
Implementation of algorithms and data structures
9. seminar

Jirka Fink
https://ktiml.mff.cuni.cz/˜fink/

Department of Theoretical Computer Science and Mathematical Logic
Faculty of Mathematics and Physics

Charles University in Prague

Summer semestr 2023/24
Last change 12. prosince 2023

Licence: Creative Commons BY-NC-SA 4.0

Jirka Fink Implementation of algorithms and data structures 1 / 19

https://ktiml.mff.cuni.cz/~fink/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Building an alternating tree

Initialization of M-alternating tree T on vertices A∪̇B

T = A = ∅ and B = {r} where r is an M-exposed root.

Use uv ∈ E to extend T
Input: An edge uv ∈ E such that u ∈ B and v /∈ A ∪ B and v is M-covered.

Action: Let vz ∈ M and extend T by edges {uv , vz} and A by v and B by z.

Use uv ∈ E to augment M

Input: An edge uv ∈ E such that u ∈ B and v /∈ A ∪ B and v is M-exposed.

Action: Let P be the path obtained by attaching uv to the path from r to u in T .
Replace M by M△E(P).

Definition
M-alternating tree T is M-frustrated if every edge of G having one end vertex in B has
the other end vertex in A.

Jirka Fink Implementation of algorithms and data structures 2 / 19

Algorithm for finding a maximum matching in bipartite graphs

1 M := ∅
2 for r ∈ V do
3 A := ∅, B = {r} # Create M-alternating tree from r
4 while r is M-exposed and exists uv ∈ E with u ∈ B and v /∈ A do
5 if v is M-exposed then
6 Use uv to augment the matching M
7 else
8 Use uv to extend the tree T

9 return Maximal matching M

While loop is implemented using breath search first
When extending a tree, the vertex inserted to B is also added to a queue
While loop is implemented using two loops

The outer loop process all vertices in the queue
The inner loop tests all edges incident to the vertex u

Every edges is tested at most once from each end-vertex

Jirka Fink Implementation of algorithms and data structures 3 / 19

Algorithm for finding a maximum matching in bipartite graphs

Data representation
Graph

Array of vertices
Vertex

Array/linked list of pointers/references/indices of neighbor vertices
Pointer to the matched vertex (NULL for exposed vertices)
Pointer to a parent in the alternating tree
Flag determining whether the vertex belong to A or B or neither

Queue of vertices

Notes
The parent pointer is needed to find an augmenting path

No information is stored on edges, so structure for edges is not needed

Jirka Fink Implementation of algorithms and data structures 4 / 19

Odd cycles

Use uv to shrink and update M ′ and T ′

Input: A matching M ′ of a graph G′, an M ′-alternating tree T ′, edge uv ∈ E ′

such that u, v ∈ B′

Action: Let C be the circuit formed by uv together with the path in T ′ from u to
v .
Replace

G′ by G′ × C
M ′ by M ′ \ E(C)
T by the tree having edge-set E(T) \ E(C)
A′ := A′ \ V (C)
B′ := B′ \ V (C) ∪ {c′} where c′ is a new pseudo-vertex

Implementation
Vertices are not contracted, only store a pointer to pseudo-node

For pseudo-nodes, union-find disjoint data structure is used

There is no expansion of cycles, only the union-find is initialized

In a contraction, all vertices of A on the cycle are inserted to the queue

How to recognize vertices of the cycle?

How to find an augmenting path?

Jirka Fink Implementation of algorithms and data structures 5 / 19

Example (author: Uri Zwick)

Jirka Fink Implementation of algorithms and data structures 6 / 19

Lowest common ancestor (LCA): Problem statement

r

1012 11

13 lca9

45

3 2

678

u 1

v

For a given tree and two vertices u and v find the lowest common ancestor on
paths from u and v to the root

For an edges uv joining vertices u, v ∈ B, the odd cycles C is formed by vertices
on paths from u and v to lca

Vertex lca has to be found in time O(|C|)

Jirka Fink Implementation of algorithms and data structures 7 / 19

Lowest common ancestor (LCA): Algorithm

r

1012 11

13 lca9

45

3 2

678

u 1

v

Add a flag to the structure for vertices to mark predecessors of u and v

Initialize the flag by false

Alternately walk from u and v to the root and mark visited vertices

LCA is the first visited vertex that is already marked

Jirka Fink Implementation of algorithms and data structures 8 / 19

Contraction using union-find

Add a variable uf to the structure for vertices

Initialize uf to NULL which means that a vertex is not contracted

Contraction sets uf of all vertices on the cycle to lca(u,v)

Keep in mind that contacted vertices no longer exists in the graph

Keep in mind that a pseudo-node can also be contracted

To find a pseudo-node where a vertex u was contracted, walk on uf to the root of
the union-find
Denote this vertex by Find(u)
Keep in mind that we use two different trees (forests)

Alternating tree
Forest of contracted cycles

Jirka Fink Implementation of algorithms and data structures 9 / 19

Maximum matching in general graphs

1 For all vertices u: u.match = NULL
2 for r ∈ V do
3 For all vertices u: u.parent = u.uf = NULL, u.status = NONE
4 queue = (r), r.status = B
5 while r.match ̸= NULL and queue is not empty do
6 u = dequeue()
7 for v neighbor of u do

Skip vertices contracted to the same pseudo-node

8 if Find(u) ̸= Find(v) then
9 if v.status == B or v.uf ̸= NULL then

10 Use uv for contraction
11 else if v.status == NONE a v.match == NULL then
12 Use uv for augmenting M
13 break # Terminate the inner cycle

14 else if v.status == NONE a v.match ̸= NULL then
15 Use uv for extending T

16 return Maximum matching M

Jirka Fink Implementation of algorithms and data structures 10 / 19

Contraction

shrink cycle(u,v)
To find augmenting path, we need a new variable bridge for every vertex storing the
edge that causes the contraction

1 lca = lowest common ancestor(u, v)
2 shrink path(lca,u,v)
3 shrink path(lca,v,u)

shrink path(lca,end,other)

1 x = find(end)
2 while x ̸= lca do
3 union(x,lca)
4 x = x.parent
5

6 union(x,lca)
7 enqueue(x)
8 x.bridge = (end,other)
9 x = find(x.parent)

Jirka Fink Implementation of algorithms and data structures 11 / 19

Finding augmenting path

Find augmenting path from u to the root of T using recursion
path(x,end) =

if x == end:
(end)

if x ̸= end and x.status == B:
(x, x.parent) + path(x.parent.parent,end)

else:
reverse(path(x.bridge[1],x)) + path(x.bridge[2],end)

Augmenting path is (v) + path(u,root) where uv is the edges used for augmenting our
matching

Implementation
We do not need to construct the path, we only traverse it and alternate matching edges.

Jirka Fink Implementation of algorithms and data structures 12 / 19

Example (autor: Uri Zwick)

Jirka Fink Implementation of algorithms and data structures 13 / 19

Disjoint-set data structure

Forest
A forest has one vertex for every element

One of the forest corresponds to one set

Every vertex u stores its parent p[u] in the forest

The parent of a root of a tree is NULL ⇒ initialize p[u] = NULL for every vertices

Every root stores the size of its tree

Union(u,v)

Find roots u′, v ′ of trees containing u, v

If u′ contains more element than v ′, then u′ become the parent of v ′

Find(u): Find the root of u

Find the root u′ of u

For all vertices of the path from u do u′ change the parent to be u′ (except u′)

The amortized complexity is O(α(n))

Jirka Fink Implementation of algorithms and data structures 14 / 19

Data representation for finding a maximum matching in general graphs

Graph
Array of vertices

Vertex
Array/linked list of pointers/references/indices of neighbor vertices
Pointer to the matched vertex (NULL for exposed vertices)
Pointer to a parent in the alternating tree
Flag determining whether the vertex belong to A or B or neither
Pointer to the parent in union-find data structure
Size of Union-find tree
Flag for finding lca
A pair for pointers to vertices for finding augmenting path

Queue of vertices

Jirka Fink Implementation of algorithms and data structures 15 / 19

Time complexity

Creating one alternating tree

Extending tree: O(1), O(n)-times

Augmenting matching: O(n), only once

Contracting odd cycle C: O(|C|α(n))
The sum of length of contracted cycles is O(n)
⇒ Complexity is O(nα(n))

Breath search first and calling Find on end-vertices of an edge O(α(n)),
O(m)-times

Building one alternating tree takes O(mα(n))

Time compolexity of whole algorithm

Formally: O(n(n + m)α(n))

But the algorithm can be run on every component independently

Time complexity of the algorithm is O(nmα(n))

Jirka Fink Implementation of algorithms and data structures 16 / 19

Hints

Experience
Algorithm for bipartite graph finds a matching in general graph but it may not be
maximal which can be used for creating tests

For creating large graphs, you can use libraries; e.g. NetworkX in Python, Boost in
C++

Test your algorithms also on huge graphs having thousands of vertices and edges

What should we do when the algorithm fails on a huge graph?
Test reproducibility (run the program once more)

Try to create a smaller graph using the same generator
Try to reduce the buggy graph to find the smallest working example

Remove edges one by one
Remove isolated vertices
Shorted a path by two vertices and edges
Combine the above steps with permuting vertices on the input

Write a script which automatize this process

Jirka Fink Implementation of algorithms and data structures 17 / 19

Implement the algorithm step by step

1 Algorithm for bipartite graphs
2 Test data consistency, unit tests, test feasibility and optimality
3 Thoroughly test the algorithm on bipartite graphs
4 Create tests for general graphs and find graphs on which the algorithm does not

find a maximal matching
5 Add variables for general graphs and extend data consistency tests
6 Finding LCA
7 Slower version of union-find
8 Construction odd cycles
9 Finding augmenting path

10 Test everything
11 Faster version of union-find
12 Test everything again
13 Generate as large graph as it fits to your memory
14 Test everything again
15 Submit
16 Enjoy your holidays

Jirka Fink Implementation of algorithms and data structures 18 / 19

Literature and other resources

Cunningham, Cook, Pulleyblank, Schrijver: Combinatorial optimization, John Wiley
& Sons, 1997 (book chapter)

Jan Vondrák: Polyhedral techniques in combinatorial optimization, 2010 (lecture
notes) https://theory.stanford.edu/˜jvondrak/CS369P/lec4.pdf

Michel X. Goemans: Combinatorial Optimization (lecture notes)
http://math.mit.edu/˜goemans/18433S15/matching-notes.pdf
http:
//math.mit.edu/˜goemans/18433S15/matching-nonbip-notes.pdf

Uri Zwick: Lecture notes on: Maximum matching in bipartite and non-bipartite
graphs (lecture notes)
https://www.cs.tau.ac.il/˜zwick/grad-algo-0910/match.pdf

Visualization: https://algorithms.discrete.ma.tum.de/
graph-algorithms/matchings-blossom-algorithm/index_en.html

Jirka Fink Implementation of algorithms and data structures 19 / 19

https://theory.stanford.edu/~jvondrak/CS369P/lec4.pdf
http://math.mit.edu/~goemans/18433S15/matching-notes.pdf
http://math.mit.edu/~goemans/18433S15/matching-nonbip-notes.pdf
http://math.mit.edu/~goemans/18433S15/matching-nonbip-notes.pdf
https://www.cs.tau.ac.il/~zwick/grad-algo-0910/match.pdf
https://algorithms.discrete.ma.tum.de/graph-algorithms/matchings-blossom-algorithm/index_en.html
https://algorithms.discrete.ma.tum.de/graph-algorithms/matchings-blossom-algorithm/index_en.html

