Implementation of algorithms and data structures

8. seminar

Jirka Fink

https://ktiml.mff.cuni.cz/~fink/

Department of Theoretical Computer Science and Mathematical Logic
Faculty of Mathematics and Physics
Charles University in Prague

Summer semestr 2023/24
Last change 5. prosince 2023

Licence: Creative Commons BY-NC-SA 4.0

Jirka Fink Implementation of algorithms and data structures 1/16

https://ktiml.mff.cuni.cz/~fink/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Matching

Definitions
@ (V, E) is an undirected graph on n vertices and m edges
@ M C E is a matching if every vertex is incident with at most one edge of M

@ Avertex v € V is M-covered if some edge of M is incident with v; otherwise v is
M-exposed

@ Matching M is perfect if all vertices are M-covered

@ Matching is maximal if there is no matching having more edges

Related problems
@ Find a maximum matching

@ Find a perfect matching
@ Find minimum-weight perfect matching for a given weights of edges
@ Find maximum-weight matching
Algorithms depends on whether a graph is bipartite or it contains an odd cycle

Jirka Fink Implementation of algorithms and data structures 2/16

Alternating cycles

Definition

Let M C E be a matching of a graph G
@ A path P is M-alternating if its edges are alternately in and not in M.
@ An M-alternating path is M-augmenting if both end-vertices are M-exposed.

Augmenting path theorem of matchings

A matching M in a graph G = (V, E) is maximum if and only if there is no
M-augmenting path.

@ Algorithms for matching are based on finding augmenting paths
@ However, testing non-existence of a alternating path is impractical

Jirka Fink Implementation of algorithms and data structures 3/16

Tutte-Berge Formula

@ Let defic(G) = |V| — 2|M| be the number of exposed vertices by a maximum size
matching in G

@ Let oc(G) be the number of odd components of a graph G

V.
Observations

@ defic(G) > oc(G)
@ For every A C V it holds that defic(G) > oc(G \ A) — |A|.

Jirka Fink Implementa(lon of algorithms and data structures 4/16

Tutte-Berge Formula

Definition

@ Let defic(G) = |V| — 2| M| be the number of exposed vertices by a maximum size
matching in G

@ Let oc(G) be the number of odd components of a graph G

Observations

@ defic(G) > oc(G)
@ For every A C V it holds that defic(G) > oc(G\ A) — |A|.

Tutte’s matching theorem

A graph G has a perfect matching if and only if oc(G \ A) < |A| for every A C V.

Theorem: Tutte-Berge Formula
defic(G) = max{oc(G\ A) — |A|; AC V}

Jirka Fink Implementation of algorithms and data structures 5/16

Building an alternating tree

Initialization of M-alternating tree T on vertices AUB

T = A= (and B = {r} where r is an M-exposed root. ©

Use uv € Etoextend T

Input: An edge uv € E suchthatu e Band v ¢ AU B and v is M-covered.

Action: Let vz € M and extend T by edges {uv, vz} and Aby v and B by z.

@ ris the only M-exposed vertex of T.

@ Vertices in A have only one child in T which is connected by an edge of M
@ For every v of T, the path in T from v to r is M-alternating.
@ |B|=|A+1

Use uv € E to augment M
Input: An edge uv € E suchthat u € Band v ¢ AU B and v is M-exposed.

Action: Let P be the path obtained by attaching uv to the path from rto uin T.
Replace M by MAE(P).

Jirka Fink Implementation of algorithms and data structures 6/16

@ An M-alternating tree T with the root r on vertices A and B is a tree obtained from
this initialization by applying the following operation extend.

Jirka Fink Implementation of algorithms and data structures 6/16

Frustrated tree

Definition

M-alternating tree T is M-frustrated if every edge of G having one end vertex in B has
the other end vertex in A. ©

Observation

If a bipartite graph G has a matching M and an frustrated M-alternating tree, then G
has no perfect matching. ® ®

Jirka Fink Implementation of algorithms and data structures 7/16

@ That is, an M-alternating tree is frustrated if neither operation extend nor augment
can be applied. Note that in bipartite graphs, there is no edge between vertices of
B.

@ B are single vertex components in the graph G\ A. Therefore,
oc(G\ A) > |B| > |A.

© This proves that Tutte’s matching theorem for bipartite graphs: From every
M-exposed vertex r we build an M-alternating tree T such that T can be used to
augment M to cover r or T is frustrated.

Jirka Fink Implementation of algorithms and data structures 7/16

Algorithm for perfect matching problem in a bipartite graph

1 Init: M =0
2 while G contains an M-exposed vertex r O do
3 A:=0and B={r} # Build an M-alternating tree from r.
while there exists uv € E withu € Bandv ¢ AU B do
if v is M-covered then
| Useuvtoextend T
else
Use uv to augment M
break # Terminate the inner loop.

© o N o ua &

o | if ris still M-exposed @ then
1 L return There is no perfect matching # T is a frustrated tree.

2 return Perfect matching M

The algorithm decides whether a given bipartite graph G has a perfect matching and
find one if exists. The algorithm calls O(n) augmenting operations and O(n?) extending
operations.

Jirka Fink Implementation of algorithms and data structures 8/16

@ Actually, it suffices to once iterate over all vertices.
© That is, the augmentation was no applied.

Jirka Fink Implementation of algorithms and data structures

Shrinking odd circuits

Let C be an odd circuit in G. The graph G x C has vertices (V(G) \ V(C))uU {c'}
where ¢’ is a new vertex and edges @

@ E(G) with both end-vertices in V(G) \ V(C) and
@ and uc’ for every edge uv with u ¢ V(C) and v € V(C).
Edges E(C) are removed.

@ defic(G) < defic(G x C)
@ There exists a graph G and an odd cycle C such that defic(G) < defic(G x C)

@ To find a maximum matching in G, it is not sufficient to find a maximum matching
in G x C and extended by edges of C.

@ We will contract only odd cycles on our alternating tree

@ G', M’ a T’ denotes graph, matching, and alternating tree obtained by a sequence
of contractions

Jirka Fink Implementation of algorithms and data structures 9/16

@ Formally, E(G x C) = {uv; uv € E(G), u,ve V(G)\ V(C)}u
{uc’; Ive V(C): uv e E(G),ue V(G)\ V(C)}.

Jirka Fink Implementation of algorithms and data structures

Perfect matching in general graphs

Use uv to shrink and update M’ and T’

Input: A matching M’ of a graph G’, an M’-alternating tree T’, edge uv € E’
such that u,v € B’

Action: Let C be the circuit formed by uv together with the path in 7’ from u to
V.

Replace

@ GbyG xC

o M by M\ E(C)

@ T by the tree having edge-set E(T) \ E(C)

e A=A \V(O

@ B :=B'\ V(C)uU{c'} where ¢’ is a new pseudo-vertex

Pozorovani

@ T’ je M'-alternating tree on vertices A’ a B’

@ A’ contains only original vertices of G (no pseudo-vertex)

@ Odd components in G’ \ A’ corresponds to odd vertices of G\ A’
o If T"is a M’'-frustrated tree in G, then G has no perfect matching

Jirka Fink Implementation of algorithms and data structures 10/16

Perfect matchings algorithm in general graphs

1 Init: M:=0
2 while G contains an M-exposed vertex r do

3 M=M,G =Gand T = ({r},0)

4 while there exists uv € E(G') withu € Band v ¢ Ado
5 if v € B then

6 \ Use uv to shrink and update M’ and T

7 else if v is M’-covered then

8 | Useuvtoextend T

9 else

10 Use uv to augment M’

11 Extend M’ to a matching M of G

12 break # Terminate the inner loop.
3 if r is still M-exposed then

14 | return There is no perfect matching

5 return Perfect matching M

Jirka Fink Implementation of algorithms and data structures 11/16

Maximum matching in general graphs
Simple algorithm for implementation

Build an alternating tree from every uncovered vertex one by one.
@ |f an augmenting path is found, augment matching.
@ If a frustrated tree is found, do nothing.

Algorithm which calculates A for Tutte-Berge formula

1 Init: M,A,B:=0

2 forue Vdo

3 if u is not M-covered then

4 Build an M-altenating tree rooted in u on vertices A and B
5 if An augmenting path is found then

6 | Augment matching M

7 else

8 A=AUA

9 B:=BuB

10 G:=G\(AUB)

1 return Maximal matching M
Observe that V(G) — 2|M| = oc(G\ A) — |A|.

Jirka Fink Implementation of algorithms and data structures 12/16

Maximum matching in general graphs

O(n) alternating trees are build and building one tree requires
@ O(m) edges uv are tested whether u € Band v ¢ A
@ O(n) edges extends the tree
@ O(n) cycles are contracted
@ The sum of length of contracted cycles is O(n)

@ The complexity of our algorithm will be O(nma(n)) but we need to handle
shrinking efficiently

Speed up (Micali, Vazirani)

Basic idea:
@ In every iteration, build alternating trees from all uncovered trees simultaneously
@ lhe number of iterations is O (v/n) instead of O(n)
o Total complexity is O (m+/n)

Jirka Fink Implementation of algorithms and data structures 13/16

Minimum spanning tree in a graph

Problem

For a graph G given by a list of edges sorted by their weights find a minimum spanning
tree, i.e. tree covering all vertices.

Start with the empty set of edges T and process all edges uv in increasing weight. If u
and v belong to a different components of (V, T), then add uv into T.

How to determine whether u and v belong to different components?

Union-Find problem

@ Init: Every element (vertex) u belong to the set {u}
@ Union(u,v): Merge sets containing u a v
@ Find(u): Find a set containing u

Jirka Fink Implementation of algorithms and data structures 14/16

Disjoint-set data structure

@ A forest has one vertex for every element

@ One of the forest corresponds to one set

@ Every vertex u stores its parent p[u] in the forest

@ The parent of a root of a tree is NULL = initialize p[u] = NULL for every vertices
@ Every root stores the size of its tree

@ Find roots v/, v’ of trees containing u, v
@ If v’ contains more element than v/, then v’ become the parent of v/

\

Find(u): Find the root of u
@ Find the root v’ of u
@ For all vertices of the path from u do v’ change the parent to be v’ (except u’)
@ The amortized complexity is O(c(n))

A\,

Jirka Fink Implementation of algorithms and data structures

Tasks for next week

The second assignemnt

Finish Goldberg algorithm

The third assignment

@ Understand algorithm and its correctness
@ Design data representation

@ Find invariants and tests
@ Try to implement finding maximum matching in bipartite graphs

@ Cunningham, Cook, Pulleyblank, Schrijver: Combinatorial optimization, John Wiley & Sons,
1997 (book chapter)

@ Jan Vondrak: Polyhedral techniques in combinatorial optimization, 2010 (lecture notes)
https://theory.stanford.edu/~jvondrak/CS369P/lec4d.pdf

@ Michel X. Goemans: Combinatorial Optimization (lecture notese)
http://math.mit.edu/~goemans/18433S15/matching-notes.pdf
http://math.mit.edu/~goemans/18433S15/matching-nonbip-notes.pdf

@ Uri Zwick: Lecture notes on: Maximum matching in bipartite and non-bipartite graphs
https://www.cs.tau.ac.il/~zwick/grad-algo-0910/match.pdf

@ Visualization: https://algorithms.discrete.ma.tum.de/graph-algorithms/
matchings-blossom-algorithm/index_en.html
Jirka Fink Implementation of algorithms and data structures 16/16

https://theory.stanford.edu/~jvondrak/CS369P/lec4.pdf
http://math.mit.edu/~goemans/18433S15/matching-notes.pdf
http://math.mit.edu/~goemans/18433S15/matching-nonbip-notes.pdf
https://www.cs.tau.ac.il/~zwick/grad-algo-0910/match.pdf
https://algorithms.discrete.ma.tum.de/graph-algorithms/matchings-blossom-algorithm/index_en.html
https://algorithms.discrete.ma.tum.de/graph-algorithms/matchings-blossom-algorithm/index_en.html

