
Implementation of algorithms and data structures
8. seminar

Jirka Fink
https://ktiml.mff.cuni.cz/˜fink/

Department of Theoretical Computer Science and Mathematical Logic
Faculty of Mathematics and Physics

Charles University in Prague

Summer semestr 2023/24
Last change 5. prosince 2023

Licence: Creative Commons BY-NC-SA 4.0

Jirka Fink Implementation of algorithms and data structures 1 / 16

https://ktiml.mff.cuni.cz/~fink/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Matching

Definitions
(V ,E) is an undirected graph on n vertices and m edges

M ⊆ E is a matching if every vertex is incident with at most one edge of M

A vertex v ∈ V is M-covered if some edge of M is incident with v ; otherwise v is
M-exposed

Matching M is perfect if all vertices are M-covered

Matching is maximal if there is no matching having more edges

Related problems
Find a maximum matching

Find a perfect matching

Find minimum-weight perfect matching for a given weights of edges

Find maximum-weight matching

Algorithms depends on whether a graph is bipartite or it contains an odd cycle

Jirka Fink Implementation of algorithms and data structures 2 / 16

Alternating cycles

Definition
Let M ⊆ E be a matching of a graph G

A path P is M-alternating if its edges are alternately in and not in M.

An M-alternating path is M-augmenting if both end-vertices are M-exposed.

Augmenting path theorem of matchings
A matching M in a graph G = (V ,E) is maximum if and only if there is no
M-augmenting path.

Notes
Algorithms for matching are based on finding augmenting paths

However, testing non-existence of a alternating path is impractical

Jirka Fink Implementation of algorithms and data structures 3 / 16

Tutte-Berge Formula

Definition
Let defic(G) = |V | − 2|M| be the number of exposed vertices by a maximum size
matching in G

Let oc(G) be the number of odd components of a graph G

Observations
defic(G) ≥ oc(G)

For every A ⊆ V it holds that defic(G) ≥ oc(G \ A)− |A|.

Jirka Fink Implementation of algorithms and data structures 4 / 16

Tutte-Berge Formula

Definition
Let defic(G) = |V | − 2|M| be the number of exposed vertices by a maximum size
matching in G

Let oc(G) be the number of odd components of a graph G

Observations
defic(G) ≥ oc(G)

For every A ⊆ V it holds that defic(G) ≥ oc(G \ A)− |A|.

Tutte’s matching theorem
A graph G has a perfect matching if and only if oc(G \ A) ≤ |A| for every A ⊆ V .

Theorem: Tutte-Berge Formula

defic(G) = max {oc(G \ A)− |A|; A ⊆ V}

Jirka Fink Implementation of algorithms and data structures 5 / 16

Building an alternating tree

Initialization of M-alternating tree T on vertices A∪̇B

T = A = ∅ and B = {r} where r is an M-exposed root. 1

Use uv ∈ E to extend T
Input: An edge uv ∈ E such that u ∈ B and v /∈ A ∪ B and v is M-covered.

Action: Let vz ∈ M and extend T by edges {uv , vz} and A by v and B by z.

Properties
r is the only M-exposed vertex of T .

Vertices in A have only one child in T which is connected by an edge of M

For every v of T , the path in T from v to r is M-alternating.

|B| = |A|+ 1

Use uv ∈ E to augment M

Input: An edge uv ∈ E such that u ∈ B and v /∈ A ∪ B and v is M-exposed.

Action: Let P be the path obtained by attaching uv to the path from r to u in T .
Replace M by M△E(P).

Jirka Fink Implementation of algorithms and data structures 6 / 16

1 An M-alternating tree T with the root r on vertices A and B is a tree obtained from
this initialization by applying the following operation extend.

Jirka Fink Implementation of algorithms and data structures 6 / 16

Frustrated tree

Definition
M-alternating tree T is M-frustrated if every edge of G having one end vertex in B has
the other end vertex in A. 1

Observation
If a bipartite graph G has a matching M and an frustrated M-alternating tree, then G
has no perfect matching. 2 3

Jirka Fink Implementation of algorithms and data structures 7 / 16

1 That is, an M-alternating tree is frustrated if neither operation extend nor augment
can be applied. Note that in bipartite graphs, there is no edge between vertices of
B.

2 B are single vertex components in the graph G \ A. Therefore,
oc(G \ A) ≥ |B| > |A|.

3 This proves that Tutte’s matching theorem for bipartite graphs: From every
M-exposed vertex r we build an M-alternating tree T such that T can be used to
augment M to cover r or T is frustrated.

Jirka Fink Implementation of algorithms and data structures 7 / 16

Algorithm for perfect matching problem in a bipartite graph

Algorithm

1 Init: M := ∅
2 while G contains an M-exposed vertex r 1 do
3 A := ∅ and B = {r} # Build an M-alternating tree from r.
4 while there exists uv ∈ E with u ∈ B and v /∈ A ∪ B do
5 if v is M-covered then
6 Use uv to extend T
7 else
8 Use uv to augment M
9 break # Terminate the inner loop.

10 if r is still M-exposed 2 then
11 return There is no perfect matching # T is a frustrated tree.

12 return Perfect matching M

Theorem
The algorithm decides whether a given bipartite graph G has a perfect matching and
find one if exists. The algorithm calls O(n) augmenting operations and O(n2) extending
operations.

Jirka Fink Implementation of algorithms and data structures 8 / 16

1 Actually, it suffices to once iterate over all vertices.
2 That is, the augmentation was no applied.

Jirka Fink Implementation of algorithms and data structures 8 / 16

Shrinking odd circuits

Definition
Let C be an odd circuit in G. The graph G × C has vertices (V (G) \ V (C)) ∪ {c′}
where c′ is a new vertex and edges 1

E(G) with both end-vertices in V (G) \ V (C) and

and uc′ for every edge uv with u /∈ V (C) and v ∈ V (C).

Edges E(C) are removed.

Proposition
defic(G) ≤ defic(G × C)

There exists a graph G and an odd cycle C such that defic(G) < defic(G × C)

Remarks
To find a maximum matching in G, it is not sufficient to find a maximum matching
in G × C and extended by edges of C.

We will contract only odd cycles on our alternating tree

G′, M ′ a T ′ denotes graph, matching, and alternating tree obtained by a sequence
of contractions

Jirka Fink Implementation of algorithms and data structures 9 / 16

1 Formally, E(G × C) = {uv ; uv ∈ E(G), u, v ∈ V (G) \ V (C)} ∪
{uc′; ∃v ∈ V (C) : uv ∈ E(G), u ∈ V (G) \ V (C)}.

Jirka Fink Implementation of algorithms and data structures 9 / 16

Perfect matching in general graphs

Use uv to shrink and update M ′ and T ′

Input: A matching M ′ of a graph G′, an M ′-alternating tree T ′, edge uv ∈ E ′

such that u, v ∈ B′

Action: Let C be the circuit formed by uv together with the path in T ′ from u to
v .
Replace

G′ by G′ × C
M ′ by M ′ \ E(C)
T by the tree having edge-set E(T) \ E(C)
A′ := A′ \ V (C)
B′ := B′ \ V (C) ∪ {c′} where c′ is a new pseudo-vertex

Pozorovánı́
T ′ je M ′-alternating tree on vertices A′ a B′

A′ contains only original vertices of G (no pseudo-vertex)

Odd components in G′ \ A′ corresponds to odd vertices of G \ A′

If T ′ is a M ′-frustrated tree in G′, then G has no perfect matching

Jirka Fink Implementation of algorithms and data structures 10 / 16

Perfect matchings algorithm in general graphs

Algorithm

1 Init: M := ∅
2 while G contains an M-exposed vertex r do
3 M ′ = M, G′ = G and T = ({r} , ∅)
4 while there exists uv ∈ E(G′) with u ∈ B and v /∈ A do
5 if v ∈ B then
6 Use uv to shrink and update M ′ and T
7 else if v is M ′-covered then
8 Use uv to extend T
9 else

10 Use uv to augment M ′

11 Extend M ′ to a matching M of G
12 break # Terminate the inner loop.

13 if r is still M-exposed then
14 return There is no perfect matching

15 return Perfect matching M

Jirka Fink Implementation of algorithms and data structures 11 / 16

Maximum matching in general graphs

Simple algorithm for implementation
Build an alternating tree from every uncovered vertex one by one.

If an augmenting path is found, augment matching.

If a frustrated tree is found, do nothing.

Algorithm which calculates A for Tutte-Berge formula

1 Init: M, Â, B̂ := ∅
2 for u ∈ V do
3 if u is not M-covered then
4 Build an M-altenating tree rooted in u on vertices A and B
5 if An augmenting path is found then
6 Augment matching M
7 else
8 Â := Â ∪ A
9 B̂ := B̂ ∪ B

10 G := G \ (A ∪ B)

11 return Maximal matching M

Observe that V (G)− 2|M| = oc(G \ Â)− |Â|.

Jirka Fink Implementation of algorithms and data structures 12 / 16

Maximum matching in general graphs

Complexity
O(n) alternating trees are build and building one tree requires

O(m) edges uv are tested whether u ∈ B and v /∈ A

O(n) edges extends the tree

O(n) cycles are contracted

The sum of length of contracted cycles is O(n)

The complexity of our algorithm will be O(nmα(n)) but we need to handle
shrinking efficiently

Speed up (Micali, Vazirani)
Basic idea:

In every iteration, build alternating trees from all uncovered trees simultaneously

Ihe number of iterations is O
(√

n
)

instead of O(n)

Total complexity is O
(
m
√

n
)

Jirka Fink Implementation of algorithms and data structures 13 / 16

Minimum spanning tree in a graph

Problem
For a graph G given by a list of edges sorted by their weights find a minimum spanning
tree, i.e. tree covering all vertices.

Algorithm
Start with the empty set of edges T and process all edges uv in increasing weight. If u
and v belong to a different components of (V ,T), then add uv into T .

Question
How to determine whether u and v belong to different components?

Union-Find problem
Init: Every element (vertex) u belong to the set {u}
Union(u,v): Merge sets containing u a v

Find(u): Find a set containing u

Jirka Fink Implementation of algorithms and data structures 14 / 16

Disjoint-set data structure

Forest
A forest has one vertex for every element

One of the forest corresponds to one set

Every vertex u stores its parent p[u] in the forest

The parent of a root of a tree is NULL ⇒ initialize p[u] = NULL for every vertices

Every root stores the size of its tree

Union(u,v)

Find roots u′, v ′ of trees containing u, v

If u′ contains more element than v ′, then u′ become the parent of v ′

Find(u): Find the root of u

Find the root u′ of u

For all vertices of the path from u do u′ change the parent to be u′ (except u′)

The amortized complexity is O(α(n))

Jirka Fink Implementation of algorithms and data structures 15 / 16

Tasks for next week

The second assignemnt
Finish Goldberg algorithm

The third assignment
Understand algorithm and its correctness

Design data representation

Find invariants and tests

Try to implement finding maximum matching in bipartite graphs

Literature

Cunningham, Cook, Pulleyblank, Schrijver: Combinatorial optimization, John Wiley & Sons,
1997 (book chapter)

Jan Vondrák: Polyhedral techniques in combinatorial optimization, 2010 (lecture notes)
https://theory.stanford.edu/˜jvondrak/CS369P/lec4.pdf

Michel X. Goemans: Combinatorial Optimization (lecture notese)
http://math.mit.edu/˜goemans/18433S15/matching-notes.pdf
http://math.mit.edu/˜goemans/18433S15/matching-nonbip-notes.pdf

Uri Zwick: Lecture notes on: Maximum matching in bipartite and non-bipartite graphs
https://www.cs.tau.ac.il/˜zwick/grad-algo-0910/match.pdf

Visualization: https://algorithms.discrete.ma.tum.de/graph-algorithms/
matchings-blossom-algorithm/index_en.html

Jirka Fink Implementation of algorithms and data structures 16 / 16

https://theory.stanford.edu/~jvondrak/CS369P/lec4.pdf
http://math.mit.edu/~goemans/18433S15/matching-notes.pdf
http://math.mit.edu/~goemans/18433S15/matching-nonbip-notes.pdf
https://www.cs.tau.ac.il/~zwick/grad-algo-0910/match.pdf
https://algorithms.discrete.ma.tum.de/graph-algorithms/matchings-blossom-algorithm/index_en.html
https://algorithms.discrete.ma.tum.de/graph-algorithms/matchings-blossom-algorithm/index_en.html

