Implementation of algorithms and data structures 6. seminar

Jirka Fink

https://ktiml.mff.cuni.cz/~fink/

Department of Theoretical Computer Science and Mathematical Logic Faculty of Mathematics and Physics Charles University in Prague

> Summer semestr 2023/24 Last change 13. listopadu 2023

Licence: Creative Commons BY-NC-SA 4.0

Network (graph)

- (V, E) is a directed graph on n vertices and m edges
- $c: E \to \mathbb{R}^+_0$ is capacity of edges
- $s, t \in V$ are source and sink vertices

Flow

Flow is a function $f : E \to \mathbb{R}^+_0$ satisfying:

- Capacity constraint: $0 \le f(e) \le c(e)$ for every edge *e*
- Kirchhoff law: $\sum_{u:uv \in E} f(uv) = \sum_{u:vu \in E} f(vu)$ for every vertex v except s, t

Overflow

Overflow of a vertex v is
$$f^{\triangle}(v) = \sum_{u:uv \in E} f(uv) - \sum_{u:vu \in E} f(vu)$$

Terminology

- Reserve (residual) of an edge uv is r(uv) = c(uv) f(uv) + f(vu)
- Edge *uv* is saturated if r(uv) = 0

Goldberg's algorithm

Wave

Wave is a function $f : E \to \mathbb{R}_0^+$ satisfying:

- Capacity constraint: $0 \le f(e) \le c(e)$ for every edge e
- Non-negative overflows: f[△](v) ≥ 0 for every vertex v except the source

Operation: Overflow transfer

- Transferring overflow on an edge *uv* means increasing *f*(*uv*) by min {*f*[△](*u*), *r*(*uv*)}.
- Overflow transfer is called saturated if the reserve r(uv) is reduced to zero

Height

- Height is a function $h: V \to \mathbb{Z}_0^+$
- Overflow can transferred only from a higher vertex to a lower one (downhill)
- Invariant: h(s) = n a h(t) = 0
- Height of other vertices is initialized by 0 and algorithm can only increase it (by 1)
- If for a vertex v with $f^{\triangle}(v) > 0$ no overflow can be transferred, increase height h(v) by one
- Improved version: From all vertices with positive overflow, choose the highest one.

Analysis of Goldberg's algorithm

$$1 \ h(v) = \begin{cases} n & \text{for } v = s \\ 0 & \text{otherwise} \end{cases}$$

$$2 \ f(uv) = \begin{cases} c(uv) & \text{for } u = s \\ 0 & \text{otherwise} \end{cases}$$

³ while exists a vertex $u \neq s$, t satisfying $f^{\triangle}(u) > 0$ do

- 4 **if** exists an edge uv satisfying r(uv) > 0 and h(u) > h(v) then
 - transfer overflow on edge uv
- 6 else

5

7

```
increase height h(u) by 1
```

How many times each operation is called

- Finding a highest vertex with positive overflow: $O(n^2\sqrt{m})$ -times
- Find non-saturated edge going downhill: $O(n^2\sqrt{m})$ -times
- Saturated transfer: O(nm)-times
- Non-saturated transfer: $O(n^2\sqrt{m})$ -times
- Increasing height: O(n²)-times

How many times each operation is called

- Finding a highest vertex with positive overflow: $O(n^2\sqrt{m})$ -times
- Find non-saturated edge going downhill: $O(n^2\sqrt{m})$ -times
- Saturated transfer: O(nm)-times
- Non-saturated transfer: $O(n^2\sqrt{m})$ -times
- Increasing height: $O(n^2)$ -times

Is it possible to achieve total complexity $O(n^2\sqrt{m})$?

What we need to store?

- Network which efficiently allow us
 - Obtain the current height h(u) and overflow f[△](u)
 - Obtain the current flow f(uv)
 - Calculate the reserve r(uv) = c(uv) f(uv) + f(vu)
- The list L(u) of non-saturated downhill edges from every vertex u
- A list P of vertices with positive overflow which can find a highest one

Graph representation

1st option: Pointers to opposite edges

- Structure for an edge
 - Destination vertex
 - Capacity
 - Flow
 - Pointer to the opposite edge
- Every vertex has a list of edges
- Disadvantage: there are two instances of the edge structure for every edge

2nd option: Shared edge structure for both directions

- Structure for an edge
 - Both end-vertices
 - Capacity for both directions (if they can be different)
 - Flow (negative value means flow in the opposite direction)
- Disadvantage: Auxiliary functions for handling symmetries are needed

3st option: Hash table

- Every vertex has a list of incident edges
- Hash table: (vertex,vertex) \rightarrow edge data (i.e. capacity, flow)
- Disadvantage: We no longer have worst-case complexity but expected

List of non-saturated downhill edges L(u)

Representation

Every vertex has a list of incident vertices/edges in L(u)

Trivial operations in O(1)-time

- Test emptiness of *L*(*u*)
- Find an arbitrary element in *L*(*u*)
- Erase edge from *L*(*u*) after saturated transfer

Update the list L(u) after increasing height h(u)

- All edges incident to *u* can be processed in *O*(deg(*u*))
- Height of every vertex is increased at most 2n-times
- Complexity of all these updates:
 - $\sum_{u \in V} 2nO(\deg(u)) = 2n \sum_{u \in V} O(\deg(u)) = O(nm)$

Removing the opossite edge vu from L(v) when h(u) is increased

Problem: find the position of vu in the list L(v)

- Intrusive list can find and delete in O(1)-time
- Lazy solution: Delete vu from L(v) when the vertex v is processed

What we need?

- Find an arbitrary vertex of P with the largest height
- Remove the vertex from P after transferring whole overflow
- Increase height of a vertex of P by one
- Insert the vertex v to P after transfer on an edge uv
 - Note that h(v) = h(u) 1 in this case

Using a heap increases the complexity by O(log(n))-factor

Approach

- Split vertices of P into groups by their heights
- Store every group in a special list
- Access groups using a main list/array indexed by the height
- How to represent the main list?

Approach

- Split vertices of P into groups by their heights
- Store every group in a special list
- Access groups using a main list/array indexed by the height
- How to represent the main list?

1st option: The sorted list of all non-empty groups

The highest two groups can be reached in O(1)-time

2nd option: Array indexed by the height with index to the highest non-empty group

After removing the last vertex from the highest group, the index has to updated which cannot be done in O(1)-time

- Index is always increased by one
- Total number of increment is at most 2n²
- If the index is decrement by ones, total number of decrements is at most 2n²

API: Class encapsulating all data with public functions

Public functions creating instance and obtaining results

- Add a vertex
- Add an edge with capacity
- Run the algorithm
- Get the size of a maximum flow
- Get flow on every edge

How to indentify a vertex?

- Allow only numbers from 1 to n
- All arbitrary key and internally use a hash table

How to identify an edge

- Edges can be indexed from 1 to m (impractical)
- Only iterate edges incident with a given vertex
- Internally use a hash table (vertex,vertex) \rightarrow edge

Example of libraries

- Networkx in Python
- Boost in C++

API is only one function

- Argument: A graph with capacity as an edge property
- Return value: The size of a maximum flow
- The function sets a maximum flow as an edge property

Tests

Testing correctness of a solution

- Capacity constraint
- Kirchhoff law
- Saturated cut

Testing graphs

How to choose a graph?

- Small graphs, examples from literature
- Complete graphs, path, cycles, ...
- Random graphs
- Adversary graphs
 - Disconnected graphs, isolated vertices and edges
 - Graphs having dead branches accessible from the source
 - Find graphs on which the algorithm is slowest

How to choose capacities

- Unit capacity
- Regular, e.g. from 1 to m
- Random, e.g. uniform or normal distribution

Testing data consistency during the algorithm

- Correct structure of a graph (depends on representation)
- Check overflows on all vertices
- Check that f is a wave

 - Capacity constraint: 0 ≤ f(e) ≤ c(e) for every edge e
 Non-negative overflows: f[∆](v) ≥ 0 for every vertex v except the source
- Every vertex v satisfies $0 \le h(v) \le 2n$
 - except h(z) = n a h(s) = 0
- Lists P and L(u) contains only the expected vertices
- Every edge uv with r(uv) > 0 satisfies h(u) h(v) < 1
- There exists a non-saturated from every vertex with positive overflow to the source
- Calculate the number of operations and potentials

General approach

- Design data representation and API and implement them
- Implement tests
- Implement algorithm
- Test and debug

Split implementation into peaces

- 1st step: Correct but slow version
 - Skip lists P anf L(U)
 - Functions using P and L(U) are implemented trivially
 - Debug graph representation, main parts of the algorithm and all tests
- 2nd step: Implement P
- 3rd step: Implement L(u)

Discussion

- Can the first step be simplified?
- Can the implementation be split into more testable steps?

Reason: Testing the tests

- Tests often contains bugs reporting non-existing bugs as well as missing bugs
- Running tests on incompletely (improperly) implemented functions verifies correctness of (some) tests
- No needs to write even more code, just run tests when implementing and check that tests fails as expected for the current code

Examples

- Algorithm initialize heights of all vertices to 0 except h(s) = n
 ⇒ Run tests before initializing heights
- Every edge *uv* with *r*(*uv*) > 0 should satisfy *h*(*u*) − *h*(*v*) ≤ 1
 ⇒ Initialize heights but not flows from the source
- Vertices stores their overflows
 - \Rightarrow Initialize flows but not overflows
- Vertices with overflows are stored in the list P
 - \Rightarrow Initialize flows and overflows but not P
 - \Rightarrow After reducing the overflow to zero, the vertex should be removed from P
- Similarly for lists of non-saturated downhill edges
- Implement increasing heights before transferring overflows
 ⇒ The program should loop forever but tests checking the height upper bound should fail

Theoretical questions

- What happens if the network is not connected?
- What happens if the network is connected but it is not strongly connected?
- Let *A* be the set of all vertices having height at least *n* when the algorithm terminated. Does *E*(*A*) forms a saturated cut between source and sink?
- Is the source the only vertex of height n?
- What may happen if we set the height of source to be n 1 (or n 2)?
- For which graphs the algorithm requires the largest number of iterations (for fixed *n* or *m*)?

Implementation questions

- Develop unit and fuzz tests
- Based on our analysis, develop as many data consistency tests as possible
- Find data representation so that whole algorithm has complexity $O(n^2m)$
- How to find a highest vertex with positive overflow to improve the complexity to $O(n^2\sqrt{m})$?

The first assignment: Goldberg's algorithm

- Study and understand the algorithm including analysis and complexity
- Write data representation such that all operations has expected complexity
- Write tests
- Write API