Implementation of algorithms and data structures

4. seminar

Jirka Fink

https://ktiml.mff.cuni.cz/~fink/

Department of Theoretical Computer Science and Mathematical Logic
Faculty of Mathematics and Physics
Charles University in Prague

Summer semestr 2023/24
Last change 31. fijna 2023

Licence: Creative Commons BY-NC-SA 4.0

Jirka Fink Implementation of algorithms and data structures 1/27

https://ktiml.mff.cuni.cz/~fink/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Testing consistency of data representation

Disadvantages of unit tests

@ In non-trivial situations, all cases cannot be tested
@ When a unit test fails, it does not say where a bug is
@ Unit tests does not verify the correctness of stored data

@ E.g. insertion of an element may be incorrect, but a bug may occur when the
element is deleted

What can be tested in data representation?
@ All conditions given in a definition of a data structure
@ Invariants
@ Properties implied by proofs of correctness of an algorithm

@ Values of variables which can be computed from other data
e.g. number of elements in a tree

@ Values of all variables have expected values
e.g. range of integers, enumerators

Jirka Fink Implementation of algorithms and data structures 2/27

Example: Doubly linked list

void list_test (list *1) {
if(!1->first) { // List is empty
TEST (!1->1last);
return;

}
TEST (1->last) ;
(

NS

TEST (!1->first->prev);
TEST (!1->last->next);
9 for (node »n = 1->first; n; n = n->next) {
10 if(n != 1->first)
1 TEST (n—>prev && n—->prev->next == n);
1 if(n != 1->last)
TEST (n—>next && n->next->prev == n);

Jirka Fink Implementation of algorithms and data structures 3/27

Example: binary search tree

void tree_test (tree xtree) { node_test (tree->root); }

void node_test (node *node) {

if (!node)

return;
TEST (!node->left || node->left->parent == node);
TEST (!node->right || node->right->parent == node);
TEST (!node->left || node->left->key <= node->key);
TEST (!node->right || node->right->key >= node->key);

1

1

1

1 node_test (node->1left);
14 node_test (node->right);
1

Does this test guarantee that a binary search tree satisfying it is correct?

Jirka Fink Implementation of algorithms and data structures 4/27

Testing order in a binary search tree

// Returns a pair of the minimal and the maximal key in the subtree

cpair<int,int> order_test (node xnode) {

int min =

node->key, max = node->key, cmp;

if (node->left) {
min,cmp = order_test (node->left);
TEST (cmp <= node->key);

}

if (node->right) {
cmp, max = order_test (node->right) ;
TEST (node—->key <= cmp) ;

}

return pair (min, max);

Jirka Fink Implementation of algorithms and data structures 5/27

Testing height in AVL trees

Basic property of AVL trees
For every vertex, the difference between heights of the left and the right subtree is at
most one.

// Returns height of node’s subtree
int height_test (node xnode) {

if (!node)
4 return 0;

int left_height = height_test (node->left);
int right_height = height_test (node->right);

TEST (node->height_diff == left_height - right_height);
TEST (abs (node->height_diff) <= 1);

return max (left_height, right_height) + 1;

e

Jirka Fink Implementation of algorithms and data structures 6/27

Example: Priority queue in an array

void list_test (queue *q) {
for(int i = 1; i < g->size; i++)
// Parent 1is stored on position floor ((i-1)/2)
TEST (g—>array([i] .priority > g->array[(i-1)/2].priority);

Jirka Fink Implementation of algorithms and data structures 7/27

More examples

Hash table with separate chains

@ A linked list in every bucket is correct
@ Compute hash of every element to test whether it is stores in the proper bucket

@ The ratio of the number of element to buckets is within expected range

@ Incidence lists contains expected values
e.g. indices of vertices are within expected range or pointers give vertices inside

the graph
@ Every edge is a member of incidence lists of both end-vertices

Jirka Fink Implementation of algorithms and data structures 8/27

When these test should be run?

After every atomit operation

During modifications (i.e. insertion, deletion) data may be inconsistent, tests are run
when all conditions are expected to be satisfied

Testing during complex operations

Some tests may be run after intermediate steps if we know which conditions should be
satisfied, i.e.

@ In a heap, its invariant may not be satisfied for at most one node
@ In an AVL tree, for at most one node the difference of heights of subtrees is two
@ In a red-black tree, at most red node can have red parent

Where calling our testing function should places in code

@ Inside unit tests
@ Inside functions performing operations
o Use language tools to turn tests on/off

#ifdef RUN_CONSISTENCY_TEST
tree_test (tree);
#endif

Jirka Fink Implementation of algorithms and data structures 9/27

Testing data representation

@ Verifies all invariants on data stored in memory
@ Does not test whether some data are not lost or should not be stored
@ Needs to be run on some test cases

Which test cases can be used?
@ Unit tests with few elements

@ Test containing many elements
@ Integration tests
@ Fuzzy tests
Performance tests are not appropriate since testing consistency may significantly slow

Why should be generate larger tests?
@ Tests containing few elements does not check all cases, e.g. in red-black trees

@ Manually creating tests with many elements is tedious

Jirka Fink Implementation of algorithms and data structures 10/27

Tests containing many elements: Sorting

Increasing order

TEST (sorted(list (range (start, stop, step))) == list (range(start, stop,
step)))

Decreasing order

TEST (sorted(list (reversed(range (start, stop, step)))) ==
list (range (start, stop, step)))

Random order

elements = list (range(start, stop, step))
random.shuffle (elements)
TEST (sorted(elements) == list (range(start, stop, step)))

Jirka Fink Implementation of algorithms and data structures 11/27

Tests containing many elements: Growing array

array = []
for e in range(start, stop, step):
array.append(e)

for (e,f) in zip(array, range(start, stop, step)):
TEST (e == f)

Jirka Fink Implementation of algorithms and data structures 12/27

Tests containing many elements: Heap

h = Heap ()

elements = list (range(start, stop, step))
: random.shuffle (elements)
s for e in elements:

h.push (e)
« for e in range(start, stop, step):
TEST (e == h.pop())

Jirka Fink Implementation of algorithms and data structures 13/27

Tests containing many elements: Trees

t = Tree()
> elements = list (range(start, stop, step))
: random.shuffle (elements)
for e in elements:
t.insert (e)
s for e in elements:
TEST (e in t)
TEST (not e+l in t) # assuming step >= 2
s for (k,e) in enumerate (range(start, stop, step)):
10 TEST (t.find_kth_element (k) == e)
11 random.shuffle (elements)
1> for e in elements:
13 t.remove (e)
12 TEST (t.isempty ())

Jirka Fink Implementation of algorithms and data structures 14/27

Manually created data in memory

@ We need to test some parts of codes which are rarely executed
e E.g. some cases in red-black trees
@ ltis hard to create tested configuration using API

e E.g. How to find a sequence of operations Insert/Delete for every case in red-black
trees?

@ Fuzz tests may create tested configuration, but data are too large

Jirka Fink Implementation of algorithms and data structures 15/27

Manually created data in memory: Basic idea

class Node:
def __init__ (self, key, left, right, parent, is_black, size):
self.key = key
self.left = left
5 self.right = right
¢ self.parent = parent
self.is_black = is_black
self.size = size

wdef test_delete_case_uncle_is_black():
1 root = Node (10, None, None, None, True, ©6)

12 p = root.left = Node (5, None, None, root, False, 4)
13 1l = p.left = Node(2, None, None, p, True, 2)
u = root.right = Node (15, None, None, root, True, 1)

16 integrity_test (root)

1 root.delete (2)

18 integrity_test (root)

19 TEST (root.left == u)

C TEST (u.is_black == False)

Jirka Fink Implementation of algorithms and data structures 16/27

Manually created data in memory: Basic idea

@ Simple approach to create one small test
@ Impractical to create a larger test or multiple tests

o Setting every variable is time consuming,
@ hard to read, and
o leads to error.

Approach

@ Encode data into compact and clear format, e.g.

o XML, JSON
o Custom format, e.g. (3,(1,(0,(),()),(2.().0)),(4.().()))
o Use syntax of used programming language

@ Wirite a function reading the chosen format

Jirka Fink Implementation of algorithms and data structures 17/27

Encode data: example

1def subtree(key, is_black, left=None, right=None):

node = Node ()
node.key = key
node.is_black = is_black
node.left = left
node.right = right
node.size = 1 + (left.size if left else 0) +
(right.size if right else 0)
if left:
left.parent = self
if right:
right.parent = self
root =

subtree (5, True,
subtree (3, False,

None,
subtree (4, True)),

subtree (7, True))

Jirka Fink Implementation of algorithms and data structures 18/27

Manually created data in memory: Other applications

@ Run tested function

@ Run data consistency tests on results
@ Compare obtained and expected results
@ These tests often needs access to private members

Jirka Fink Implementation of algorithms and data structures 19/27

Compare obtained and expected results

def compare_trees (tested_tree, expected_tree):

def recursive (tested_node, expected_node):
TEST (tested_node.key == expected_node.key)
TEST (tested_node.is_black == expected_node.is_black)
if expected_node.left:
TEST (tested_node.left)
recursive (tested_node.left, expected_node.left)
else:
10 TEST (not tested_node.left)

1 recursive (tested_tree.root, expected_tree.root)

1 tested_tree = Tree(...)

> tested_tree.integrity_tests()
:tested_tree.insert (5)

. tested_tree.integrity_tests ()
expected_tree Tree(...)

s expected_tree.integrity_tests()
compare_trees (tested_tree, expected_tree)

Jirka Fink Implementation of algorithms and data structures 20/27

Visualizate data stored in memory

@ ltis hard to see what is stored in memory

@ Without the knowledge of stored data debugging is difficult
@ Visualize stored data!

@ Content of an array can be easily printed on terminal

@ Advanced structures needs graphical presentation

Jirka Fink Implementation of algorithms and data structures 21/27

Write the structure of a red-black tree

void rb_print (rb_tree x*tree) {
rb_print (tree, tree->root);
printf ("\n");
<}

void rb_print (rb_tree *tree, rb_node xnode) {
if (!node)
printf ("L");
else {
| printf (" (");
1 rb_print (tree, node->left);
12 printf ("$d", node->key);
1 if (node—->is_red())
1 printf ("R");
1 rb_print (tree, node->right);
| printf(™)");
1
1

@ (((L1L)2(L3L))4(((L6RL)7L)10((L14RL)20L)))
@ Output can be improved using ASCII-art
@ Graphic visualization may be clearer

Jirka Fink Implementation of algorithms and data structures 22/27

Examples of graphs creates in DOT

digraph graphname {

a —>b -—> c; °

b -> d;

digraph G {

size ="4,4";
main [shape=box]; /* this is a comment =/
main -> parse [weight = 8];

parse —> execute;

main -> init [style=dotted];

main -> cleanup;

execute -> {make_string printf}

init -> make_string;

edge [color=red]; // so is this

main -> printf [style=bold,label="100 times"];
make_string [label="make a\nstring"];

node [shape=box,style=filled,color=".7 .3 1.0"];
edge [color=red];

execute -> compare;

Jirka Fink Implementation of algorithms and data structures 23/27

Write the structure of a red-black tree using DOT

void rb_print (rb_tree xtree) {
2 print ("digraph G {\n")
rb_print (tree, tree->root);
printf ("}\n");
}

void rb_print (rb_tree *tree, rb_node xnode) {
if (node) {
printf ("$s [color=%s];\n", node->key, node->is_red ? "red"
"black");
if (node->parent)
printf ("$s -> %s;\n", node->parent->key, node->key);
2 rb_print (tree, node->left);
rb_print (tree, node->right);

Jirka Fink Implementation of algorithms and data structures 24/27

Create a graphviz picture in Python

import pydot
graph = pydot.Dot ("my_graph", graph_type="graph", bgcolor="yellow")

 # Add nodes

smy_node = pydot.Node ("a", label="Foo")
graph.add_node (my_node)
Or, without using an intermediate variable:

s graph.add_node (pydot .Node ("b", shape="circle"))

-

11 # Add edges

1>my_edge = pydot.Edge("a", "b", color="blue")

12 graph.add_edge (my_edge)

1 # Or, without using an intermediate variable:

15 graph.add_edge (pydot .Edge ("b", "c", color="blue"))

X

17 # Output image in png format

e graph.write_png ("output.png")

19

20 # Convert to string
output_raw_dot = graph.to_string/()

22 # Or, save it as a DOT-file:
;graph.write_raw ("output_raw.dot")

Jirka Fink Implementation of algorithms and data structures 25/27

More information about graphviz/dot

Language bindings (API)
@ Python
@ Java
@ Matlab
@ Wordpress
@ LaTeX: Tikz, dot2tex: A Graphviz to LaTeX converter

Visualization and IDE integrations

@ Graphviz (dot) language support for Visual Studio Code
@ Graphviz Visual Editor: A web application

@ Qt Visual Graph Editor (C++)

@ More resources about graphviz

@ NetworkX
@ Gephi
@ igraph

Jirka Fink Implementation of algorithms and data structures 26/27

https://github.com/pydot/pydot
https://github.com/nidi3/graphviz-java
https://github.com/graphviz4matlab/graphviz4matlab
https://wordpress.org/plugins/wp-graphviz/
https://cs.overleaf.com/learn/latex/TikZ_package
https://dot2tex.readthedocs.io/en/latest/
https://marketplace.visualstudio.com/items?itemName=joaompinto.vscode-graphviz
http://magjac.com/graphviz-visual-editor/
https://github.com/ArsMasiuk/qvge
https://graphviz.org/resources/
https://github.com/NetworkX/NetworkX
https://github.com/gephi/gephi
https://github.com/igraph/igraph/

Tasks for next week

The first assignment: Left-leaning Red-black trees
@ Design and implement API
@ Design and implement data representation
@ Write unit tests with small and also large number of elements
@ Write test checking correctness of data representation
@ Implement operations insert and find k-th element
@ Implement operation delete
@ Write fuzz tests
@ Debug your program
@ Submit your program on recodex

Jirka Fink Implementation of algorithms and data structures 27/27

