
Implementation of algorithms and data structures
3. seminar

Jirka Fink
https://ktiml.mff.cuni.cz/˜fink/

Department of Theoretical Computer Science and Mathematical Logic
Faculty of Mathematics and Physics

Charles University in Prague

Summer semestr 2023/24
Last change 17. řı́jna 2023

Licence: Creative Commons BY-NC-SA 4.0

Jirka Fink Implementation of algorithms and data structures 1 / 16

https://ktiml.mff.cuni.cz/~fink/
https://creativecommons.org/licenses/by-nc-sa/4.0/


Fuzz testing

Description (Wikipedia)
Fuzzing or fuzz testing is an automated software testing technique that involves
providing invalid, unexpected, or random data as inputs to a computer program. The
program is then monitored for exceptions such as crashes, failing built-in code
assertions, or potential memory leaks.

Motivation
For advanced algorithm, we are unable to create unit tests for all possible cases.

Testing data consistency helps to fix a bug, but we have to be able to cause an
error.

Therefore, we provide our program random data, both correct and incorrect.

Simple example

1 elements = list(range(start, stop, step))
2 random.shuffle(elements)
3 TEST(sorted(elements) == list(range(start, stop, step)))

Jirka Fink Implementation of algorithms and data structures 2 / 16



Fuzz testing and probability of finding an error

Question
What is the chance that a fuzz test finds an error?

Infinite monkey theorem
A monkey hitting keys at random on a typewriter keyboard for an infinite amount of
time will almost surely type any given text, such as the complete works of William
Shakespeare.

The probability that monkeys filling the entire observable universe would type a
single complete work is so tiny that the chance of it occurring during a period of
time hundreds of thousands of orders of magnitude longer than the age of the
universe is extremely low (but technically not zero).

Jirka Fink Implementation of algorithms and data structures 3 / 16



Fuzz testing and probability of finding an error

Collorary and practice
A random generator finds a sequence of operations leading to an existing error
after sufficient amount of time, assuming the generator can create such a
sequence.

The necessary amount of time is increasing with the length of input pretty fast.

Most bugs in practice can be caused by many inputs which reduced the time for
testing.

Even fuzz testing cannot find all bugs,
e.g. using formal verification a bug was found in the standard implementation of
Timsort and the smallest input was of size 67 108 864.

Jirka Fink Implementation of algorithms and data structures 4 / 16



Fuzz testing

Example

1 t := TestedTree()
2 for i in 1:10 . . . 0 do
3 t.insert(random())
4 t.test data consistency()

5 for i in 1:10 . . . 0 do
6 t.find(random())

7 for i in 1:10 . . . 0 do
8 t.delete(random())
9 t.test data consistency()

Why this is not sufficient?
Data can be stored correctly even if the tree is loosing elements.

A bug may be caused by an insertion after some deletions.

The correctness of query operations should be tested, but how do we determine
the correct answer?

Jirka Fink Implementation of algorithms and data structures 5 / 16



Test storing expected elements

Goal
Verify that expected elements are stored in our data structure and queries gives correct
answers.

Approach
Choose an appropriate container from the standard library, e.g. array or a hash
table
Create for testing an auxiliary class containing an instance of

our tested data structure and
selected (referee) container.

Ensure that both data structures contains the same elements:
New elements are inserted into both data structures
Deleted elements are removed from both data structures

Query operations compare results from both data structures
The referee data structure does not need to be efficient.
It is sufficient that it provides correct answers.

We also tests that both data structures contains the same elements using e.g.
simultaneous traverses of both data structures if elements are stored in a sorted order
traversing elements in one data structure and marking them in the other

Jirka Fink Implementation of algorithms and data structures 6 / 16



Example of a testing class

1 class tester {
2 my_buggy_tree examinee;
3 set referee;
4

5 void insert(element e) {
6 examinee.insert(e);
7 referee.insert(e);
8 compare_content();
9 }

10

11 void compare_content() {
12 iterator e = examinee.begin();
13 for(auto r : referee) { // Iterate elements in both trees
14 TEST(e != examinee.end());
15 TEST(e.key() == r.key()); // Comparing data in elements
16 e = e.next();
17 }
18 TEST(n == examinee.end());
19 TEST(examinee.size() == referee.size());
20 }
21

22 void find(key k) {
23 TEST(examinee.find(e) == referee.find(e));
24 }
25 };

Jirka Fink Implementation of algorithms and data structures 7 / 16



Data generation

Goal
Create data for insertion, deletions, queries . . .

Choose order of these operations

Simple sequetial data generation
Insert (e.g.) even numbers

Try to find all number, including number out of range

Try to delete all numbers

Results of these operations are known, so we also verify our testing class

Přı́klad

1 void test_sequence(int length) {
2 tester t;
3 for(int i = 1; i <= length; i++)
4 t.insert(2*i);
5 for(int i = 0; i <= 2*length+5; i++)
6 TEST(t.find(i) == (iseven(i) && 1 <= i <= 2*length));
7 for(int i = 0; i <= 2*length+5; i++)
8 t.remove(i);
9 }

Jirka Fink Implementation of algorithms and data structures 8 / 16



Random data generation

Methods
Insert random elements

Search for random elements which usually are not found

Search for elements randomly selected from the referee which has to be found

Delete both random elements and randomly selected from the referee

Přı́klad

1 void test_random_data(int length) {
2 tester t;
3 for(int i = 0; i < length; i++)
4 t.insert(random()); // Duplicit keys may be inserted
5 for(key k : t.referee) {
6 TEST(t.find(k)); // Test a key should be stored
7 t.find(random()); // Test a key which is not most likely stored
8 }
9 while(!t.empty()) {

10 TEST(t.remove(random(t.referee))); // Random element from referee
11 t.remove(random());
12 }
13 }

Jirka Fink Implementation of algorithms and data structures 9 / 16



Calling functions in a random order

Motivation
Some errors may be caused by sequence alternating insertions and deletions

Example of approach

1 void test_random_order(int length) {
2 tester t;
3 for(int i = 0; i < length; i++) {
4 switch(random() % 7) {
5 case 0: t.insert(random());
6 case 1: TEST(!t.insert(random(t.referee)));
7 case 2: t.find(random());
8 case 3: TEST(t.find(random(t.referee)));
9 case 4: t.remove(random());

10 case 5: TEST(t.remove(random(t.referee)));
11 case 6: ...
12 }
13 }
14 }

Jirka Fink Implementation of algorithms and data structures 10 / 16



Fuzz testing of advanced algorithm

Questions
How to obtain a correct solution for a random input?
How to test correctness if there are multiple correct solutions?

E.g. there may be many shortest paths between given a pair of vertices.

How to obtain a correct solution?
Use available libraries if possible

E.g. sorting or red-black trees are implemented in standard libraries
A given problem may have other slower but easier algorithms

E.g. for testing Strassen algorithm, use definition of matrix multiplication
Faster algorithms are often obtained by improving slower ones

Keep the slower algorithm for testing

Use theoretical knowledge of a problem or an algorithm

Jirka Fink Implementation of algorithms and data structures 11 / 16



Testing optimization algorithms

Optimization problem
The task is to find a solution satisfying given constraints and minimizing or maximizing
given objective function.

Shortest path

Minimum spanning tree

Maximum network flow

Verifying correctness of solutions of a random input
Test satisfaction of all constraints

Test the optimality if possible

Jirka Fink Implementation of algorithms and data structures 12 / 16



Shortest path problem

Output of Dijkstra’s algorithm
For every vertex, a predecessor on the shortest path and its length is provided.

Veriying correctness of a solution
Feasibility: Traverse a path from a goal vertex using predecessors until the starting
vertex is reached and verify that a vertex and its predecessor are connected by an
edge and that lengths are correct.

Optimality: Use the following theorem.

Theorem
Let G be a directed graph, luv be length of edge uv and s be a starting vertex. Then du

are lengths of the shortest path from s to all vertices u if and only if

ds = 0

dv ≤ lvu + du holds for every edge uv

for every vertex v except s there exists an edge uv such that dv = lvu + du .

Jirka Fink Implementation of algorithms and data structures 13 / 16



The Shortest path problem: Testing optimality

Theorem
Let G be a directed graph, luv be length of edge uv and s be a starting vertex. Then du

are lengths of the shortest path from s to all vertices u if and only if

ds = 0

dv ≤ lvu + du holds for every edge uv

for every vertex v except s there exists an edge uv such that dv = lvu + du .

Testing optimality

1 void dijkstra_test(Graph *g, int start, int *dist) {
2 vector<bool> has_predecessor(g->nv, false);
3 has_predecessor[start] = true;
4 TEST(dist[start] == 0);
5 for(u : g->vertices)
6 for(v : g->out_neighbors(u)) {
7 TEST(dist[v] <= g->length(v,u) + dist[u]);
8 if(dist[u] + g->length(u,v) == dist[v])
9 has_predecessor[v] = true;

10 }
11 for(u : g->vertices)
12 TEST(has_predecessor[u]);
13 }

Jirka Fink Implementation of algorithms and data structures 14 / 16



How would you test correctness of solutions for these problems

Sorting

Heap

Searching a substring in a string

Connected components

Minimum spanning tree

Maximum flow

Maximum matching

Travelling salesman problem

Jirka Fink Implementation of algorithms and data structures 15 / 16



Tasks for next week

The first assignment: Left-leaning Red-black trees
Design and implement API

Design and implement data representation

Write unit tests with small and also large number of elements

Write test checking correctness of data representation

Implement operations insert and find k -th element

Implement operation delete

Write fuzz tests

Jirka Fink Implementation of algorithms and data structures 16 / 16


