
Implementation of algorithms and data structures
7. seminar

Jirka Fink
https://ktiml.mff.cuni.cz/˜fink/

Department of Theoretical Computer Science and Mathematical Logic
Faculty of Mathematics and Physics

Charles University in Prague

Summer semestr 2023/24
Last change 5. prosince 2023

Licence: Creative Commons BY-NC-SA 4.0

Jirka Fink Implementation of algorithms and data structures 1 / 8

https://ktiml.mff.cuni.cz/~fink/
https://creativecommons.org/licenses/by-nc-sa/4.0/


Exception handling

Description
Exception handling is the process of responding to the occurrence of exceptions –
anomalous or exceptional conditions requiring special processing – during the
execution of a program.

Examples of exceptions
Index out of range of an array

Retrieve the first element of an empty list

Searched element does not exist

Square root of a negative number

Determine a circle from three collinear points

File access without sufficient permission

Error in reading data

Invalid user input

Insufficient amount of memory

Jirka Fink Implementation of algorithms and data structures 2 / 8



Exception handling

Methods of handling exceptions
Ignore, leads to an undefined behavior
vector::operator[], list::pop_front

Throw an exception, call longjmp
vector::at

Call a function
set_terminate, signal handling

Set a status variable, e.g. errno
fopen, scanf

Return an invalid value, e.g. NULL, a dummy object
find

Return a valid value
double sqrt(double x){ if(x < 0)return 0; ... }

Return a pair of a status and a result
pair<bool, int> find(x){ return exist(x)? make_pair(true,

search(x)): make_pair(false, 0); }

Use goto to an error label

Terminate the program, e.g. using functions abort or assert

Jirka Fink Implementation of algorithms and data structures 3 / 8



Exception handling: Improper and rare solutions

Return a valid value
A calling function cannot recognize an error

The error is propagated which makes it harder to find

Set a status variable
Hard to manage

Requires detailed documentation

Data race conditions

Use goto to an error label
Can be used only inside a function

In rare situations, it may simplify a complex if-else statements

Call a function
Only for asynchronous or external events, e.g. signal handling.

Jirka Fink Implementation of algorithms and data structures 4 / 8



Exception handling: Invalid arguments in public methods (bugs)

Throw an exception
Safe

Checking conditions delays computation

Requires catching exceptions

Requires documentation of used exceptions

Assert in a debug mode, ignore in a release mode
Fast (in release mode)

May lead to an undefined behavior

Requires documentation of conditions on arguments

Jirka Fink Implementation of algorithms and data structures 5 / 8



Exception handling: Unavoidable situations

Return an invalid value
Prefer when

the calling function is expected to handle

the exception is a natural output (e.g. no element satisfies a given condition)

If an invalid values does not exist, return a pair with a status.

Throw an exception
Prefer when

the exception may jump through many functions

the situation is very rare

many different types of errors may occur

Jirka Fink Implementation of algorithms and data structures 6 / 8



Exception handling: Unavoidable situations

Assert in a debug mode, ignore in a release mode
Fast

Easy to debug

Cause undefined behavior in release mode

A general rule
Write documentation

Always follow a project policy!

Jirka Fink Implementation of algorithms and data structures 7 / 8



Exception handling: Exception safety

Example of an issue
Consider a function push_back inserting into a vector<MyClass> when its array is full.
Reallocation moves all element into a new memory, but move constructor throws an
exception. What the function push_back should do?

Exception safety
No-throw guarantee: Operations are guaranteed to succeed and satisfy all
requirements even in exceptional situations. If an exception occurs, it will be
handled internally and not observed by clients.

Strong exception safety: Operations can fail, but failed operations are guaranteed
to have no side effects, so all data retains their original values.

Basic exception safety: Partial execution of failed operations can cause side
effects, but all invariants are preserved and there are no resource leaks (including
memory leaks). Any stored data will contain valid values, even if they differ from
what they were before the exception.

No exception safety: No guarantees are made.

Jirka Fink Implementation of algorithms and data structures 8 / 8


