
Implementation of algorithms and data structures
1. seminar

Jirka Fink
https://ktiml.mff.cuni.cz/˜fink/

Department of Theoretical Computer Science and Mathematical Logic
Faculty of Mathematics and Physics

Charles University in Prague

Summer semestr 2023/24
Last change 2. řı́jna 2023

Licence: Creative Commons BY-NC-SA 4.0

Jirka Fink Implementation of algorithms and data structures 1 / 18

https://ktiml.mff.cuni.cz/~fink/
https://creativecommons.org/licenses/by-nc-sa/4.0/


The course

Goals
Learn how to implement advanced algorithms and data structures without tedious
debugging

Learn how to write and use various tests

Learn to structure code and write API

Entrance expectations
Knowledge of some programming language (e.g. C/C++, Python, Java, C#)

Theoretical knowledge algorithms and data structures from bachelor study

Experience in implementing basic algorithm (e.g. graph search)

Jirka Fink Implementation of algorithms and data structures 2 / 18



Communication

Web
https://ktiml.mff.cuni.cz/˜fink/

E-mail
fink@ktiml.mff.cuni.cz

Recodex
Enroll into my group on Recodex

Submit your fully working programs here

Gitlab
Create a new private git repository on https://gitlab.mff.cuni.cz/

Give me (finkj1am) access (developer)

Jirka Fink Implementation of algorithms and data structures 3 / 18

https://ktiml.mff.cuni.cz/~fink/
https://gitlab.mff.cuni.cz/


Passing conditions

Passing conditions
Implement 3 algorithms or data structures

Programming language: negotiable but it must be available on recodex

Assignments
1 Red-black trees

Martin Mareš, Tomáš Valla: Průvodce labyrintem algoritmů, CZ.NIC, 2017
Robert Sedgewick: Left-leaning Red-Black Trees, doi:10.1.1.139.282

2 Network flows (Goldberg algorithm)
Martin Mareš, Tomáš Valla: Průvodce labyrintem algoritmů, CZ.NIC, 2017
Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein:
Introduction to algorithms, The MIT Press, 2001
http://mitp-content-server.mit.edu:18180/books/content/
sectbyfn?collid=books_pres_0&id=8030&fn=Chapter%2026.pdf

3 Maximum matching in general unweighted graphs (Blossom algorithm)
Cunningham, Cook, Pulleyblank, Schrijver: Combinatorial optimization, John Wiley
& Sons, 1997

Jirka Fink Implementation of algorithms and data structures 4 / 18

http://mitp-content-server.mit.edu:18180/books/content/sectbyfn?collid=books_pres_0&id=8030&fn=Chapter%2026.pdf
http://mitp-content-server.mit.edu:18180/books/content/sectbyfn?collid=books_pres_0&id=8030&fn=Chapter%2026.pdf


The first assignment: Left-leaning Red-black trees

Implement the following operations
Insert element

Delete element

Find the k -th smallest element

Martin Mareš, Tomáš Valla: Průvodce labyrintem algoritmů, CZ.NIC, 2017

Definition
Binary search tree where every node is red or black

The parent of a red node must be black

Every path from the root to all leaves has the same number of black nodes

The root and all leaves are black

If a node has exactly one child then the child is left

Literature
Martin Mareš, Tomáš Valla: Průvodce labyrintem algoritmů, CZ.NIC, 2017

Robert Sedgewick: Left-leaning Red-Black Trees, doi:10.1.1.139.282

Jirka Fink Implementation of algorithms and data structures 5 / 18



The first assignment: Left-leaning Red-black trees

Question
How to find the k -th smallest element in a binary tree?

Approach
In every node remember the size of its subtree

Faster version: Remember the size of left subtree

Jirka Fink Implementation of algorithms and data structures 6 / 18



General approach

Read the problem statement

Study given algorithm and make sure to understand it

Understand proofs of correctness and complexities

Split the task into small parts

Design application programming interface (API)

Prepare unit tests

Determine how to data representation (storing data in memory)

Solve boundary cases (e.g. storing the root and leaves)

Prepare test of data representation

Split your code into small functions

Implement and test functions one by one

Jirka Fink Implementation of algorithms and data structures 7 / 18



Debugging tools

Localize a bug using various tests

Visualize data stored in memory
E.g. draw a graph with vertices and edges

Print what program does
E.g. insert a key, rotate a node

Tools checking dangerous operations
E.g. memory allocations in C/C++

Find a minimal example producing an error

Write more tests

Debug your program step by step (a very slow process)

Read your code and check that we understand every single line

Read the problem statement and literature again

Find a better design of our program and rewrite it completely

Take a break; sleep whole night

Jirka Fink Implementation of algorithms and data structures 8 / 18



Type of tests

Unit testing

Fuzzy testing

Integration testing

System testing

Acceptance testing

Installation testing

Regression testing

Continuous testing

Destructive testing

Software performance testing

Security testing

VCR testing

Internationalization and localization

. . .

Jirka Fink Implementation of algorithms and data structures 9 / 18



Testing methods

Black-box testing
No knowledge of codes is used

Test fulfilling the specification

First write tests, code later

White-box testing
Requires knowledge of codes

Covers every part of code

Reversed engineering: Searching for dangerous inputs for our code

Verifies the internal structures

Testing reported bugs
For a reported bug, a test is created before fixing.

Jirka Fink Implementation of algorithms and data structures 10 / 18



Test-driven development

Development cycle
1 Write tests
2 Run tests and check that all fails
3 Implement the program
4 Use tests for debugging
5 Refactorization and clean up
6 Write documentation

Advantages
Tests may contain bugs, we verify that tests fails as expected

Writing unit tests verifies usability of interface

Jirka Fink Implementation of algorithms and data structures 11 / 18



Unit testing

Motivation
Verify correctness of new features and preserving functionality after changes in codes.

Description
Software testing method by which individual units of source code are tested to
determine whether they are fit for use

Tests should be independent

Advantages
Unit tests can be run repeatedly

Fast discovery of a bug when code is changed

Example of usage of a library

Limitations and disadvantages
Unit tests only proves that a program contains a bug

Unit tests cannot prove that a program is correct (halting problem)

Unit tests are not supposed to verify integration of modules

Unit tests uses API without verifying internal data correctness

Jirka Fink Implementation of algorithms and data structures 12 / 18



Unit testing: Sum of two numbers

1 public class TestAdder {
2 @Test
3 public void testSumPositiveNumbersOneAndOne() {
4 Adder adder = new AdderImpl();
5 TEST(adder.add(1, 1) == 2);
6 }
7 @Test
8 public void testSumPositiveNumbersOneAndTwo() {
9 Adder adder = new AdderImpl();

10 TEST(adder.add(1, 2) == 3);
11 }
12 @Test
13 public void testSumPositiveNumbersTwoAndTwo() {
14 Adder adder = new AdderImpl();
15 TEST(adder.add(2, 2) == 4);
16 }
17 @Test
18 public void testSumZeroNeutral() {
19 Adder adder = new AdderImpl();
20 TEST(adder.add(0, 0) == 0);
21 }
22 ...
23 }

Jirka Fink Implementation of algorithms and data structures 13 / 18



Unit testing: Graph
1 public abstract class AbstractGraphTest {
2 MutableGraph<Integer> graph;
3 @Before
4 public void init() {
5 graph = createGraph();
6 }
7 @After
8 public void validateGraphState() {
9 validateGraph(graph);

10 }
11 @Test
12 public void nodes_oneNode() {
13 addNode(N1);
14 TESTThat(graph.nodes().containsExactly(N1);
15 }
16 @Test
17 public void nodes_noNodes() {
18 TESTThat(graph.nodes().isEmpty();
19 }
20 @Test
21 public void adjacentNodes_oneEdge() {
22 putEdge(N1, N2);
23 TESTThat(graph.adjacentNodes(N1)).containsExactly(N2);
24 TESTThat(graph.adjacentNodes(N2)).containsExactly(N1);
25 }
26 }

Jirka Fink Implementation of algorithms and data structures 14 / 18



Source: Wikipedia: Unit testing
https://github.com/google/guava/blob/master/guava-
tests/test/com/google/common/graph/AbstractGraphTest.java

Jirka Fink Implementation of algorithms and data structures 14 / 18



How create unit tests?

Initial questions about unit tests
How should a unit be tested?
E.g. which library should be used to write tests?

What should be tested?
E.g. what should be the content of unit tests?

Libraries for unit tests
Python: unittest — Unit testing framework

Julia: Unit testing (standard library)

Java: JUnit 5

C#: Unit test basics

C/C++: Tens of libraries

Wikipedia: List of unit testing frameworks

Jirka Fink Implementation of algorithms and data structures 15 / 18

https://docs.python.org/3/library/unittest.html
https://docs.julialang.org/en/v1/stdlib/Test/
https://junit.org/junit5/docs/current/user-guide/
https://docs.microsoft.com/en-us/visualstudio/test/unit-test-basics
https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks


What should be tested?

General hints
Write test verifying that task is fulfilled

Test boundary cases

Test sorting function

1 // First, small simple tests
2 TEST(sort([5,7,9,3]) == [3,5,7,9])
3 TEST(sort([’d’,’a’,’z’]) == [’a’,’d’,’z’])
4 TEST(sort(["one","two","three"]) == ["one","three","two"])
5

6 // Tricky cases, some cases may depend on documentation
7 TEST(sort([]) == [])
8 TEST(sort([1,2,1,2,1]) == [1,1,1,2,2])
9 TEST(sort([1,False,5,True]) == [False, 1, True, 5])

Creating larger and random tests will be discussed later.

Jirka Fink Implementation of algorithms and data structures 16 / 18



What should be tested?

Examples of tests of binary search trees
1 Create a new empty tree and destroy it
2 Create a new empty tree, insert one element and destroy the tree
3 Insert more elements
4 Delete some elements
5 Delete all elements
6 Combine insertion and deletions
7 Check the counter of the number of elements
8 Find existing and non-existing elements
9 Insert existing and delete non-existing elements

10 Find and delete an element in an empty tree

Jirka Fink Implementation of algorithms and data structures 17 / 18



The first assignment: Left-leaning Red-black trees

Tasks for next week
Create a new private git repository on https://gitlab.mff.cuni.cz/

Give me (finkj1am) access (developer)

Read and understand literature

Design API

Design data representation

Write unit tests

Use git every day!

Jirka Fink Implementation of algorithms and data structures 18 / 18

https://gitlab.mff.cuni.cz/

