α

and q =
(

ec−1

cc

)α
. Observe 0 < q < 1.

First, we estimate the probability pt that t elements of S are hashed into T for
given subset of buckets T of size t , that is pt = P[|h(S) ∩ T | = k]. In order to
apply Chernoff bound, let Xi be the indicator variable that h(i) ∈ T for all i ∈ S.
Then, µ = tα. Hence, pt = P[X = t] ≤ P[X > cµ] < qt .

Next, we estimate the probability p′k that we need k probings to find an empty
space. The inserted or searched element is hashed into a bucket b. Let k and s
are numbers such that buckets b − s − 1 and b + k are empty buckets and all
buckets between b − s and b + k − 1 are occupied. Hence,
p′k ≤

∑∞
s=0 ps+k < qk ∑∞

s=0 qs = qk

1−q .

Finally, we estimate the expected number of probings which is at most∑m
k=0 kp′k <

1
1−q

∑∞
k=0 kqk = 2−q

(1−q)3 .

Jiřı́ Fink Data Structures 1 109

Hash tables: Other methods

Quadratic probing

Insert a new element x into the empty bucket h(x) + ai + bi2 mod m with minimal
i ≥ 0 where a, b are fix constants.

Double hashing

Insert a new element x into the empty bucket h1(x) + ih2(x) mod m with minimal i ≥ 0
where h1 and h2 are two hash functions.

Brent’s variation for operation Insert
If the bucket

b = h1(x) + ih2(x) mod m is occupied by an element y and

b + h2(x) mod m is also occupied but

c = b + h2(y) mod m is empty,

then move element y to c and insert x to b. This reduces the average search time.

Jiřı́ Fink Data Structures 1 110

Hash tables: Cuckoo hashing

Origin
Rasmus Pagh and Flemming Friche Rodler [6]

Description
Given two hash functions h1 and h2, a key x can be stored in h1(x) or h2(x).
Therefore, operations Find and Delete are trivial.

Insert: Example
Successful insert of element x into h1(x) after three reallocations.

Impossible insert of element y into h1(y).

a c e f h i k l m n o r s

h1(x)

h1(a) or h2(a)

h1(y)

Jiřı́ Fink Data Structures 1 111

Hash tables: Cuckoo hashing: Algorithm for Insert

Insert an element x into a hash table T

1 pos← h1(x)
2 for n times do
3 if T[pos] is empty then
4 T[pos]← x
5 return

6 swap(x, T[pos])
7 if pos == h1(x) then
8 pos← h2(x)
9 else

10 pos← h1(x)

11 rehash()
12 insert(x)

Rehashing
Choose new hash functions h1 and h2

Increase the size of the table if necessary

Insert all elements to the new table

Jiřı́ Fink Data Structures 1 112

Hash tables: Cuckoo hashing: Analysis

Undirected cuckoo graph G
Vertices are positions in the hash table.

Edges are pairs {h1(x), h2(x)} for all x ∈ S.

Properties of the cuckoo graph
Operation Insert follows a path from h1(x) to an empty position.

New element cannot be inserted into a cycle.

When the path from h1(x) goes to a cycle, rehash is needed.

Lemma
Let c > 1 and m ≥ 2cn. For given positions i and j , the probability that there exists a
path from i to j and the shortest one has length k is at most 1

mck .

Complexity of operation Insert without rehashing

Let c > 1 and m ≥ 2cn. The expected length of the path is O(1).

Number of rehashes
Let c > 2 and m ≥ 2cn. The expected number of rehashes is O(1).

Jiřı́ Fink Data Structures 1 113

Proof of the lemma by induction on k :

k = 1 For one element, the probability that it forms an edge ij is 2
m2 . So, the probability

that there is an edge ij is at most 2n
m2 ≤ 1

mc .

k > 1 There exists a path between i and j of length k if there exists a path from i to u of
length k − 1 and an edge uj . For one position u, the i-u path exists with probability

1
mck−1 . The conditional probability that there exists the edge uj if there exists i-u
path is at most 1

mc because some elements are used for the i-u path. By summing
over all positions u, the probability that there exists i-j path is at most
m 1

mck−1
1

mc = 1
mck .

Insert without rehashing:

Using the previous lemma for all length k and all end vertices j , the expected
length of the path during operation Insert is m

∑n
k=1 k 1

mck ≤
∑∞

k=1
k
ck = c

(c−1)2 .

Number of rehashes:

Using the previous lemma for all length k and all vertices i = j , the probability that
the graph contains a cycle is at most m

∑∞
k=1

1
mck = 1

c−1 .

The probability that inserting rehashes z times is at most 1
(c−1)z .

The expected number of rehashes is at most
∑∞

z=0 z 1
(c−1)z = c−1

(c−2)2 .

Jiřı́ Fink Data Structures 1 113

Hash tables: Cuckoo hashing: Analysis

Complexity operation Insert without rehashing
Let c > 1 and m ≥ 2cn. The expected length of the path is O(1).

Amortized complexity of rehashing

Let c > 2 and m ≥ 2cn. The expected number of rehashes is O(1).
Therefore, operation Insert has the expected amortized complexity O(1).

The estimation in the proof is not optimal
The probability that the cuckoo graph has a cycle is overestimated.

Rehashing is not necessary if the cuckoo graph has a cycle.

In fact, the expected number of rehashes is O(1) even for c > 1.

Summary
Find and Delete: O(1) worst case complexity
Insert: O(1) expected amortized complexity for α < 0.5

Jiřı́ Fink Data Structures 1 114

Hash tables: Hash functions

Basic terms
Universe U = {0, 1, . . . , u − 1} of all elements

Represent a subset S ⊆ U of size n

Store S in an array of size m using a hash function h : U → M where
M = {0, 1, . . . ,m − 1}

Hashing random data
Every reasonable function f : U → S is sufficient for hashing random data,
e.g. f (x) = x mod m.

Random hash function
u log2 m bits are necessary to represent a random hash function.

Adversary subset
If u ≥ mn, then for every hashing function h there exists S ⊆ U of size n such that
|h(S)| = 1.

Jiřı́ Fink Data Structures 1 115

Hash tables: Universal hashing

Universal hashing
A set H of hash functions is universal if randomly chosen h ∈ H satisfies
P[h(x1) = h(x2)] ≤ 1

m for every x1 6= x2 elements of U.

2-universal hashing
A set H of hash functions is 2-universal if randomly chosen h ∈ H satisfies
P[h(x1) = z1 and h(x2) = z2] ≤ 1

m2 for every x1 6= x2 elements of U and z1, z2 ∈ M.

k -universal hashing (also call k -wise independent)
A set H of hash functions is k -universal if randomly chosen h ∈ H satisfies
P[h(xi) = zi for every i = 1, . . . , k] ≤ 1

mk for every pair-wise different elements
x1, . . . , xk ∈ U and z1, . . . , zk ∈ M.

Relations

If a function is k -universal, then it is also k − 1 universal. 1

If a function is 2-universal, then it is also universal. 2

1-universal function may not be universal. 3

Jiřı́ Fink Data Structures 1 116

1 P[h(xi) = zi for every i = 1, . . . , k − 1]
= P[h(xi) = zi for every i = 1, . . . , k − 1 and ∃zk : h(xk) = zk]
=
∑

zk∈M P[h(xi) = zi for every i = 1, . . . , k] ≤ m 1
mk

2 P[h(x1) = h(x2)] = P[∃z ∈ M : h(x1) = z and h(x2) = z]
=
∑

z∈M P[h(x1) = z and h(x2) = z] ≤ m 1
m2

3 Consider H = {x 7→ a; a ∈ M}. Then, P[ha(x) = z] = P[a = z] = 1
m but

P[ha(x1) = ha(x2)] = P[a = a] = 1.

Jiřı́ Fink Data Structures 1 116

Hash tables: Universal hashing: Multiply-mod-prime

Definition
p is a prime greater than u

ha,b(x) = (ax + b mod p) mod m

H = {ha,b; a ∈ {1, . . . , p − 1} , b ∈ {0, . . . , p − 1}}

Lemma
For every prime p, let [p] = {0, . . . , p − 1}. For every different x1, x2 ∈ [p], equations

y1 = ax1 + b mod p

y2 = ax2 + b mod p

define a bijection between (a, b) ∈ [p]2 and (y1, y2) ∈ [p]2. 1

Furthermore, these equations define a bijection between
{

(a, b) ∈ [p]2; a 6= 0
}

and{
(y1, y2) ∈ [p]2; y1 6= y2

}
. 2

Universality

The multiply-mod-prime set of functions H is universal. 3

Jiřı́ Fink Data Structures 1 117

1 Subtracting these equations, we get a(x1 − x2) ≡ y1 − y2 mod p. Hence, for given
pair (y1, y2) there exists exactly one a = (y1 − y2)(x1 − x2)−1 in the field GF(p).
Similarly, there exists exactly one b = y1 − ax1 in the field GF(p).

2 Indeed, y1 = y2 if and only if a = 0.
3 For x1 6= x2 we have a collision ha,b(x1) = ha,b(x2) iff y1 ≡ y2 (mod m). Note that

y1 6= y2. For given y1 there are at most
⌈ p

m

⌉
− 1 values y2 such that y1 ≡ y2

(mod m) and y1 6= y2. So, the total number of colliding pairs from{
(y1, y2) ∈ [p]2; y1 6= y2

}
is at most p(

⌈ p
m

⌉
− 1) ≤ p(p+m−1

m − 1) ≤ p(p−1)
m . The

bijection implies that there are at most p(p−1)
m pairs from

{
(a, b) ∈ [p]2; a 6= 0

}
causing a collision ha,b(x1) = ha,b(x2). Hence, P[ha,b(x1) = ha,b(x2)] ≤ p(p−1)

m|H| ≤
1
m .

Jiřı́ Fink Data Structures 1 117

Hash tables: Universal hashing: Multiply-mod-prime

Definition
p is a prime greater than u

ha,b(x) = (ax + b mod p) mod m

H = {ha,b; a ∈ {0, . . . , p − 1} , b ∈ {0, . . . , p − 1}}

Lemma
For every prime p, let [p] = {0, . . . , p − 1}. For every different x1, x2 ∈ [p], equations

y1 = ax1 + b mod p

y2 = ax2 + b mod p

define a bijection between (a, b) ∈ [p]2 and (y1, y2) ∈ [p]2.

2-universality
For every x1, x2 ∈ U, x1 6= x2, and y1, y2 ∈ M it holds

P[ha,b(x1) = z1 and ha,b(x1) = z2] ≤
⌈ p

m

⌉2

p2

So, the multiply-mod-prime set of functions H is not 2-universal. 1 2

Jiřı́ Fink Data Structures 1 118

1 There are at most
⌈ p

m

⌉2 pairs (y1, y2) such that z1 = y1 mod m and z2 = y2

mod m. The bijection implies that there are at most
⌈ p

m

⌉2 pairs (a, b) such that
ha,b(x1) = z1 and ha,b(x2) = z2.

2 Considering a ∈ {1, . . . , p − 1} leads to probability

P[ha,b(x1) = z1 and ha,b(x1) = z2] ≤
⌈ p

m

⌉2

p(p − 1)
.

Jiřı́ Fink Data Structures 1 118

Hash tables: Universal hashing: Multiply-shift

Bits selection

For positive integers a, b, x , let bita,b(x) =
⌊

x mod 2b

2a

⌋
.

Multiply-shift

Assume u = 2w and m = 2l

ha(x) = bitw−l,w (ax)

H = {ha; a odd w-bit integer }

Example is C
uint64_t hash(uint64_t x, uint64_t l, uint64_t a)
{ return (a*x) >> (64-l); }

Universality (without a proof)

For every x1, x2 ∈ [2w], x1 6= x2 it holds P[ha(x1) = ha(x2)] ≤ 2
m .

Jiřı́ Fink Data Structures 1 119

Hash tables: Universal hashing: Multiply-shift

Bits selection

For positive integers a, b, x , let bita,b(x) =
⌊

x mod 2b

2a

⌋
.

Multiply-shift

Assume u = 2w and m = 2l and v ≥ w + l − 1.

ha,b(x) = bitv−l,v (ax + b)

H = {ha,b; a, b ∈ [2v]}

Lemma

If α and β are relatively prime, then x 7→ αx mod β is a bijection on [β]. 1

2-universality

H is 2-universal, that is or every x1, x2 ∈ [2w], x1 6= x2 and z1, z2 ∈ M it holds
P[h(x1) = z1 and h(x2) = z2] ≤ 1

m2 .

Jiřı́ Fink Data Structures 1 120

1 Consider x1, x2, y ∈ [β] such that y ≡ αx1 ≡ αx2 (mod β). Then, β divides
α(x2 − x1). Since α and β are relatively prime, β divides x2 − x1 which implies
x1 = x2.

Jiřı́ Fink Data Structures 1 120

Hash tables: Universal hashing: Multiply-shift: 2-universality

H = {x 7→ bitv−l,v (ax + b); a,b ∈ [2v]} is 2-universal where v ≥ w + l − 1
1 Let s be the index of the least significant 1-bit in (x2 − x1)

2 Let o be the odd number such that x2 − x1 = o2s

3 a 7→ ao mod 2v = bit0,v (ao) is a bijection on [2v] 1

4 a 7→ bits,v+s(ao2s) = bits,v+s(a(x2 − x1)) is a bijection on [2v]

5 a 7→ bits,v (a(x2 − x1)) is a 2s-to-1 mapping [2v]→ [2v−s]

6 b 7→ bits,v (ax1 + b2s) is a bijection on [2v−s] for every a ∈ [2v]

7 b 7→ bits,v (ax1 + b) is a 2s-to-1 mapping [2v]→ [2v−s] for every a ∈ [2v]

8 (a, b) 7→ (bits,v (ax1 + b), bits,v (a(x2 − x1))) is a 22s-to-1 mapping [2v]2 → [2v−s]2

9 bits,∞(ax2 +b) = bits,∞((ax1 +b)+a(x2−x1)) = bits,∞(ax1 +b)+bits,∞(a(x2−x1))
2

10 (a, b) 7→ (bits,v (ax1 + b), bits,v (ax2 + b)) is a 22s-to-1 mapping [2v]2 → [2v−s]2 3

11 Since w + l − 1 ≤ v and s < w , it follows that s ≤ w − 1 ≤ v − l
12 (a, b) 7→ (bitv−l,v (ax1 + b), bitv−l,v (ax2 + b)) is a 22(v−l)-to-1 mapping [2v]2 → [2l]2

13 If a, b are independently uniformly distributed on [2v], then
P[h(x1) = z1 and h(x2) = z2] = 22(v−l)

22v = 1
m2 .

Jiřı́ Fink Data Structures 1 121

1 Follows from lemma for α = o and β = 2v .
2 The second equality uses bit0,s(a(x2 − x1)) = 0.
3 Since (α, β) 7→ (α, α + β) is a bijection.

Jiřı́ Fink Data Structures 1 121

Hash tables: Universal hashing: Multiply-shift for vectors

Multiply-shift for fix-length vectors

Hash a vector x1, . . . , xd ∈ U = [2w] into S = [2l] and let v ≥ w + l − 1

ha1,...,ad ,b(x1, . . . , xd) = bitv−l,v (b +
∑d

i=1 aixi)

H =
{

ha1,...,ad ,b; a1, . . . , ad , b ∈ [2v]
}

H is 2-universal (without a proof)

Multiply-shift for variable-length string
Hash a string x0, . . . , xd ∈ U into [p] where p ≥ u is a prime.

ha(x0, . . . , xd) =
∑d

i=0 xiai mod p 1

H = {ha; a ∈ [p]}
P[ha(x0, . . . , xd) = ha(x ′0, . . . , x

′
d′)] ≤ d+1

p for two different strings with d ′ ≤ d . 2

Multiply-shift for variable-length string II
Hash a string x0, . . . , xd ∈ U into [m] where p ≥ m is a prime.

ha,b,c(x0, . . . , xd) =
(

b + c
∑d

i=0 xiai mod p
)

mod m

H = {ha,b,c ; a, b, c ∈ [p]}
P[ha,b,c(x0, . . . , xd) = ha,b,c(x ′0, . . . , x

′
d′)] ≤ 2

p for different strings with d ′ ≤ d ≤ p
m .

Jiřı́ Fink Data Structures 1 122

1 x0, . . . , xd are coefficients of a polynomial of degree d .
2 Two different polynomials of degree at most d have at most d + 1 common points,

so there are at most d + 1 colliding values α.

Jiřı́ Fink Data Structures 1 122

Hash tables: Universal hashing: Multiply-shift for vectors

Tabulation hashing
Random tabular T1, . . .Td

T1(x1)⊕ · · · ⊕ Td (xd)

Mersenne prime

Prime in the form p = 2a − 1 is called Mersenne prime.

E.g. 22 − 1, 23 − 1, 231 − 1, 261 − 1, 289 − 1, 2107 − 1

x ≡ (x&p) + (x >> a) (mod p)

Jiřı́ Fink Data Structures 1 123

Outline

1 (a,b)-tree

2 Red-black tree

3 Splay tree

4 Heaps

5 Cache-oblivious algorithms

6 Hash tables

7 Geometry
Range trees
Interval trees
Segment trees
Priority search trees

8 Bibliography

Jiřı́ Fink Data Structures 1 124

Geometry

Types of problems

Given set S of points (or other geometrical objects) in Rd .

Find the nearest point of S for a given point.

Find all points of S which lie in a given region, e.g. d-dimensional rectangle.

Nearest point in R1

Given set of points S in R of size n, find the nearest point of S to a given point x .

Static Array: query in O(log n)

Dynamic Balanced search tree: query and update in O(log n)

Range query in R1

Given a finite set of points S in R, find all points of S in a given interval 〈a, b〉
where k is the number of points in the interval.

Static Array: query in O(k + log n)

Dynamic Balanced search tree: query and update in O(k + log n)

Jiřı́ Fink Data Structures 1 125

Geometry: Range query in R1

Example of 1D range tree
For simplicity, consider a binary search tree containing points only in leaves.

c

a b

Drawn subtrees contain points exactly points between a and b. 1

How to determine the number of points in a given interval in O(log n)? 2

Jiřı́ Fink Data Structures 1 126

1 Nodes a and b are actually the successor of a and the predecessor of b,
respectively.

2 Remember the number of leaves in every subtree.

Jiřı́ Fink Data Structures 1 126

Geometry: 2D range trees

Description
Search tree for x-coordinates with points in leaves (x-tree).

Every inner node u contains in its subtree of all points Su ⊂ S with x-coordinate in
some interval.

Furthermore, the inner node u also contains a search tree of points Su ordered by
y -coordinates (y -tree).

Example

u

v w

z

x-tree y -trees

Contains the same points as the subtree of u.

Contains the same points as the subtree of v.

Contains the same points as the subtree of w.

Contains the same points as the subtree of z.

Et cetera.

Jiřı́ Fink Data Structures 1 127

Geometry: 2D range trees: Space complexity

Vertical point of view
Every point p stored in exactly one leaf l of the x-tree; and moreover, p is also stored in
all y -trees corresponding to all nodes on the path from the x-root to l .

Horizontal point of view
Every level of x-tree decomposes the set of points by x-coordinates. Therefore, y -trees
corresponding to one level of x-tree contain every point exactly once.

Space complexity
Since every point is stored in O(log n) y -trees, the space complexity is O(n log n).

Jiřı́ Fink Data Structures 1 128

Geometry: 2D range trees: Range query

Range query
1 Search for keys ax and bx in the x-tree.
2 Identify all inner nodes in the x-tree which store points with x-coordinate in the

interval 〈ax , bx〉.
3 Run 〈ay , by 〉-query in all corresponding y -trees.

Example

c

a b

(illustrative) y -trees

Complexity

O
(

k + log2 n
)

, since 〈ay , by 〉-query is run in O(log n) y -trees.

Jiřı́ Fink Data Structures 1 129

Geometry: 2D range trees: Build

Straightforward approach

Create x-tree and then all y -trees using operation insert. Complexity is O
(

n log2 n
)

.

Faster approach
First, create two arrays of points sorted by x and y coordinates. Then, recursively . . .

1 Let x-root be the medium of all points by x-coordinate.
2 Create y -tree for the x-root. 1

3 Split both sorted arrays by x-root.
4 Recursively create both children of x-root.

Complexity

Recurrence formula T (n) = 2T (n/2) +O(n) 2

Complexity is O(n log n).

Jiřı́ Fink Data Structures 1 130

1 Given an array of sorted elements, most balanced search trees can be built in
O(n)-time.

2 Use master theorem, or observe that building one level of x-tree takes O(n)-time.

Jiřı́ Fink Data Structures 1 130

Geometry: Higher dimensional range trees

3D range trees
1 Create 2D range tree for x and y coordinates.
2 For every node u in every y -tree, create a search tree ordered z-coordinate

containing all points of the subtree of u.

d-dimensional range trees
Add dimensions one by one likewise in 3D range tree.

Complexity 1

Space: O
(

n logd−1 n
)

since every point is stored in O
(

log2 n
)

z-trees, etc.

Query: O
(

k + logd n
)

since 〈az , bz〉-query is run in O
(

log2 n
)

z-trees, etc.

Build: O
(

n logd n
)

if dimension-trees are created one-by-one by insertion.

O
(

n logd−1 n
)

if we use the faster approach likewise in 2D.

Jiřı́ Fink Data Structures 1 131

1 Dimension d is assumed to be a fix parameter.

Jiřı́ Fink Data Structures 1 131

Geometry: Layered range trees

2D case
Replace y -trees by sorted arrays.

Example

u

v w

z

x-tree y -arrays

Et cetera.

Higher dimension
Replace trees of the last dimension by sorted arrays.

Jiřı́ Fink Data Structures 1 132

Geometry: Fractional cascading

Motivative problem
Given sets S1 ⊆ · · · ⊆ Sm where |Sm| = n, create a data structure for fast searching
elements x ∈ S1 in all sets S1, . . . ,Sm. 1

Fractional cascading
Every set Si is sorted. Furthermore, every element in the array of Si has a pointer to
the same element in Si−1. 2

1 2 3 4 5 6 7 8 9

1 3 4 6 8 9

3 4 8

S3

S2

S1

Complexity of a search in m sets
O(m + log n)

Jiřı́ Fink Data Structures 1 133

1 A straightforward solution gives complexity O(m log n).
2 Elements Si \ Si−1 point to their predecessors or successors.

Jiřı́ Fink Data Structures 1 133

Geometry: Layered range trees and fractional cascading

Using fractional cascading
Use fractional cascading for the last dimension arrays, e.g. d = 2:

u

v

z

x-tree Fractional cascading

Complexity of one range query in 2D
Search in the x-tree takes O(log n).

Binary search for ay and by in y -arrays takes O(log n).

Complexity of one range query in d dimensions

O
(

k + logd−1 n
)

Jiřı́ Fink Data Structures 1 134

Geometry: Intermezzo: Weight balanced trees: BB[α]-tree

Description (Jürg Nievergelt, Edward M. Reingold [5])
A binary search tree is BB[α]-tree if for every node u

su.left ≥ αsu − 1 and

su.right ≥ αsu − 1

where the size su is the number of leaves in the subtree of u. 1

Height
The height of a BB[α]-tree is at most log 1

1−α
(n) +O(1) = O(log n).

Balancing after operations Insert and Delete

When a node u violates the weight condition, rebuild whole subtree in time O(su). 2

Amortized cost
Another rebuild of a node u occurs after Ω(su) updates in the subtree of u.

Therefore, amortized cost of rebuilding subtree is O(1), and

update contributes to amortized costs of all nodes on the path from the root to leaf.

The amortized cost of operations Insert and Delete is O(log n). 3

Jiřı́ Fink Data Structures 1 135

1 Clearly, 0 < α < 1
2 . The term “−1” is important only for small subtrees when their

size is odd.
2 It is possible to use rotations to keep the BB[α]-tree balanced. However in range

trees, a rotation in the x-tree leads to rebuilding many y -trees.
3 This proof can be directly reformulated into potential method as follows. We define

a potential Φ(u) of a node u to be

Φ(u) =

{
0 if su.left = su.right = su

2

su if min {su.left , su.right} = αsu

and all other cases are defined using the linear interpolation of these two cases,
that is

Φ(u) =
1

1− 2α
(su − 2 min {su.left , su.right}) .

This potential gives enough money when reconstruction is needed and zero after
the reconstruction. Observe that the change of potential ∆Φ(u) is at most O(1)
when an element is inserted or deleted in the subtree of u. The total potential Φ is
the sum of potentials of all nodes and its change is at most O(log n) for an
operation Insert or Delete (excluding reconstruction).

Jiřı́ Fink Data Structures 1 135

Geometry: Range trees using BB[α]-trees

Dynamic range trees

For simplicity, consider BB[α]-tree for every dimension including the last one. 1

Rotations in range trees are hard.

However, reconstruction of a (sub)tree on n points takes O
(

n logd−1 n
)

. 2

2D case
Reconstruction in the y -subtree of a node u takes O(su) time and another
reconstruction occurs after Ω(su) updates in the y -subtree of u, so the amortized
cost of rebuilding one y -subtree is O(1).

Reconstruction in the x-subtree of a node u and following y -trees takes
O(su log su) time and another reconstruction occurs after Ω(su) updates time in
the x-subtree of u, so the amortized cost of rebuilding one x-subtree is O(log su).

One update contributes to amortized costs in Ω(log n) x-subtrees and Ω(log2 n)
y -trees.

Amortized cost of operations Insert and Delete is O
(

log2 n
)

.

Jiřı́ Fink Data Structures 1 136

1 Without fractional cascading.
2 Balancing the x-tree requires reconstruction of trees in all dimensions.

Jiřı́ Fink Data Structures 1 136

Geometry: Range trees using BB[α]-trees

3D case
Reconstruction in the z-subtree of a node u takes O(su) time and another reconstruction
occurs after Ω(su) updates in the y -subtree of u, so the amortized cost of rebuilding one
y -subtree is O(1).
Reconstruction in the y -subtree of a node u and following z-trees takes O(su log su) time
and another reconstruction occurs after Ω(su) updates time in the y -subtree of u, so the
amortized cost of rebuilding one y -subtree is O(log su).
Reconstruction in the x-subtree of a node u and following y -trees and z-trees takes
O
(

su log2 su

)
time and another reconstruction occurs after Ω(su) updates time in the

x-subtree of u, so the amortized cost of rebuilding one x-subtree is O
(

log2 su

)
.

One update contributes to amortized costs in Ω(log n) x-subtrees and Ω(log2 n) y -trees and
Ω(log3 n) z-trees.

Amortized cost of operations Insert and Delete is O
(

log3 n
)

.

d-dimensional range trees using BB[α]-trees

Range query in O
(

k + logd n
)

worst case. 1

Insert and Delete in O
(

logd n
)

amortized cost. 2

Jiřı́ Fink Data Structures 1 137

1 When we apply fractional cascading on leaves of a tree instead of arrays, we
obtain query in O

(
k + logd−1 n

)
without changing the complexity for updates.

2 The actual time for m updates is O
(

n logd−1 n + m logd n
)

.

Jiřı́ Fink Data Structures 1 137

Geometry: Range trees: Further improvements

Bernard Chazelle [1, 2]

d-dimensional range query in O
(

k + logd−1 n
)

time and O
(

n
(

log n
log log n

)d−1
)

space.

Bernard Chazelle, Leonidas J. Guibas [3]

d-dimensional range query in O
(

k + logd−2 n
)

time and O
(

n logd n
)

space.

Jiřı́ Fink Data Structures 1 138

Geometry: Interval trees

Input
Set of intervals S = {I1, . . . , In} where Ii = 〈ai , bi〉.

Recursive contruction of interval trees
Interval tree is a binary tree. Let

m be the medium of 2n endpoints a1, b1, . . . , an, bn,

Sm = {Ii ; ai ≤ m ≤ bi} be intervals containing m,

Sl = {Ii ; bi < m} be intervals smaller than m and

Sr = {Ii ; m < ai} be intervals greater than m.

The root of the tree contains

two arrays of intervals Sm sorted by left and right end-points,

interval trees for intervals Sl as the left child and

interval trees for intervals Sr as the right child. 1

Complexity

Time complexity for construction is O(n log n). 2

Space complexity is O(n). 3

Jiřı́ Fink Data Structures 1 139

1 If Sl or Sr is empty, then there is no left or right child, respectively.
2 There are at most n end-points smaller than m, so Sl contains at most n

2 intervals.
Therefore, the time complexity satisfies the recurrence formula
T (n) ≤ 2T (n

2) + Θ(n).
3 Every interval is stored in exactly one node. If Sm is empty, then n is even and both

Sl and Sr contains n
2 intervals. There are at most n− 1 such nodes. Therefore, the

tree has at most 2n − 1 nodes.

Jiřı́ Fink Data Structures 1 139

Geometry: Interval trees: Intersection interval query

Problem description
Given query interval Q = 〈aq , bq〉, find all intervals intersecting with Q.

Recursive algorithm

1 if aq ≤ m ≤ bq then
2 Write all intervals Sm

3 Recursively process both children
4 else if bq < m then
5 Use the array of intervals Sm sorted by left end-points to find all intervals of Sm

intersecting with Q
6 Recursively process the left child
7 else
8 Use the array of intervals Sm sorted by right end-points to find all intervals of Sm

intersecting with Q
9 Recursively process the right child

Complexity
O(k + log n)

Jiřı́ Fink Data Structures 1 140

Geometry: Segment trees

Input
Set of intervals S = {I1, . . . , In} where Ii = 〈ai , bi〉.

Query
Given point p, find all intervals of S containing p.

Trivial approach
1 Let x1, . . . , xm be sorted end-points {a1, b1, . . . , an, bn} without duplicities.
2 Split R into blocks (−∞, x1), {x1}, (x1, x2), {x2}, . . . , {xm}, (xm,∞).
3 For every block, store all intervals of S containing the block.

Complexity
Time for query: O(k + log n)

Time for construction: O
(
n2)

Space: O
(
n2)

Useful only for counting queries where every block contains the number of intervals.

Jiřı́ Fink Data Structures 1 141

Geometry: Segment trees

Idea of segment trees
Let blocks (−∞, x1), {x1}, . . . , (xm,∞) be leaves of a binary tree.

Every node stores the union of all blocks in its subtree.

If two siblings store the same interval, store the interval in their parent instead.

In the query, walk from the root to a leaf with a block containing a given point and
print all intervals stored in all nodes on the path.

Space complexity
Every interval is stored in at most two nodes of every level of the tree.
Therefore, space complexity is O(n log n).

Time complexity of a construction
First, sort all end-points and create the binary tree. Then, add all intervals using a
top-down recursion.
Therefore, time complexity is O(n log n).

Time complexity of a query
O(k + log n).

Jiřı́ Fink Data Structures 1 142

Geometry: Priority search tree

Heap and search tree in one binary tree
If every element e has a key e.key and a priority e.priority , is it possible to store a set
of elements in a binary tree so that

the min-heap property is satisfied for priorities and

the search-tree property is satisfied for keys? 1

Relax the search tree property
Priority search tree is a binary tree having one element in every node so that

the min-heap property is satisfied for priorities and

elements can be fount by their keys in O(log n) time.

Top-down recursive construction of a priority search tree
The root of the priority search tree storing a set of elements S contains

the element e of S with the smallest priority,

the median key m of all elements of S, 2

the left subtree stores all elements with keys smaller than m (except e) and

the right subtree stores all elements with keys greater than m (except e). 3

Jiřı́ Fink Data Structures 1 143

1 Observe that if all keys and all priorities are pair-wise different, then there exists a
unique binary tree storing all elements.

2 Note that m is not the key of the element e (unless e coincidently has the median
key).

3 Observe that this tree does not satisfies the search-tree condition in general.

Jiřı́ Fink Data Structures 1 143

Geometry: Priority search tree

Complexity
Space complexity is O(n)

Construction in O(n log n)-time

Find the element with the smallest priority in O(1)-time

Find the element with a given key in O(log n)-time

Delete the element with the smallest priority in O(log n)-time 1

Applications
Find the element with key in a given range and the smallest priority.

Grounded 2D range search problem: Given a set of points in R2, find points in the
range 〈ax , bx〉 × (−∞, by 〉.

Jiřı́ Fink Data Structures 1 144

1 After a deletion, nodes do not store the median keys of their subtree. Although the
height of the tree is not increased by an operation delete, the tree may degenerate.

Jiřı́ Fink Data Structures 1 144

Outline

1 (a,b)-tree

2 Red-black tree

3 Splay tree

4 Heaps

5 Cache-oblivious algorithms

6 Hash tables

7 Geometry

8 Bibliography

Jiřı́ Fink Data Structures 1 145

[1] Bernard Chazelle.
Lower bounds for orthogonal range searching: I. the reporting case.
Journal of the ACM (JACM), 37(2):200–212, 1990.

[2] Bernard Chazelle.
Lower bounds for orthogonal range searching: part ii. the arithmetic model.
Journal of the ACM (JACM), 37(3):439–463, 1990.

[3] Bernard Chazelle and Leonidas J Guibas.
Fractional cascading: I. a data structuring technique.
Algorithmica, 1(1-4):133–162, 1986.

[4] Donald Ervin Knuth.
Notes on ”open” addressing.
http://algo.inria.fr/AofA/Research/11-97.html, 1963.

[5] Jürg Nievergelt and Edward M Reingold.
Binary search trees of bounded balance.
SIAM journal on Computing, 2(1):33–43, 1973.

[6] Rasmus Pagh and Flemming Friche Rodler.
Cuckoo hashing.
Journal of Algorithms, 51(2):122–144, 2004.

[7] Mihai Patraşcu.
Better guarantees for chaining and linear probing.

Jiřı́ Fink Data Structures 1 145

http://infoweekly.blogspot.cz/2010/02/
better-guarantees-for-chaining-and.html.
blogspot, February 2, 2010.

Jiřı́ Fink Data Structures 1 145

http://algo.inria.fr/AofA/Research/11-97.html
http://infoweekly.blogspot.cz/2010/02/better-guarantees-for-chaining-and.html
http://infoweekly.blogspot.cz/2010/02/better-guarantees-for-chaining-and.html

	(a,b)-tree
	A-sort

	Red-black tree
	Splay tree
	Heaps
	d-ary heap
	Binomial heap
	Lazy binomial heap
	Fibonacci heap
	Dijkstra's algorithm

	Cache-oblivious algorithms
	Hash tables
	Separate chaining
	Linear probing
	Cuckoo hashing
	Hash functions

	Geometry
	Range trees
	Interval trees
	Segment trees
	Priority search trees

	Bibliography

