
Implementation of algorithms and data structures
6. seminar

Jirka Fink
https://ktiml.mff.cuni.cz/˜fink/

Department of Theoretical Computer Science and Mathematical Logic
Faculty of Mathematics and Physics

Charles University in Prague

Summer semestr 2023/24
Last change 13. listopadu 2023

Licence: Creative Commons BY-NC-SA 4.0

Jirka Fink Implementation of algorithms and data structures 1 / 18

https://ktiml.mff.cuni.cz/~fink/
https://creativecommons.org/licenses/by-nc-sa/4.0/


Maximum flow in a network

Network (graph)
(V ,E) is a directed graph on n vertices and m edges

c : E → R+
0 is capacity of edges

s, t ∈ V are source and sink vertices

Flow
Flow is a function f : E → R+

0 satisfying:

Capacity constraint: 0 ≤ f (e) ≤ c(e) for every edge e

Kirchhoff law:
∑

u:uv∈E f (uv) =
∑

u:vu∈E f (vu) for every vertex v except s, t

Overflow

Overflow of a vertex v is f△(v) =
∑

u:uv∈E f (uv)−
∑

u:vu∈E f (vu)

Terminology
Reserve (residual) of an edge uv is r(uv) = c(uv)− f (uv) + f (vu)

Edge uv is saturated if r(uv) = 0

Jirka Fink Implementation of algorithms and data structures 2 / 18



Goldberg’s algorithm

Wave
Wave is a function f : E → R+

0 satisfying:

Capacity constraint: 0 ≤ f (e) ≤ c(e) for every edge e

Non-negative overflows: f△(v) ≥ 0 for every vertex v except the source

Operation: Overflow transfer
Transferring overflow on an edge uv means increasing f (uv) by
min

{
f△(u), r(uv)

}
.

Overflow transfer is called saturated if the reserve r(uv) is reduced to zero

Height

Height is a function h : V → Z+
0

Overflow can transferred only from a higher vertex to a lower one (downhill)

Invariant: h(s) = n a h(t) = 0

Height of other vertices is initialized by 0 and algorithm can only increase it (by 1)

If for a vertex v with f△(v) > 0 no overflow can be transferred, increase height
h(v) by one

Improved version: From all vertices with positive overflow, choose the highest one.

Jirka Fink Implementation of algorithms and data structures 3 / 18



Analysis of Goldberg’s algorithm

1 h(v) =

{
n for v = s
0 otherwise

2 f (uv) =

{
c(uv) for u = s
0 otherwise

3 while exists a vertex u ̸= s, t satisfying f△(u) > 0 do
4 if exists an edge uv satisfying r(uv) > 0 and h(u) > h(v) then
5 transfer overflow on edge uv
6 else
7 increase height h(u) by 1

How many times each operation is called

Finding a highest vertex with positive overflow: O(n2√m)-times

Find non-saturated edge going downhill: O(n2√m)-times

Saturated transfer: O(nm)-times

Non-saturated transfer: O(n2√m)-times

Increasing height: O(n2)-times

Jirka Fink Implementation of algorithms and data structures 4 / 18



Data representation

How many times each operation is called

Finding a highest vertex with positive overflow: O(n2√m)-times

Find non-saturated edge going downhill: O(n2√m)-times

Saturated transfer: O(nm)-times

Non-saturated transfer: O(n2√m)-times

Increasing height: O(n2)-times

Is it possible to achieve total complexity O(n2√m)?

What we need to store?
Network which efficiently allow us

Obtain the current height h(u) and overflow f△(u)
Obtain the current flow f (uv)
Calculate the reserve r(uv) = c(uv)− f (uv) + f (vu)

The list L(u) of non-saturated downhill edges from every vertex u

A list P of vertices with positive overflow which can find a highest one

Jirka Fink Implementation of algorithms and data structures 5 / 18



Graph representation

1st option: Pointers to opposite edges
Structure for an edge

Destination vertex
Capacity
Flow
Pointer to the opposite edge

Every vertex has a list of edges

Disadvantage: there are two instances of the edge structure for every edge

2nd option: Shared edge structure for both directions
Structure for an edge

Both end-vertices
Capacity for both directions (if they can be different)
Flow (negative value means flow in the opposite direction)

Disadvantage: Auxiliary functions for handling symmetries are needed

3st option: Hash table
Every vertex has a list of incident edges

Hash table: (vertex,vertex) → edge data (i.e. capacity, flow)

Disadvantage: We no longer have worst-case complexity but expected

Jirka Fink Implementation of algorithms and data structures 6 / 18



List of non-saturated downhill edges L(u)

Representation
Every vertex has a list of incident vertices/edges in L(u)

Trivial operations in O(1)-time

Test emptiness of L(u)

Find an arbitrary element in L(u)

Erase edge from L(u) after saturated transfer

Update the list L(u) after increasing height h(u)

All edges incident to u can be processed in O(deg(u))

Height of every vertex is increased at most 2n-times

Complexity of all these updates:∑
u∈V 2nO(deg(u)) = 2n

∑
u∈V O(deg(u)) = O(nm)

Removing the opossite edge vu from L(v) when h(u) is increased

Problem: find the position of vu in the list L(v)

Intrusive list can find and delete in O(1)-time

Lazy solution: Delete vu from L(v) when the vertex v is processed

Jirka Fink Implementation of algorithms and data structures 7 / 18



List P of vertices with positive overflow

What we need?
Find an arbitrary vertex of P with the largest height

Remove the vertex from P after transferring whole overflow

Increase height of a vertex of P by one
Insert the vertex v to P after transfer on an edge uv

Note that h(v) = h(u)− 1 in this case

Using a heap increases the complexity by O(log(n))-factor

Approach
Split vertices of P into groups by their heights

Store every group in a special list

Access groups using a main list/array indexed by the height

How to represent the main list?

Jirka Fink Implementation of algorithms and data structures 8 / 18



List P of vertices with positive overflow

Approach
Split vertices of P into groups by their heights

Store every group in a special list

Access groups using a main list/array indexed by the height

How to represent the main list?

1st option: The sorted list of all non-empty groups

The highest two groups can be reached in O(1)-time

2nd option: Array indexed by the height with index to the highest non-empty
group
After removing the last vertex from the highest group, the index has to updated which
cannot be done in O(1)-time

Index is always increased by one

Total number of increment is at most 2n2

If the index is decrement by ones, total number of decrements is at most 2n2

Jirka Fink Implementation of algorithms and data structures 9 / 18



API: Class encapsulating all data with public functions

Public functions creating instance and obtaining results
Add a vertex

Add an edge with capacity

Run the algorithm

Get the size of a maximum flow

Get flow on every edge

How to indentify a vertex?
Allow only numbers from 1 to n

All arbitrary key and internally use a hash table

How to identify an edge
Edges can be indexed from 1 to m (impractical)

Only iterate edges incident with a given vertex

Internally use a hash table (vertex,vertex) → edge

Jirka Fink Implementation of algorithms and data structures 10 / 18



API: Use external library for graph representation

Example of libraries
Networkx in Python

Boost in C++

API is only one function
Argument: A graph with capacity as an edge property

Return value: The size of a maximum flow

The function sets a maximum flow as an edge property

Jirka Fink Implementation of algorithms and data structures 11 / 18



Tests

Testing correctness of a solution
Capacity constraint

Kirchhoff law

Saturated cut

Testing graphs
How to choose a graph?

Small graphs, examples from literature

Complete graphs, path, cycles, . . .

Random graphs
Adversary graphs

Disconnected graphs, isolated vertices and edges
Graphs having dead branches accessible from the source
Find graphs on which the algorithm is slowest

How to choose capacities

Unit capacity

Regular, e.g. from 1 to m

Random, e.g. uniform or normal distribution

Jirka Fink Implementation of algorithms and data structures 12 / 18



Testing data consistency during the algorithm

Correct structure of a graph (depends on representation)

Check overflows on all vertices
Check that f is a wave

Capacity constraint: 0 ≤ f (e) ≤ c(e) for every edge e
Non-negative overflows: f△(v) ≥ 0 for every vertex v except the source

Every vertex v satisfies 0 ≤ h(v) ≤ 2n
except h(z) = n a h(s) = 0

Lists P and L(u) contains only the expected vertices

Every edge uv with r(uv) > 0 satisfies h(u)− h(v) ≤ 1

There exists a non-saturated from every vertex with positive overflow to the source

Calculate the number of operations and potentials

Jirka Fink Implementation of algorithms and data structures 13 / 18



Implement the algorithm step by step

General approach
Design data representation and API and implement them

Implement tests

Implement algorithm

Test and debug

Split implementation into peaces
1st step: Correct but slow version

Skip lists P anf L(U)
Functions using P and L(U) are implemented trivially
Debug graph representation, main parts of the algorithm and all tests

2nd step: Implement P

3rd step: Implement L(u)

Discussion
Can the first step be simplified?

Can the implementation be split into more testable steps?

Jirka Fink Implementation of algorithms and data structures 14 / 18



Start writing tests as soon as possible

Reason: Testing the tests
Tests often contains bugs reporting non-existing bugs as well as missing bugs

Running tests on incompletely (improperly) implemented functions verifies
correctness of (some) tests

No needs to write even more code, just run tests when implementing and check
that tests fails as expected for the current code

Jirka Fink Implementation of algorithms and data structures 15 / 18



Start writing tests as soon as possible

Examples
Algorithm initialize heights of all vertices to 0 except h(s) = n
⇒ Run tests before initializing heights

Every edge uv with r(uv) > 0 should satisfy h(u)− h(v) ≤ 1
⇒ Initialize heights but not flows from the source

Vertices stores their overflows
⇒ Initialize flows but not overflows

Vertices with overflows are stored in the list P
⇒ Initialize flows and overflows but not P
⇒ After reducing the overflow to zero, the vertex should be removed from P

Similarly for lists of non-saturated downhill edges

Implement increasing heights before transferring overflows
⇒ The program should loop forever but tests checking the height upper bound
should fail

Jirka Fink Implementation of algorithms and data structures 16 / 18



Exercises

Theoretical questions
What happens if the network is not connected?

What happens if the network is connected but it is not strongly connected?

Let A be the set of all vertices having height at least n when the algorithm
terminated. Does E(A) forms a saturated cut between source and sink?

Is the source the only vertex of height n?

What may happen if we set the height of source to be n − 1 (or n − 2)?

For which graphs the algorithm requires the largest number of iterations (for fixed
n or m)?

Implementation questions
Develop unit and fuzz tests

Based on our analysis, develop as many data consistency tests as possible

Find data representation so that whole algorithm has complexity O(n2m)

How to find a highest vertex with positive overflow to improve the complexity to
O(n2√m)?

Jirka Fink Implementation of algorithms and data structures 17 / 18



Tasks for next week

The first assignment: Goldberg’s algorithm
Study and understand the algorithm including analysis and complexity

Write data representation such that all operations has expected complexity

Write tests

Write API

Jirka Fink Implementation of algorithms and data structures 18 / 18


